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Figure 1: AutoVis combines an immersive VR view with a synchronized non-immersive desktop view for analyzing automotive 
user interface studies. In VR, analysts can re-experience and analyze studies in an immersive environment. On the desktop, 
they can analyze aggregated data. A virtual tablet attached to the controller visualizes the desktop view in VR. 

ABSTRACT 
Automotive user interface (AUI) evaluation becomes increasingly 
complex due to novel interaction modalities, driving automation, 
heterogeneous data, and dynamic environmental contexts. Immer-
sive analytics may enable efcient explorations of the resulting 
multilayered interplay between humans, vehicles, and the environ-
ment. However, no such tool exists for the automotive domain. With 
AutoVis, we address this gap by combining a non-immersive desk-
top with a virtual reality view enabling mixed-immersive analysis of 
AUIs. We identify design requirements based on an analysis of AUI 
research and domain expert interviews (N=5). AutoVis supports 
analyzing passenger behavior, physiology, spatial interaction, and 
events in a replicated study environment using avatars, trajectories, 
and heatmaps. We apply context portals and driving-path events 

as automotive-specifc visualizations. To validate AutoVis against 
real-world analysis tasks, we implemented a prototype, conducted 
heuristic walkthroughs using authentic data from a case study and 
public datasets, and leveraged a real vehicle in the analysis process. 

CCS CONCEPTS 
• Human-centered computing Visual analytics; • Human-

centered computing Ubiquitous and mobile computing sys-
tems and tools; • Human-centered computing Virtual reality; 

KEYWORDS 
Immersive analytics, interaction analysis, visualization, virtual re-
ality, automotive user interfaces 
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1 INTRODUCTION 
With the increasing technological advances of driving automation 
(enabling non-driving related activities [39]) and vehicle systems 
(e.g., touch screens [38], embedded sensors [76], or speech assis-
tance [89]), human-vehicle interaction analysis becomes more com-
plex. Today’s AUI development often considers numerous factors, 
such as the vehicle environment [9, 90], novel input and output 
modalities [72], multimodal interaction [1], the temporal sequence 
of interactions, user behavior [90], and user physiology [126]. Be-
sides, other road users [65] can interact with the vehicle via external 
human-machine interfaces (eHMIs) [25, 26, 33–35]. Consequently, 
practitioners gather large bodies of heterogeneous, spatio-temporal 
data of movements, user interactions, audio/video recordings, and 
other events that need to be visualized and analyzed to gain the 
desired insights into how people use novel AUIs. Efcient and ef-
fective data analysis may beneft from tools that directly relate 
in-vehicle passenger behavior to the environment. 

However, today’s analysis tools for AUIs (e.g., [48, 123]) are non-
immersive, 2D, bounded to desktops, and distancing the analysts 
from the often complex environments outside and inside the vehicle 
that might have a critical impact on passenger behavior. As a result, 
analysis can be time-consuming (e.g., see [42, 61, 71, 93]), and data 
patterns may be invisible during analysis from a fxed point-of-view 
(POV) or are unclear without the original environmental context. 
Likewise, due to the difcult instrumentation of participants (e.g., 
on-body sensors) and costly external camera systems (e.g., LiDAR 
[127]), datasets may contain only videos of the driving environment 
or the interior (e.g., [73]). Therefore, (manual) analysis of public 
datasets might be incomplete or require extensive post-processing. 
Besides, current tools do not support each driving automation level 
defned by the Society of Automotive Engineers (SAE) taxonomy 
J3016 [112]. However, automated driving signifcantly afects pas-
sengers [27, 28, 32, 40] and other road users [139]. Furthermore, 
current tools often do not adequately support the various forms of 
multimodal in-vehicle interaction (e.g., [1, 78, 110]), which combine 
input modalities such as gaze, gesture, speech, and touch. 

In contrast, immersive analytics enable the spatial analysis of in-
teraction and movement data in augmented (AR) and virtual reality 
(VR) within a replicated study environment [16, 79, 88]. However, 
immersive tools, similar to [67, 107], are currently nonexistent in 
the automotive research domain. This prevents an outside-in view 
that may be needed to get an overview of the data [16]. However, 
non-immersive tools are well-suited for overview tasks, such as 
quickly fnding relevant events [80]. Therefore, in line with Huben-
schmid et al. [67], we argue that efective and efcient analysis 
of AUI studies requires immersive and non-immersive tools. In 
combination, these approaches compensate for their drawbacks 
and have the potential to overcome barriers between practitioners, 
their data, and the tools they use for analyzing and understanding 
human-vehicle interaction. 

