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The inclusion of in-vehicle sensors and increased intention and state recognition capabilities enable implicit
in-vehicle interaction. Starting from a systematic literature review (SLR) on implicit in-vehicle interaction,
which resulted in 82 publications, we investigated state and intention recognition methods based on (1) their
used modalities, (2) their underlying level of automation, and (3) their considered interaction focus. Our SLR
revealed a research gap addressing implicit interaction in highly automated vehicles (HAVs). Therefore, we
discussed how the requirements for implicit state and intention recognition methods and interaction based on
them are changing in HAVs. With this, open questions and opportunities for further research in this area were
identified.
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1 INTRODUCTION
Through the increase of automation, in-vehicle interaction could change fundamentally. A growing
number of sensors integrated into the vehicle, major advances in machine learning, and increased
processing capabilities allow driver behavior to be captured and interpreted in real-time [73]. This
development enables innovative interaction possibilities such as affective in-car voice assistants [15].
This is also reflected through the upcoming trend of research in the fields of Human-Computer
Integration [32, 72] or Symbiotic Interaction [59]. However, until now, in-vehicle interaction is
mainly based on explicit direct driver inputs such as voice or touch inputs or direct manipulations
of knobs or levers [23]. In comparison, human communication is highly based on implicit actions
and behaviors, like posture or facial expression. Thus, we are able to make statements about and
interact based on another person’s states, even if the person does not explicitly communicate these
states [91]. Implicit inputs already play a significant role in advanced driver assistance systems
(ADASs). Driver drowsiness, stress, fatigue, or distraction can, for instance, be recognized, e.g.,
through physiological signals [95, 107]. With a higher level of automation, the vehicle takes over the
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driving task and the accompanying responsibility. Simultaneously the driver becomes a passenger
and is no longer restricted to supervising the vehicle and the environment, enabling a focus on
non-driving tasks like reading or sleeping. Therefore, acceptance and trust in the vehicle are
indispensable [84, 88]. Additionally, a focus shift of in-vehicle interaction towards user experience
takes place [23], which in turn creates new fields of application for implicit interaction. Serim
and Jacucci [92] recognized difficulties of a precise definition of implicit interaction in human-
computer interaction (HCI). They tried to define the term by differentiating between the various
used meanings. A few works already outlined implicit in-vehicle interaction [23, 73]. Some other
publications provide surveys on context awareness in intelligent vehicles [33, 79]. However, in
the context of in-vehicle interaction, Ohn-Bar and Trivedi [79] firmly focused on driver safety
monitoring methods for overtaking situations, not taking into account the shifting interaction focus
in HAVs. Other existing literature focused on context awareness and sensing from a rather technical
point of view, addressing the realization of distributed human-advanced-vehicle systems [33], or
giving a technical overview of in-vehicle sensors [34]. According to that, we are not aware of an
overview of sensing methods relevant to implicit in-vehicle interaction, considering the underlying
automation level and interaction focus.
In this work, we report the results of a literature review for 23 of the major publication venues

within HCI (see Table 1) over the last 10 years (2011-2021) for publications addressing implicit state
recognition approaches. Two key research questions (RQs) motivated this research:

• RQ1: Which states and intentions can be recognized through implicit input modalities in
the current state-of-the-art, and how do the requirements for those machine learning based
methods change with increasing vehicle automation?

• RQ2: How does implicit in-vehicle interaction change with increasing vehicle automation?
The main contributions of this work are: (1) Results of a systematic literature analysis on implicit

interaction, showing what distinct states of a user can be inferred through implicit inputs in the
current state-of-the-art and elaborating on the input modalities used. An additional differentiated
examination of the state recognition methods on the basis of the underlying considered automation
level and interaction focus revealed a research gap addressing state recognition methods in HAVs.
(2) Based on these results, we discussed requirements for the translation of implicit interaction
from manual to highly automated driving.

2 BACKGROUND
We started our analysis with a search for existing definitions of implicit interaction.

2.1 Implicit Interaction
In interpersonal conversation, information is communicated via non-verbal cues such as the pitch
of the voice, facial expressions, or body language [78]. Those implicit cues improve understanding.
In the context of HCI, Schmidt defines implicit interaction as "an action performed by the user that
is not primarily aimed to interact with a computerised system but which such a system understands
as input " [91, p. 8]. Schmidt further identified the main concepts of implicit interaction as the
perception and interpretation of a user’s situational context. Leifer [55] defines implicit interaction as
two-dimensional space, which spans over the variables attentional demand and initiative, showing
the diversity of the term’s meaning. Also, Serim and Jacucci [92] defined implicit interaction with
different meanings. Thus, they have considered the term implicit differentiated as unintentional
(i.e., interaction that is beyond a user’s given intents), attentional background (i.e., interaction
without demanding a user’s attention), unawareness (i.e., interaction based on behavior or actions
a user is not aware of), unconscious (i.e., interaction as the execution of tasks, which the user is
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not consciously processing), and implicature (i.e., an interaction that is based on meanings a user’s
action implies). They summarized their results in the definition of implicit interaction as "user’s
attitude towards an input–effect relationship in which the appropriateness of a system response to
the user input (i.e., an effect) does not rely on the user having conducted the input to intentionally
achieve it" [92, p. 2]. We refer to this definition in the remainder of this paper. Thus, we consider
input modalities that are consistent with this definition and are therefore justified by at least one
of the differentiated meanings.