To unleash this potential, we propose AutoVis, a tool for the 
mixed-immersive analysis of AUI studies. AutoVis combines an 
immersive VR with a non-immersive desktop view (see Figure 1) 
to enable in-depth visualization of passenger states and interac-
tions in- and outside the vehicle, aiming to create a strong link 
between data and environment. The VR view replicates a scenario 
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in an interactive 3D environment explorable via VR head-mounted 
displays (HMDs). This view combines trajectory-based visualiza-
tions with interactive humanoid 3D avatars, providing a detailed 
representation of passengers’ movements and interactions. Addi-
tionally, heatmaps aggregate passengers’ gaze, pointing, or speech 
references in the vehicle or environment. To further visualize the 
link between in-vehicle and environmental contexts, we employ 
context portals. In VR, analysts can walk in the vehicle’s surround-
ings, sit on the passengers’ seats, relive behavioral, physiological, or 
interaction-related events, and re-experience the study data within 
its original context. In addition, analysts can leverage a real vehicle 
using passthrough VR. A virtual tablet (see Figure 1) enables an 
overview of physiological and event data to aid explorations. 

Complementary to VR, a desktop view serves as a visual anal-
ysis workbook to summarize, link, explore, and compare details 
of diferent study sessions’ spatio-temporal, event, and nominal 
data. The desktop view also ofers a 2D window into the current 
3D VR scene. View synchronization enables control of tool-wide 
playback. Moreover, AutoVis enables transitions between VR and 
desktop view, therefore, representing a hybrid UI (see [67, 107]). In 
addition, the interplay between the VR and desktop view enables 
collaborative use of AutoVis in diferent levels of immersion, time, 
and space (see 4.5). By applying deep learning (DL) approaches 
for the automatic event, emotion, and object inference, AutoVis 
can convert datasets with low context details (e.g., only containing 
driving/passenger videos) into datasets of high context fdelity. 

We evaluated a prototype of AutoVis to identify the advan-
tages and challenges of combining immersive and non-immersive 
views for analyzing AUI studies. For this, we investigated three use 
cases to systematically validate our concepts against current AUI 
research topics. First, we conducted a use case study on multimodal 
interaction in automated vehicles (AVs). Second, we demonstrate 
the conversion and visualization of a real-world dataset (Drive&Act 
[95]) via AutoVis. Finally, we leveraged a real vehicle in the analy-
sis process. In the evaluation, we apply Olsen’s heuristics [100] to 
investigate how AutoVis supports analysis tasks. Our evaluation 
focuses on the applicability of our analysis concept, the interplay 
between immersive and non-immersive views, and how immersion 
fosters an efective analysis. 

Contribution Statement: (1) The concept of mixed-immersive anal-
ysis of AUI studies, utilizing 3D avatars, motion trajectories, and 
aggregated visualizations embedded in virtually replicated environ-
ments. (2) Automotive domain-specifc 3D visualization concepts 
using context portals and driving-path events, and leveraging a 
real vehicle for analysis via passthrough VR. (2) A prototype imple-
mentation of our concepts. We share a demo1 and the open-source 
repository2 with the research community to enable the design of 
future interactive systems. (3) Insights and research implications 
derived from a heuristic evaluation of three use cases highlighting 
how AutoVis can be used to analyze AUI interactions. 

2 RELATED WORK 
AutoVis builds upon work from several research domains. There-
fore, we look into: (1) immersive and non-immersive analytics and 

1The AutoVis demo website: https://autovis.onrender.com 
2The AutoVis repository: https://gitlab.com/Pascal-Jansen/autovis 

https://autovis.onrender.com
https://gitlab.com/Pascal-Jansen/autovis
https://gitlab.com/Pascal-Jansen/autovis
https://autovis.onrender.com
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spatio-temporal data visualizations, and (2) related work on current 
desktop-based analysis and visualization of in-vehicle interactions. 