2.2 Focus-Shift of In-Vehicle Interaction from Manual to Highly Automated Driving
To reach a shared understanding of the several automation levels, we refer to the common SAE
Levels of Driving Automation [96]. By this definition, the automation of vehicles can be divided
into five levels, ranging from Level 1, which means no automation, i.e., purely manual driving, to
Level 5, which means full automation. With an evolution from current Level 2 to Level 3 vehicles,
the system can take over the driving control under limited conditions (e.g., on highways), but the
driver is still required to be able to retake control. In Levels 4 and 5, the driver’s role changes
towards a supervisory role. Thus, the driver becomes a passenger. The system can handle most
driving situations in Level 4 and all driving situations in Level 5.
Looking at the lower SAE Levels, in-vehicle interaction aspects mainly refer to ensuring a safe

driving condition (e.g., [89, 99, 100, 123]). This involves focusing on enabling a safe driver state
in manual driving and a safe shared control state in conditionally automated driving by focusing,
for instance, on achieving successful takeover requests and keeping the driver in the loop. An
introduction of Level 4 and 5 vehicles, however, leads to a shift of the driving responsibility from
the driver to the vehicle. With this transition, establishing and maintaining trust and acceptance
towards the vehicle becomes more important in the design of in-vehicle interaction concepts [84].
Furthermore, as the vehicle takes over the driving task, the driver instead becomes a passenger,
able to focus on non-driving-related tasks, such as reading, sleeping, or working. Thus, the interior
of future vehicles could more closely resemble the pattern of a working space or living room1. In
their work, Stevens et al. [97] also draw the comparison of a possible design pattern with a mobile,
tiny house, striving for a multi-functional environment. As "trust and use are often associated
with users’ experience of the driver-vehicle interfaces and interior design " [35, p. 1], and as the
automotive industry realizes it as a unique selling point [23], user experience is another aspect
which is gaining high prominence in the design of in-vehicle interaction concepts.

3 SYSTEMATIC LITERATURE REVIEW
To learn about the meaning of implicit input in related work, we conducted a systematic literature
survey following the PRISMA Statement methodology [69]. For the search, we selected three digital
libraries that include the most relevant conferences and venues on automotive user interfaces (ACM
DL, IEEE Xplore and Elsevier Science Direct). We queried the most cited HCI venues [39] plus
additional proceedings relevant for automotive research resulting in 23 venues (see Table 1). Our
queries each consist of three query parts, which narrow down the results to the thematic focus of
the review. (1) The focus is on the automotive domain, which is set by the keywords "vehicle", "car",
"driving", or "in-vehicle". (2) The restriction to the context of HCI is constrained by the keywords
"input", "interaction", or "interface". (3) The focus on implicit interaction is built out of three sets:
The first set is an explicit search for "implicit" interaction. However, most of the literature dealing
with implicit input modalities does not directly mention the keyword "implicit". Thus, the second set

1https://www.mercedes-benz.com/de/innovation/autonomous/forschungsfahrzeug-f-015-luxury-in-motion/; Accessed
11-JANUARY-2022

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. MHCI, Article 191. Publication date: September 2022.

https://www.mercedes-benz.com/de/innovation/autonomous/forschungsfahrzeug-f-015-luxury-in-motion/


191:4 Annika Stampf, Mark Colley, & Enrico Rukzio

is composed of gathered possible implicit input modalities. Therefore, we used the presented sensor
modalities proposed by Sharma and Pavlovic [93]. In addition, we went through all publications of
the 12th International ACM Conference on Automotive User Interfaces and Interactive Vehicular
Applications (2020) and examined them for modalities that could be used implicitly. The goal of
processing implicit input is to identify the state/intention of the driver using pattern recognition and
machine learning approaches. The processing of data with the goal of state/intention recognition
is usually called "prediction", "recognition", "estimation", or "classification" [81, 85]. Thus, the third
set is composed of these keywords. This allowed us to include modalities that could not be covered
by the preliminary research due to e.g. different wording or synonyms used. Furthermore, this
includes literature that obtained implicit input as an implication of explicit input. An example
is the processing of explicit pedal input to implicitly understand a driver’s driving style [119].
The resulting queries can be seen in Table 2. In addition, we have narrowed down our search to
publications from the last ten years (2011-2021) and only considered titles and abstracts for search.
After the removal of duplicates, a total of 1924 publications remained, which we further investigated
in an abstract screening.