2.1 Immersive & Non-Immersive Analytics 
A common method for user study analysis is to use non-immersive 
tools, such as Tableau [114] and Spotfre [125], or toolkits like 
D3.js [12] and R [54]. Previous work also employed non-immersive 
visualizations of spatio-temporal data. For example, augmented 
top-down views [14, 22, 36, 122, 130] and 3D views [15, 36, 104] 
with various visualizations, such as trajectories [14, 15, 22, 36, 122], 
heatmaps [14, 22, 130], and feld of view frustums [14, 22, 104]. 
Often, timelines (e.g., [14, 15, 22, 36, 94, 130]) annotated by events 
[14, 15, 94, 130] control these visualizations. Non-immersive visual-
izations are mostly complemented with videos to synchronize move-
ment visualizations with the recordings (e.g., [14, 15, 36, 94, 130]). 
Still, non-immersive tools may require time-consuming adaptions 
to custom scenarios (e.g., AUIs) and do not allow re-experiencing 
the data in the original environmental context. In contrast, Auto-
Vis is well-suited towards multivariate data, such as video, audio, 
sensor, and nominal data gathered in such quantity and variety, 
specifcally in the AUI domain. 

Recent work has presented various immersive toolkits facili-
tating the analysis of spatio-temporal data, for example, obtained 
from mixed-reality studies [16, 79, 88, 98]. They mostly focused on 
placing classic visualizations, such as scatter plots or bar charts, in 
immersive environments [18, 52, 68, 111, 113, 132, 142]. However, 
these approaches represent only two spatial dimensions. There are 
also 3D trajectories and 3D point plots to visualize the position 
and speed of participants’ heads and hands [79, 88, 98], gaze cues 
[104], tracked objects [17, 88, 98], and events [98]. In contrast to 
these approaches, where the visualizations have little relation to 
their original environmental context, AutoVis places visualiza-
tions directly in a virtually replicated study environment. Similarly, 
MIRIA [16] and ReLive [67] enable in-situ movement and interac-
tion data analysis by rendering 3D trajectories, proxy objects, and 
in the case of MIRIA, additional visualizations such as heatmaps 
on walls or foors. AvatAR [107] increased the movement and inter-
action detail by replicating user postures in AR. To further enrich 
their 3D visualizations, Reipschläger et al. [107] placed 2D visual-
izations (e.g., heatmaps) on a physical tablet. However, all these 
works on immersive analytics target mixed-reality studies that con-
sider (multiple) HMD users interacting in static areas (e.g., rooms) 
with constant environmental contexts. They do not support the 
automotive context (without requiring extensive adaptions) with 
its unique combination of moving interaction area (the vehicle) 
and dynamic environment with numerous actors (e.g., pedestri-
ans, bicycles, or cars). In contrast, AutoVis provides immersive 
visualizations tailored to the requirements of AUI research. 

Overall, AUI researchers can use non-immersive or immersive 
tools to analyze user studies and experiments. Non-immersive tools 
ofer fexibility and reproducibility (e.g., via computational note-
books). Immersive tools can support decision-making [106] and 
increase understanding of spatial data [67, 81, 107], physiologi-
cal data [86], and environmental context [16, 67, 107]. However, 
discomfort issues (e.g., HMD weight [140] or simulator sickness 
[74]) can make these immersive approaches unattractive. Therefore, 
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we propose an analysis of AUI studies using immersive and non-
immersive approaches, enabling to choose and transition between 
diferent immersion levels based on the analysis task. A similar 
tool exists for analyzing mixed-reality studies, see [67]. However, 
there is currently no approach enabling the mixed-immersive visual 
analysis of AUI interaction studies. 

2.2 Visualization of In-Vehicle Interactions 
Practitioners in the AUI domain commonly use non-immersive 
desktop tools, such as Tableau [114], Dovetail [45], or R [54], to an-
alyze study data, for example, video [42], audio [133], physiological 
[43], behavioral [62], or tabular data [77]. However, for many re-
search topics (e.g., multimodal interaction, conversational systems, 
or eHMIs), such analysis is time-consuming and relevant insights 
on user behavior may be superfcial or overlooked. 

Besides, current tools are often specifc to a research topic and, 
therefore, not (directly) applicable to other topics. For example, 
Blickshift Analytics [11] primarily enables analysis of eye-based 
interaction via scan paths and gaze heatmaps without immersive 
replication of the study environment. In contrast, Ebel et al. [48] 
presented an approach for analyzing passenger behavior. Their tool 
visualizes the events, time on tasks, and interaction sequences for 
touchscreens. Still, there is no relation with the vehicle environment 
or the passenger state (e.g., physiology) and little relation to the 
in-vehicle space, which is only textually represented (e.g., button 
names). However, such visual relations would facilitate in-depth 
analysis of user behavior, yielding more relevant insights faster [67, 
98, 107]. Tavakoli et al. [123] presented a frst promising approach. 
They fused context with driver-specifc measures such as heart rate 
to understand the interplay of the vehicle environment and the 
driver’s state. However, their tool only focuses on manual driving 
(SAE 0), and their non-interactive visualizations provide no spatial 
information on passenger movements, impeding detailed analysis. 