3.1 Review Process

Fig. 1. PRISMA Flow Diagram [69] illustrating our paper selection process.

For an abstract screening, we defined inclusion criteria: (1) The publication focuses on processing
implicit human inputs based on our understanding of implicit inputs (see Background) to obtain
information about the user’s state or intentions. (2) The publication is related to an automotive
context. Further, we defined exclusion criteria: The publication’s main contribution is a taxonomy,
design space, literature review, or workshop.

To analyze the selected articles, we used sysrev.com, which enabled us to screen the publications
collaboratively. Two authors were involved in the screening process. The first author reviewed each
publication and the second one reviewed 805 publications. A calculation of the Cohens Kappa [67]
revealed an inter-rater reliability of ^ = 73.8 (𝑝 = 96.6%), indicating a substantial agreement
according to Landis and Koch [53]. Afterward, all conflicts were discussed and could be solved. Our
Sysrev project is publicly accessible2. It includes the 1924 screened publications with abstracts and
labels attached by the authors.

The abstract screening resulted in a sample of 128 publications. Those publications were further
analyzed by a full-text screening. In this step, we excluded an additional 53 papers for which only
2https://sysrev.com/u/5332/p/79138
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the full-text analysis revealed that they do not meet previously defined inclusion and exclusion
criteria. We additionally discovered seven works by reference crawling the most relevant results.
In total 82 publications were included in the quantitative synthesis. Figure 1 shows the complete
PRISMA flow diagram, illustrating our paper selection process.
For the quantitative synthesis, we developed a set of labels to summarize the work and to note

the most important aspects for our review. Five labels were extracted: (1) implicit input modalities
(string label), (2) vehicle automation (categorical label), (3) contribution (string label), (4) implicit
interaction (string label), and (5) notes (string label).

Conference / Venue Number of publications

ACM Conference on Human Factors in Computing Systems (CHI ) 119
ACM Conference on Computer-Supported Cooperative Work & Social Computing (CSCW ) 11
ACM Conference on Pervasive and Ubiquitous Computing (UbiComp) 27
ACM/IEEE International Conference on Human Robot Interaction (HRI ) 52
ACM Symposium on User Interface Software and Technology (UIST ) 9
ACM Transactions on Computer-Human Interaction (TOCHI ) 0
ACM Multimodal Interfaces and Machine Learning for Multimodal Interaction (ICMI-
MLMI )

45

ACM Designing Interactive Systems (DIS) 14
ACM Intelligent User Interfaces (IUI ) 28
ACM International Conference on Human-Computer Interaction with Mobile Devices and
Services (MobileHCI )

18

ACM Conference on Automotive User Interfaces and Interactive Vehicular Applications
(AutoUI )

192

IEEE Transactions on Affective Computing 30
IEEE Transactions on Human-Machine Systems 50
IEEE Transactions on Haptics 16
IEEE Transactions on Intelligent Transportation Systems (ITS) 254
IEEE Transactions on Vehicular Technology 188
IEEE Transactions on Intelligent Vehicles 49
IEEE Intelligent Vehicles Symposium (IV ) 115
IEEE International Conference on Intelligent Transportation Systems (ITSC) 114
IEEE Access 764
Elsevier International Journal of Human-Computer Studies 13
Transportation Research Part F: Traffic Psychology and behavior 217
Elsevier Robotics and Autonomous Systems 54
Combined 1924 (without duplicates)

Table 1. Number of publications for the retrieved conferences and venues.

4 RESULTS
In this section, we present the results of the literature review. It includes 75 publications from
the previous screening and seven additional works [26, 49, 50, 64, 81, 104, 112] by forward and
backward reference searching of relevant results.

4.1 Modalities
The following provides an overview of the modalities and their usage to access a user’s states, also
presented in Table 3.

4.1.1 Physiological Signals. Common measured and processed physiological signals are (1) elec-
trical heart activities, like heart rate, heart rate variability (HRV), or other features and cues of
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Level ACM Query
Direct (vehicle? OR car? OR driver? OR "in-vehicle" OR "driving") AND "implicit" AND

(interaction? OR input? OR sensing OR interface?)

Modalities (vehicle? OR car? OR driver? OR "in-vehicle" OR "driving") AND (interaction? OR
input? OR interface?) AND (eye? OR gaze OR blink* OR pupil* OR "facial expression"
OR "facial behavior" OR mimic OR "visual behavior" OR gesture OR motion OR movement
OR posture OR "head pos*" OR "body pos*" OR voice OR speech OR speak* OR verbal
OR "physiological signal?" OR "brain activit*" OR "brain-computer" OR biometrics
OR emotion OR emotional)

State (vehicle? OR car? OR driver? OR "in-vehicle" OR "driving") AND (interaction? OR
input? OR interface?) AND (predict* OR estimat* OR classif* OR recogni*)

Table 2. ACM queries.

an electrocardiogram (ECG), and (2) electrodermal activity (EDA), which is responsible for the
electrical characteristics of the skin [52].
Electrical Heart Activities. The activity of the Autonomic Nervous System (ANS) changes with the
level of stress, fatigue, or drowsiness [5, 7]. This activity can be sympathetic or parasympathetic.
Increased sympathetic activity and decreased parasympathetic activity imply wakefulness states,
while inverse activities are characteristic of relaxation states [104]. HRV can be measured to es-
timate a user’s fatigue level [103]. Balasubramanian and Bhardwaj [7] used a cECG to measure
HRV components in an unobtrusive manner through electrodes on the back of the driver’s seat. Du
et al. [27] estimated the level of driver fatigue through a measurement of the heart rate and an
additional capture of eye and mouth openness level to stabilize possible noisy results of the heart
rate measurement.
Electrodermal Activities. As the sympathetic nervous system controls sweating by innervating the
sweat glands, changes in skin conductivity provide information about the sympathetic arousal of a
user [109]. Wickramasuriya and Faghih [109] measured the palm EDA to estimate a user’s state of
arousal.
Thermal Signals. Our SLR revealed that in multiple publications, the perinasal perspiration is also
measured as an unobtrusive alternative to palmar EDA [13, 36, 82] to estimate a user’s state of
arousal.
Respiration. Grassmann et al. [40] showed that respiratory changes in response to cognitive load.
However, we only found publications using those respiratory cues (mainly breathing rate [15, 42])
as part of multimodal input for cognitive load estimation.
Brain-Activity. We found six papers that used electroencephalography (EEG; a method of measuring
electrical activity on the scalp) to determine a user’s intention with respect to driving decisions,
such as the intention to turn right/left or to change speed [6, 11, 12, 31, 45, 58, 61]. The authors
focused on paralyzed users or users with movement disorders to enable them to make independent
driving decisions, which are then executed by automated maneuvering. As these driving decisions
currently require users to focus on external stimuli, this type of interaction is not implicit. Never-
theless, it has been included in the SLR because this input type is a non-negligible opportunity for
implicit interaction. The work of Guo et al. [41] even shows in this context that with EEG (without
stimuli), it is already possible to detect whether the driver has focused on certain hazards or not.
Further, Yu et al. [118] described an approach to detect vigilance.

4.1.2 Auditory. In contrast to explicit speech inputs, implicit speech inputs are characterized by
verbal utterances that are not directly addressed to the vehicle or paralinguistic cues. Thus, implicit
speech inputs are signals of linguistic messages that do not contain direct information. Examples
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Physiological States
[95]
[15]
[42]

[95]
[15]
[42]

[15]
[5]

[15]
[42]

[14]
[74]
[4]
[112]

[74] [43]
[15]
[74]

[15] [99]
[95]
[15]

Cognitive Load

[7]
[27]

[51]
[27]

Fatigue

[63] [63] [63] [89] Stress
[41] [105]

[70]
[70] [70] Attention

[36]
[82]

[36]
[82]

[36]
[82]

[36]
[82]

[36] [10] [107] [36] [107] [36] [107]
[36]
[98]
[82]

Distraction

[124]
[83]
[104]

[100]
[56]

[112] [117] [56] [102] Drowsiness

[46] Physiological Parameters
Emotional States

[26] [26] [26] Anxiety
[24] [50]

[49]
[50]
[49]

Valence Arousal State

[109] Sympathetic Arousal
[118] Vigilance

[106] [106] [106] [50]
[49]

[50]
[49]

Frustration

[4] Trust
Kinesthetic States

[48]
[9]
[115]
[65]
[121]
[8]
[24]
[64]

[66]
[24]

[65]
[66]
[121]

Activity Recognition

Driving-Related States
[108]
[81]

[108]
[81]

[108] [22]
[3]
[111]
[81]

[22] [101]
[37]

[71]
[22]
[122]

[114]
[71]
[22]
[108]
[68]
[3]
[122]
[111]
[38]
[60]
[101]
[119]
[37]
[81]
[38]

[114]
[68]
[123]
[101]
[25]
[37]

[37] Driving Behavior

[11]
[45]
[61]
[6]
[12]
[58]