Altogether, there is no tool for interactive immersive and only 
insufcient tools for non-immersive analysis of human-vehicle 
interactions. Besides, solutions providing 3D environments that 
relate in-vehicle interactions with the vehicle environment are 
missing. With AutoVis, we aim to fll this gap for any driving 
automation level (SAE 0-5). 

3 AUTOVIS: PROCESS & REQUIREMENTS 
The AutoVis development process is based on the Design Study 
Methodology proposed by Sedlmair et al. [118] and the development 
of novel visualization concepts (see [16, 84]). The process consists 
of (1) Ideas & Scope, (2) Requirements, (3) Concepts, (4) Prototype & 
Demonstration, and (5) Evaluation. This section explains the design 
rationale behind the AutoVis concepts (Section 4). We provide 
results from a literature analysis of AUI research (see 3.1), report 
results from fve expert interviews (see 3.2), and describe the derived 
toolkit requirements (see 3.3). 

3.1 Analysis of AUI Research 
As part of the AutoVis development process, we analyzed exist-
ing AUI research. For this, literature reviews served as a starting 
point, see [6, 37, 72]. We then retrieved relevant publications via 
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backward chaining with a depth of two. For further inclusion, pub-
lications should: (1) capture heterogeneous (spatio-) temporal data, 
or (2) consider in-vehicle and environment contexts, or (3) investi-
gate interactions with novel modalities. Based on this analysis, we 
identifed AUI research topics that would beneft from tool support: 

T1 Ideation of Novel In-Vehicle Interaction. In AUI research, prac-
titioners create novel UI interaction concepts and suggest future re-
search directions from creative processes, for example, using design 
spaces [72] or brainstorming [41]. They also design novel input and 
output modalities leveraging, for example, olfactory [44] or thermal 
[62] sensations. We found that early work on proof-of-concept pro-
totypes often conducted user studies. Here, an immersive analysis 
tool could provide insights into the spatio-temporal usage of novel 
interactions (e.g., olfactory) to inform further iterations about their 
interplay with other modalities and the environment. 

T2 Evaluation of In-Vehicle UIs. In general, AUI evaluations are 
part of user-centered design processes containing user interviews 
[55], feld studies [136], and lab studies [99]. The goal is to measure, 
for example, the usability [143], trust [31], acceptance [137], or 
perceived safety [101] of UIs. Evaluations use driving simulators 
of varying fdelity (e.g., [30, 64]) or real vehicles [56]. We found 
that multiple evaluation methods are combined due to complex 
dynamics between passengers, vehicles, and the environment. For 
example, quantitative logs (e.g., passenger video, audio, and vehicle 
telemetry) combined with qualitative measurements (e.g., inter-
views). A tool could ease such combined analysis and thus enable 
more efcient and efective AUI evaluations by visualizing relations 
between the results of diferent evaluation methods. 

T3 Know Thy Passenger. Sensors, cameras, and wearables col-
lect large amounts of real-time information about passengers, such 
as heart rate [102], skin conductance [43], or pupil size [8]. This 
enables context-adaptive applications [117] and facilitates driver 
assistance [83] or infotainment system interactions [109]. Various 
variables indicate the passenger’s state, such as cognitive load, emo-
tion, fatigue, stress, drowsiness, attention, distraction, and situation 
awareness. Therefore, manually inferring actions (e.g., a button 
click) from a passenger state is challenging and often automated 
using DL (e.g., [2]). However, DL and user modeling can be complex 
and, therefore, impractical in early development. Automatic conver-
sion of data (e.g., tabular or video) into AUI domain-tailored visual-
izations could enable manual pattern detection to determine data 
worth further investigation. In addition, the impact of in-vehicle, 
environmental, and social factors on passengers’ physiological and 
behavioral signals and vice versa is difcult to determine. An immer-
sive tool could support such analysis by providing spatio-temporal 
context visualizations paired with passenger sensor data. 

T4 Driver Distraction. In today’s vehicles, drivers can operate 
infotainment functions while driving, but this should not afect 
safety. As a result, distraction is still one of the primary problems of 
infotainment systems [116]. Research focuses on reducing display 
glances, for example, employing speech dialogue systems [20] or 
auditory output [82]. However, we found a challenge in determining 
in-vehicle and environmental distraction factors. Besides, distracted 
driver interactions with AUIs can only be assessed via manual 
coding of video recordings and interaction logs. A tool could help 
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identify distraction factors without explicitly logging them based 
on prior assumptions by visually aggregating related events. 