Vehicle Control

[31] [47]
[54]

[47]
[54]

Destination Intention

[94] [18]
[20]

[18]
[20]

Driving Performance

[80]
[19]

[80] [21] Crash Risk

[113] Reaction Time
[116] Driving Uncertainty

Other
[13] [13]

[90]
[13] [13] [89] User Identification

Table 3. Overview of assessed modalities with reference to recognized user states and intentions.
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are pauses in speech, speech rhythm, volume, intonation and pitch [50]. Paralinguistic inputs can
provide information about the current emotional state of a user. Work by Jones and Jonsson [50]
explored the recognition of the emotional state through paralinguistic inputs as dimensions of
valence and arousal. A later publication of Jones and Jonsson [49] obtained paralinguistic cues in
speech to recognize emotions in older car drivers. For a deeper understanding, Zepf et al. [120]
provided a further overview of studies on the recognition of emotions in the automotive context,
including emotion recognition through speech.

4.1.3 Visual. Our SLR revealed that visual signals were mainly used as gaze-based implicit inputs.
However, also blink frequency and pupil dilation was considered.
Gaze. Akash et al. [4] used eye gaze to estimate a user’s trust in the automated vehicle and
surveillance of the scene. We found multiple publications that showed that gaze direction can be
a good indicator of where attention is directed [70], if a driver is distracted [36], or to measure a
driver’s cognitive load state [4, 74]. Biswas and Prabhakar [14] estimated workload by exploring
saccades, which are fast, erratic movements of the eyes. Wu et al. [113] used saccades to predict a
driver’s reaction time.
Blink. Drowsiness can be estimated through the blink frequency [112]. Further, Benedetto et al.
[10] considered blink frequency as a way of estimating visual workload and showed that it can
serve as an indicator of distraction.
Pupil Dilation. We found several publications which accessed the pupil diameter to estimate a
driver’s cognitive load [15, 43, 44]. Niezgoda et al. [74] further accessed the pupil diameter to
determine a driver’s distraction.

4.1.4 Kinesthetic. Kinesthetic implicit input includes muscle activities, position and movements of
the body, and individual body parts, for example, head, arms, and legs. In addition, we considered
facial features.
Body Pose. Our SLR revealed several approaches to recognize user activities by obtaining the body
pose or body movements [8, 48, 65, 66, 115, 121]. Activities that can be recognized by their ap-
proaches are, for example, driving normally, reaching for center compartment, adjusting the radio,
drinking, preparing, talking to a passenger, or talking on a phone. Tran et al. [101] observed the foot
position to predict a driver’s foot movement and, thus, could recognize the braking aspect of the
driving behavior. Based on posture and sitting position, the tension and, thus, the stress level can
be detected [63].
Head Pose. We found work that used a driver’s head pose with head pitch and yaw position to
estimate a driver’s focus of attention to predict the lane change intention [22, 71] with additional
driving and environmental information. Wang et al. [107] further used the head pose to estimate
the driving load and driving capability of a driver.
Facial Features. With the recognition of facial features and understanding of facial expressions,
multiple statements can be inferred about a user’s state. Examples are the emotional state [120] or
the driving capability through driver fatigue detection [27, 102]. Recognition of facial expressions
was additionally used (besides the body and head pose) by Martin et al. [65] and Zhang et al. [121]
for the identification of a user’s activity. We further found that Huang et al. [46] used facial features
to estimate heart rate (58.60% accuracy), skin conductance (83.78% accuracy), and vehicle speed
(59.89% accuracy) as a contactless alternative to multiple bio-sensors in the vehicle.
Driving Activity. Driving is an explicit activity. Direct interactions such as actively moving the steer-
ing wheel to determine the vehicle’s direction or using the pedals to consciously control the speed
are necessary. However, according to the definition of Serim and Jacucci [92], if the interaction
relies on meanings a user’s action implies, such as the driving style, it can be described as implicit.
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Therefore, we consider these implications obtained by driving activities to be implicit input. For
example, our SLR revealed multiple publications accessing vehicle data to obtain information about
a driver’s driving style [29, 82, 119], such as aggressive or normal driving, or a driver’s driving
skill level [18]. Gonzales et al. [37] further estimated a driver’s risk-aversion by combining and
processing driving activity and body pose. The driving activity can also be used to make statements
about the driver’s intention regarding a lane change [22, 38, 71, 108, 114] or driving behavior in
general [3, 111, 122].