T5 Multimodal In-Vehicle Interaction. Multimodal UIs provide 
multiple modes of interaction between passengers and vehicles. 
This can be sequential, requiring mode switches or allowing multi-
ple modes simultaneously (see [72]). Practitioners presented various 
approaches for multimodal in-vehicle interaction, such as combin-
ing gaze with speech [110], gestures [57], or touch [78]. We found 
that researchers are mainly interested in usable combinations of 
modalities at diferent interaction locations. However, modalities’ 
usage order, time interval, selection, and environmental contexts are 
challenging to determine without tool support, as spatio-temporal 
information is difcult to assess from tabular, video, and audio fles. 

T6 Conversational and Speech-Based UIs. Speech enables hands-
and glances-free interactions during driving [135]. Conversational 
systems support drivers in assisted (SAE 1-2), automated driving 
(SAE 3-5), and non-driving-related activities. For example, prac-
titioners proposed interactions with artifcial speech [58, 75] and 
voice commands [138]. Speech interactions visualized as graphs or 
dialog structures often fail to provide insight into speech-referred 
in-vehicle and environment contexts. A tool could overcome this by 
visualizing speech interactions as events in relation to other events 
and the driving environment. 

T7 Control Transitions Between Vehicle and Driver. Current au-
tomation systems have operational design domains requiring con-
trol transitions between driver and vehicle [97]. Practitioners pre-
sented various methods for safe and comfortable transitions. For 
example, they assessed driver’s readiness [92] and used various 
modalities for transition requests, such as visual [105], auditory 
[103], and tactile [7] modalities. We found that researchers often 
measure the transition quality using driving performance logs and 
driver reaction time. However, the driving environment which im-
pacts the transition quality can only be determined if the scenario is 
set up in advance. A tool replicating the driving environment could 
enable insights into trafc density, road conditions, and shared 
driver-vehicle situation awareness for various transition scenarios. 

T8 External Human Machine Interfaces. When semi- and fully 
AVs are introduced, vehicles may feature eHMIs to communicate 
(safety-related) information to other drivers [29] and vulnerable 
road users, such as cyclists, pedestrians, and impaired people [33, 
60]. For example, practitioners proposed concepts for safe road 
crossing [49] and automation mode indications [87]. However, we 
found that a challenge in assessing eHMIs’ visibility, placement, 
and content design is the limited access to other road users’ POVs 
in real-world settings. A tool replicating the driving environment 
in 3D could provide these POVs. 

3.2 AUI Domain Expert Interviews 
In the next development step, we invited fve AUI researchers (PhD 
students) from our institute for individual interviews. The goal 
was to refect upon the research topics (see 3.1) and elicit common 
challenges in analyzing AUI studies to identify promising design 
choices for a mixed-immersion tool. All experts have developed, 
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conducted, and analyzed AUI studies. The fve semi-structured in-
terviews lasted approx. one hour. Similar to Langner et al. [84], 
we provided a list of typical visualization tasks (the interaction 
categories by Yi et al. [141]) to guide the discussion towards im-
mersive analytics, as the interviewees were no experts in designing 
such systems. In addition, we presented the research topics T1 -
T8 obtained from the literature analysis (see 3.1) as an impulse for 
discussion and to set the scope. However, we omitted the descrip-
tion of how each research topic could beneft from tool support to 
prevent biasing the interviewees. 

The interviews comprised elements of brain-writing. First, inter-
viewees (E1 - E5) collected their thoughts on each research topic 
as a written text. After approx. 32 minutes (four minutes for each 
topic), both parties discussed the written thoughts for the remaining 
time. The interviewer took notes for later analysis. Three authors 
discussed, labeled, and coded these notes into themes (see Appendix 
A). The themes are: visualize object positions and movements (E1, 
E2, E3, E4), enable collaborative analysis (E2, E3, E4, E5), visualize 
data interdependencies (E2, E4), allow data annotations (E4), enable 
data fltering (E1, E5), include a real vehicle in the analysis (E1, 
E3, E4), enable mixed-immersion analysis and transitions between 
desktop and VR (E2, E3, E4, E5), link in-vehicle and environmen-
tal contexts (E3), and preprocess data automatically (E4, E5). The 
themes guided the specifcations for the toolkit requirements, the 
concept design, and the prototype. 

In addition, we derived four challenges specifc to the AUI do-
main: Large Distances Between Objects of Interest: A driving 
environment can span several kilometers with a large distance 
between objects of interest (e.g., stores or landmarks), referenced 
in natural interactions (e.g., gesture, speech, or gaze). Volatile 
In-Vehicle and Environmental Contexts: Passengers and the 
vehicle can interact bidirectionally. If, in addition, these interac-
tions relate to the environment, also hosting object interactions 
(e.g., between cars and pedestrians), volatile interactions between 
in-vehicle and environmental contexts emerge. Ubiquitous Physi-
ological Measures: As interior embedded sensors always surround 
passengers, physiological measures are ubiquitous. However, the 
resulting data is not spatial. Nevertheless, efective analysis of AUI 
studies requires a link to spatio-temporal data, such as passenger 
and vehicle movements. Diferent Actors: In- and outside the vehi-
cle, there is an interplay of diverse actors (e.g., passengers, drivers, 
other vehicles, bicyclists, or pedestrians), each with diferent goals, 
characteristics, and behaviors in a trafc situation. 

3.3 Toolkit Requirements 
After analyzing AUI research (T1 - T8, see 3.1) and interviewing 
domain experts (E1 - E5, see 3.2), we derived recurring themes and 
challenges. Based on these challenges, we list functional require-
ments (R1 - R9) that a system, such as AutoVis, should address. We 
integrate the categories by Yi et al. [141] into the requirements to 
ground them in widely used interaction techniques in information 
visualization. The categories are Select (mark something as inter-
esting), Explore (show me something else), Reconfgure (show me a 
diferent arrangement), Encode (show me a diferent representation), 
Abstract/Elaborate (show me more or less detail), Filter (show me 
something conditionally), and Connect (show me related items). 

CHI ’23, April 23–28, 2023, Hamburg, Germany 

R1 Visualization of Position and Movement Data. AUI re-
search uses positions and movements over time to investigate be-
havior (T1, T2, T4, T5, T7) (E1 - E4). In Abstract/Elaborate interac-
tions, analysts should be able to retrieve movement trajectories, po-
sitions of other road users (T8) (E2, E4), and gaze/gesture directions 
(E2), needed to describe UI interactions. Besides, spatio-temporal 
object positions should enable understanding the context in Connect 
and help to reveal movement patterns in Select interactions. 

R2 Visualization of Event Data. In addition to spatio-temporal 
data, AUI studies also gather event data, including interactions (e.g., 
gesture or speech events) (T1, T2, T4 - T7), application events (e.g., 
mode switches or task completions) (T1 - T7), and passenger events 
(e.g., emotional or cognitive state) (T1 - T8). In Connect interactions, 
analysts should be able to obtain event order and (co-)occurrence, 
as they may reveal patterns and dependencies. Moreover, analysts 
should be able to explore these patterns in detail over time within 
Explore and Filter interactions. 

R3 Visualization of Data Interdependence. Researchers of-
ten measure physiological states to understand passengers (T1 -
T7). However, temporal data may be difcult to interpret with-
out the context of events or user behavior (E2, E4, and see [91]). 
Therefore, temporal should be visualized close to spatio-temporal 
and event-based data. In Connect interactions, analysts should di-
rectly compare and discover dependencies with other temporal data 
streams, events, and passenger behavior (E2, E4). 

R4 Linking In-Vehicle and Environment Contexts. In-vehicle 
interactions and the environment can be highly related (E1 - E5). 
For example, passengers may refer to environment objects via gaze 
or pointing [57] (E3). Therefore, AUI study analysis (in T1 - T7) 
might beneft from merged virtual replications of both contexts. 
Besides, sensor data gathered in (feld) studies should be virtually 
replicated and linked to the in-vehicle context (E3). For example, 
for Connect interactions aiming to analyze eHMI interactions (T8). 

R5 Filtering, Flexibility, and Gradual Control over Visual-
izations. When evaluating and comparing interaction data in T1 
- T8, fltering allows focusing on subsets (E1). Analysts should be 
able to perform Filter interactions for sessions, study conditions, 
participants, and visualizations’ time and location to account for 
spatio-temporal data. Depending on the study data, the appropri-
ate visualization placement may require fexibility and reconfg-
urability (E5). For example, changing visualizations’ visibility and 
arrangement during Reconfgure and controlling their detail via 
Abstract/Elaborate interactions. There should also be approaches to 
overcome analysts’ disabilities, such as colorblindness. 

R6 Data Annotations. A typical AUI study analysis task is 
video or audio coding (e.g., see [42]) to annotate situations or behav-
iors in T1 - T8 (E4). Such Select interactions support highlighting 
undefned events and labeling datasets, for example, for DL (E4). 
Moreover, such annotations should relate to space and time. 