4.1.5 Profile. In addition to the above-mentioned indirect implicit information about the user’s
state, such as driving style, there is also the possibility of implicitly obtaining information about
user traits and preferences. The difference is that user traits are stable compared to user states,
which are fluctuating [15].
User Traits. A large number of algorithms identifying user traits have been developed in recent
years. Ranjan et al. [86], and Aji et al. [2], for example, estimated a person’s gender by fusing facial
features. Also, methods for age recognition do exist [87]. However, our SLR did not reveal any
publications that make use of implicit gained traits as input for in-vehicle interaction.
Preference. We found a publication that used explicit vehicle data to obtain implicit information
about a driver’s action preference to predict driving behavior [37]. Imai et al. [47], and Lassoued
et al. [54] recorded route trajectories to gain knowledge about destination and route preferences
implicitly and thus predict future destinations and routes.

4.2 Level of Automation and State Transition

State Manual Driving Shared Control Autonomous Driv-
ing

Independent of Au-
tomation Level

Kinesthetic State 8: [8, 9, 24, 48, 65, 66,
115, 121]

1: [64]

Physiological State 27: [5, 7, 10, 14, 15, 27,
36, 41–43, 51, 56, 63,
70, 74, 82, 83, 89, 95,
98–100, 102, 106, 107,
117, 124]

2: [105, 112] 1: [4] 2: [46, 118]

Emotional State 4: [15, 49, 50, 109] 1: [26]
Driving-Related 25: [3, 11, 18–22, 25,

37, 38, 45, 47, 54, 61,
68, 71, 80, 82, 101,
108, 111, 114, 119, 122,
123]

6: [6, 29, 81, 94, 113,
116]

2: [12, 31] 1: [58]

Other 2: [13, 90]
Table 4. Allocation of the surveyed articles to the considered level of automation.

An essential step toward recognizing user states through implicit input modalities is to look at the
above-used methods from the perspective of the underlying level of automation, as the recognition
methods and goals may depend on the context in the vehicle, which is changing with SAE Level.
While in manual driving the focus is on the primary driving task, at higher levels of automation,
the user’s focus shifts to secondary and tertiary tasks due to the elimination of the primary driving
task. This transformation also influences possible states of the user concerning the characteristics,
i.e., how these states appear or what causes them. Table 4 shows that the majority of the surveyed
publications examined are mainly concerned with manual driving (78%). 10% focused on recognizing
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states in the condition of shared control, and only 6% put a fully automated vehicle state at the
center of their considerations. For the kinesthetic states, the detection of driver activities can be
listed as an example of a recognition method that can not be adopted for all SAE Levels without
modifications. Deep learning based models for activity recognition usually require data-intensive
training. Therefore, most models are limited to the recognition of a small number of pre-classified
actions and are directly related to the driving task, such as normal driving, hands on/away from
the wheel, or talking on the phone [8, 48, 121] and use manual driving datasets [1, 28]. However,
with the transition to automated driving, the condition changes, as both possible activities and the
vehicle interior change, e.g., through swiveling chairs that change a user’s observation angle or
activities that were not possible while driving. Therefore, to transfer activity recognition models to
the automated context, the models need to be re-trained with respect to those evolving conditions.
Thus, Martin et al. [64] proposed a new dataset Drive&Act for driver behavior recognition in
automated vehicles. Nevertheless, the number of possible activities in automated vehicles is greatly
expanding, which is why more datasets are needed to cover those. Our SLR also shows that a lot of
work deals with state and intention recognition methods that are in close contact with the manual
driving task, such as the recognition of driving behavior, driving performance, crash risk, reaction
time, driving uncertainty, and driving style. These will vanish nearly entirely in the automated
context. Thus, the shift of tasks towards secondary and tertiary tasks also eliminates driving activity
as a contactless input modality, which some methods use to measure distraction [36, 82, 98, 107] or
cognitive load [95, 99], for example. This reinforces the need for other (contactless) methods for
detecting physiological conditions, such as Huang et al.’s approach [46] of estimating physiological
parameters from facial image data. Overall, it is also noticeable that many publications only consider
manual driving and refer exclusively to use cases in this context. Still, the methods themselves
could be applied regardless of the automation level. For example, detecting physiological and
emotional states is mainly considered in the manual driving context and with the ulterior motive
of recognizing critical driver states. Although, it could also be useful in an automated condition
to detect drowsiness, boredom, frustration, anxiety, or other states, for instance, to enhance the
user experience by adapting the driving style, infotainment functions, proactive feedback, etc. Our
analysis shows that only a few papers consider state recognition in a highly automated context.
Future research should focus on how to detect user states independently of driving behavior and
in an unobtrusive manner (contactless, at best) so that the methods apply to drivers as well as
passengers, including users of HAVs. Furthermore, researchers should keep the fully automated
context in mind when developing state recognition approaches and also consider appropriate use
cases in this context and evaluate their methods on these.