R7 Integration of Video and Audio Recordings. Most AUI 
studies in T1 - T8 record video and audio to evaluate participant be-
havior. Audio becomes particularly relevant for speech interactions 
(T1, T2, T5, T6). Therefore, such recordings should be integrated 
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into a single UI to prevent frequent program window switches to 
display diferent data types (E5). 

R8 Leveraging a Real Vehicle. A real vehicle increases the 
external validity in T1 - T8. In such feld studies, interactions highly 
depend on the vehicle interior (e.g., center console layout or seat 
confgurations). Besides, study supervisors often cannot be part of 
the study, for example, in naturalistic driving studies, and want to 
relive the experiments (E4). Therefore, an immersive tool should 
integrate a real vehicle into the analysis. In Connect, Encode, Filter, 
and Select interactions, analysts should be able to tangibly analyze 
AUIs and leverage the real vehicle (E1) via passthrough VR. 

R9 Enabling Collaborative Analysis. Practitioners usually 
work in larger groups (E2, E3, E4, E5) and collaboratively share, 
evaluate, and iterate over data. In addition, they collaborate across 
diferent locations and time zones (E2). Therefore, a tool should 
provide a shared and persistent analysis environment (E3). Collabo-
rators should be able to analyze the data at hand (a)synchronously 
in diferent locations, with diferent available technologies (e.g., VR 
and desktop, see A.7). 

4 AUTOVIS: CONCEPTS 
Based on R1 - R9, we propose AutoVis: a tool enabling the mixed-
immersive and interactive analysis of in-vehicle interactions, pas-
senger behavior, and physiology combined with a replicated vehicle 
environment and study context. To the best of our knowledge, Au-
toVis is the frst immersive analysis tool for the AUI domain. 

The core of AutoVis is the interplay of a desktop and VR view 
(see cross-device interactions [120, 134]). This enables seamless 
transitions in single- and multi-user analysis (see 4.5.1). The desk-
top view provides a non-immersive overview of AUI studies. In 
the immersive VR view, 2D (e.g., heatmaps on in-vehicle surfaces) 
and 3D visualizations (e.g., passenger avatars) may improve the 
understandability of spatial data. Besides, a virtual tablet with an 
overview of the desktop view supports relating the VR environ-
ment with non-spatial data, such as physiological data. Moreover, 
AutoVis integrates video and audio playback into one layout. Thus, 
AutoVis can provide study context details that may not otherwise 
be found in more abstract visualizations. 

Although AutoVis provides two analysis views (desktop and 
VR), analysts are not intended to switch between tools, as switching 
between a hybrid system can be cumbersome [67]. Instead, they can 
use the desktop view in the preparation or wrap-up of the analysis 
process and use the VR as the main view during analysis. In case of 
unavailable VR devices, the desktop can also serve as a main view 
with limited immersion. 

This section describes the data processing pipeline, the views, 
and features of AutoVis based on the requirements informed by 
our development process (see 3), and the interplay between desktop 
and VR view in single and multi-user scenarios. 

4.1 Data Processing Pipeline 
To address requirements R5, R7, and R9, we designed AutoVis’s 
processing pipeline to be fexible and versatile in supporting a wide 
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range of data, confgurations, and applications. We describe Auto-
Vis’s processing regarding the allowed data specifcation and the 
automatic detection of objects, events, and driving environments. 

4.1.1 Data Sources & Specification. AUI interactions can be explicit 
(e.g., touch) or implicit (e.g., heart rate) [72]. Therefore, practition-
ers leverage heterogeneous data sources, which provide temporal or 
spatio-temporal data. For accurate study replication (R1 - R4) and 
to address R5, AutoVis allows using fve data types: physiological 
(e.g., electrodermal activity [43]), behavioral (represented as events, 
e.g., head movement [13] or drowsiness [5]), vehicular (e.g., acceler-
ation or steering angle), environmental (e.g., positions of other road 
users), and personal (e.g., age or preferences). AutoVis minimally 
requires behavioral data (i.e., passenger posture and movements) 
to visualize in-vehicle avatars and trajectories and environmental 
data (i.e., video data) to reconstruct the vehicle surroundings. If 
spatio-temporal data, such as movements and GPS positions, is 
missing, AutoVis can still be used as a non-immersive desktop tool 
to visualize temporal data (e.g., sensor recordings) and events. 