4.3 Shift of Interaction Focus
In a further step of our analysis, we extracted the publications that additionally investigated
implicit interaction on the basis of implicit input modalities and the physiological, kinesthetic,
emotional, and driving-related states and intentions recognized through them. As the interaction
focus changes with increasing automation level, we re-analyzed these extracted publications from
this point of view. In the previous section, we found that most of the papers examined deal with
state recognition in manual driving, which is reflected in the interaction concepts considered
(see Table 5): Almost exclusively, concepts with the focus on achieving a safe driving state were
implemented. Therefore, implicit inputs are mainly used to recognize the states and intentions of
the driver, evaluate them based on driver safety, and intervene if necessary. Taniguchi et al. [99], for
instance, used the detected cognitive load to determine the appropriate time for non-driving-related
in-vehicle interaction dialogues. An approach to alert the driver if dangerous driving behavior was
recognized was presented by Panagopoulos and Pavlidis [82]. Further, Tanveer et al. [100] proposed
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Safe Driving Condition Acceptance and Trust User Experience and
Comfort

Cognitive Load [15, 99]
Driving Behavior [25, 82, 123]
Drowsiness [100]
Action Recognition [48, 57]
Distraction [94]
Driving Uncertainty [116]
Stress [63]
Driving Style [29, 82]
Cognitive Load and Driving
Capability

[107]

Cognitive Load and Trust [4] [4]
Action Recognition and
User Identification

[89] [89]

Table 5. Focus of implicit interaction based on recognized states.

a drowsiness warning system. Among all the works, we could identify only two that, starting from
implicit inputs, presented an interaction design concept to increase user experience and comfort or
acceptance and trust towards the vehicle. The first work is by Akash et al. [4]. They proposed an
adaptive augmented reality interface, showing automation transparency by highlighting objects
detected in road traffic, which depend on the recognized trust and workload to calibrate the driver’s
trust. The second approach was shown by Rivera et al. [89]. They proposed a prototyping framework
for adaptive user interfaces and considered the exemplary use case user aware hand-over request,
where driver activities are tracked and displayed on a control panel to perform a safe hand-over.
Here, the focus is again on maintaining a safe driving condition. In a second use case, they focused
on user experience. Thus, a user recognition with automatic adaptation of the infotainment system
to the user profile was implemented. However, they did not evaluate the proposed system.

5 DISCUSSION
5.1 Which States and Intentions Can be Recognized Through Implicit Input Modalities

in the Current State-Of-the-Art and How Do the Requirements for those Machine
Learning Based Methods Change with Increasing Vehicle Automation?

Our SLR shows an overview of current state-of-the-art in-vehicle state recognition methods and
goes into more detail about the input modalities used. We found that most methods are implemented
with a manual driving condition in mind. For this reason, many methods cannot be used at all for
higher levels of automation or only with reconsideration and adaptation.

5.1.1 Translation of Kinesthetic State Recognition Methods. Methods that recognize kinesthetic
states are usually based on manual driving data sets. It is, therefore, necessary to re-examine which
tasks and associated activities HAVs are likely, such as Wilson et al. [110] did, and generate new
data sets based on these tasks, such as the Drive&Act dataset [64]. We suggest that camera-based
activity recognition in HAVs should be of further interest. In particular, attention could be paid to
recognizing subconscious behavior patterns since they might provide more information about a
user’s emotional state enabling an extension of other contactless state recognition methods. As an
example, bouncing legs could indicate that a user is nervous.

5.1.2 Translation of Emotional State Recognition Methods. Most emotion recognition methods from
the automotive context can be transferred to higher levels of automation, as they are estimated either
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by image data and facial expressions or by physiological parameters, which are independent of the
factors changing with increasing SAE Levels. Here we see the potential in in-vehicle interaction
concepts with the aim of meeting the requirements of the new interaction focus through new use
cases and thus having a positive influence on acceptance, trust, user experience, and comfort. Dillen
et al. [26], for example, have done just this with the development of a fear and comfort detection
approach to individually assess differentiated driving styles. In general the topic of affective
interaction is widely discussed for lower SAE Level [15–17, 30, 62]. And even in the context of
HAVs, a few works already deal with the design of use cases [76, 77]. Nevertheless, many open
questions still need to be explored in future research. Especially for the goal of emotion regulation,
some things need to be investigated, such as the recognition of the emotional source (i.e., how to
find out of the user is anxious about the driving style or an upcoming appointment) and individual
preferences (i.e., how to find out whether the user prefers to listen to music or watch a movie when
bored).

5.1.3 Translation of Physiological State Recognition Methods. Considering physiological states, our
SLR revealed that most state recognition methods were implemented primarily with the intention
of ensuring a safe driving state in manual driving. The best possible target is the contactless
recognition of states, which multiple methods already do consider [10, 46, 74]. Nevertheless, our
SLR also showed that numerous methods monitored and processed driving-related input modalities
to meet this challenge. Future work, therefore, needs to consider which physiological states might
be of interest for designing interaction concepts in HAVs and how these states can be detected in a
contactless manner and independent of a user’s current activity. Further, as with the emotional
state, methods should be found to recognize the source of a state to respond appropriately (e.g.,
how to find out whether a user is stressed due to high traffic volume or a current phone call).

5.2 How Does Implicit In-Vehicle Interaction Change with Increasing Vehicle
Automation?

The dissimilarity between the desired state in manual and autonomous driving results in a new
pipeline for implicit input-based interaction. Thus, Figure 2 shows our understanding of the targeting
pipeline in implicit interaction in HAVs. First, implicit inputs are processed to recognize a user’s
state. For this purpose, identified physiological, emotional, and kinesthetic states are fused. Unlike
manual driving, where the driver’s desired state is predefined as the state in which the vehicle
can be safely controlled, the desired state is determined by the interpretation of the recognized
state with regard to obtained profile information, such as a users mood, traits, or preferences and
environmental and personal context. Finally, the desired state is translated into action.

5.2.1 Indistinct Desired States Lead to Growing Uncertainties. As we have already seen in our SLR,
through this process and the characteristics of current state recognition and intention prediction
systems having uncertainties, there is always a residual probability of wrong assumptions leading
to inappropriate actions. As a result, it might cause problems at lower levels of automation (e.g.,
ADAS functions might be triggered erroneously), as well as in high levels of automation, where it
might lead, for instance, to inappropriate recommendations or driving adaptions. In the case of
HAVs, however, there is the additional factor that the detected condition can also be misinterpreted,
resulting in a false desired state being inferred. As an additional explanation: The desired state in
manual driving is always the state in which the driver can safely operate the vehicle, meaning,
for instance, an attentive, focused, alert, undistracted state. In the context of automated driving,
inferring the desired user state from the recognized state is more complex. Thus, for instance, the
desired state of a drowsy driver could be awake. However, it could just as well be asleep. This
increases the probability of false assumptions. Thus, when designing interaction concepts based on
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Fig. 2. Pipeline for implicit interaction.

such machine learning methods, it is, especially for HAVs, essential to consider what impacts the
user will experience if an action is taken in response to a wrongly recognized and interpreted state.
Also, concerning the central importance of acceptance and user experience in HAVs, considering
incorrect assumptions should take place, as interactions based on them might influence these
aspects negatively. Those negative effects could be described as the cost of failure, which needs
to be offset against the expected benefits an action based on correct assumptions would have,
both weighted by the accuracy of the machine learning model. Justified by the Halo effect [75],
the way a vehicle agent interacts with its users also influences their expectations of the vehicle’s
capabilities [35]. For this reason, in the context of implicit in-vehicle interaction, it needs to be
explored whether the complexity of user states the vehicle can recognize and react to also influences
the perceived driving capabilities. If so, this needs to be taken into account in the design of new
interaction concepts as the perceived safety might be positively influenced, which in turn has a
direct effect on trust. However, this also means that proactive actions based on misrecognized or
misinterpreted implicit inputs could negatively affect perceived safety and trust in the automation.
Thus, overall, we consider it necessary to identify influencing factors that quantify the benefits of
an implicit input based action and the costs that can arise when this action is caused by incorrect
assumptions. This should lead to the ability to perform a cost-benefit analysis based on the accuracy
of the machine learning model to create a quality assessment framework for implicit in-vehicle
interaction.

6 LIMITATIONS AND FUTUREWORK
Our SLR has mainly shown research gaps in the area of implicit input-based interaction. We see the
goal of further work to close the gaps by (1) extending existing use cases and associated implicit
input-based interaction concepts, (2) evaluating, adapting, and extending current state recognition
methods for a highly automated context to implement designed interaction concepts, and (3)
evaluating these concepts in further studies (with consideration of possible false assumptions)
based on the identified new requirements. The latter also involves investigating how passengers
ultimately interact with such a system. As Serim and Jacucci [92] stated, users might intentionally
trigger a system action when they "comprehend the causal relationship between their inputs and
the system effects" [92, p. 7]. Thus, in particular, it needs to be investigated if and how the users’
behavior adapts.
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7 CONCLUSION
This work’s goals were to examine which states and intentions can be recognized through implicit
input modalities in the current state-of-the-art and how the requirements for those methods and for
implicit interaction change with increasing SAE Level. Therefore, we conducted a literature review
regarding implicit interaction in the in-vehicle context, including 82 publications, which revealed a
research gap addressing implicit interaction in HAVs. Findings led to a discussion of requirements
for the adoption of implicit interaction to HAVs which opened questions and opportunities for
further research in this area.
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