4.1.2 Data Preprocessing. AUI study datasets are often heteroge-
neous and processed to diferent degrees. They may contain data 
in raw formats (e.g., sensor streams) or abstract classes and events. 
Therefore, a companion tool embedded in the pipeline preprocesses 
data according to the AutoVis data specifcation (see 4.1.1). 

First, AutoVis converts fle formats and automatically detects 
events in a dataset, preventing manual labeling or the cumbersome 
use of external programs. We leverage open-source state-of-the-
art DL approaches for automatic event detection. With this, the 
companion converts low-level physiological signals (e.g., electro-
dermal activity or pupil size) into higher-level information, such 
as stress, cognitive load, distraction, or drowsiness. Besides, our 
preprocessing concept employs image-based recognition of objects 
[124], pose/motions [63], gestures Shen et al. [121], and emotions 
[119], to obtain spatial and contextual information about the vehicle 
environment and passengers. Based on this, AutoVis automatically 
places 3D models of detected objects at their inferred positions in 
a 3D environment (cities, roads, and landscapes) queried via GPS 
(e.g., via OpenStreetMap). Our preprocessing allows for omitting ex-
pensive and vast external vehicle sensors in study setups. AutoVis 
supports various (partly) unprocessed datasets from the automotive 
domain, such as Drive&Act [95], MDAD [73], or HARMONY [123]. 

Finally, the input fles that already matched the AutoVis data 
specifcation are merged with the preprocessing results into a single 
confg fle containing all relevant study metadata. Accordingly, the 
confg fle provides information about the study conditions and 
sessions, events, tracked scene entities, such as object positions 
for each time step, and physiological data. Using timestamps, any 
recorded video and audio data can also be loaded and played syn-
chronously with the replicated 3D environment and study context. 
AutoVis uses the same confg fle for desktop and VR views, which 
enables seamless view transitions and multi-user scenarios. 

4.2 Non-Immersive Desktop View 
The AutoVis desktop view provides a non-immersive overview of 
study data (see Figure 2). Inspired by related tools [67, 98, 130], our 
concept utilizes a freely adjustable panel layout (R5). The desktop 
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Figure 2: The AutoVis desktop view combines non-immersive analysis of aggregated data with a 3D view replicating the study 
environment. Additional data such as videos, events, and audio allows for a study overview. A timeline hosts (top to bottom) 
playback controls, an audio line with the participants’ audio tracks, and multiple event lines for each participant. 

view is divided into fve panels (see Figure 2): 2D panel (A), 3D scene 
panel (B), video (C), inspector (D), overview (E), and timeline (F). 

Similar to ReLive [67], analysts can examine events (R2), control 
the tool-wide audio and video playback (R7), and annotate events 
(R6) using the timeline (see Figure 2 F). We added line diagrams 
in the 2D panel (see Figure 2 A) for quickly identifying relevant 
sequences (R3) in non-spatial temporal data, such as physiological 
data. To address R1, the 3D scene panel replicates the original 
study environment, such as buildings or other road users, and vi-
sualizes the study vehicles’ movements using a virtual ego-vehicle 
(see Figure 2 B) and the interplay of passengers’ in-vehicle inter-
actions and the environment (R4). For desktop panels’ details, see 
Appendix B. 

4.3 Immersive VR View 
Inspired by related work [16, 67, 107], the immersive VR view en-
ables the interactive re-experience of AUI studies (see Figure 3). For 
this, AutoVis replicates the ego-vehicle, other road users, passenger 
behavior, and environmental context (see 4.1.2). 

Analysts can interact with the environment using their VR con-
trollers for direct touch (tracked by Unity GameObject collisions) 
or interact with distant objects via raycast. Analogous to object 
selections in the desktop 3D scene panel, analysts can interact 
with avatars, trajectories, heatmaps, events, and annotations. The 
object selection via direct touch places a context menu next to 
the selected component in VR. For example, next to an avatar’s 
head. The context menu provides the same features as the desktop 

view’s inspector and overview panel (see 4.2). The (distant) object 
selection via raycast opens the context menu in the virtual tablet 
attached to the left controller (see Figure 3 C). This ensures their 
readability regardless of low VR resolutions and prevents unneces-
sary approaching of distant objects. In addition, the tablet displays 
scene controls, the timeline, study-related metrics, the 2D panel, 
the event line, and a mini-map (R3) (see Figure 4 c and d). 

The VR view hosts 3D visualizations that are adapted from re-
lated immersive analytics tools [16, 67, 107] and novel approaches 
to overcome AUI domain-specifc challenges (see Figure 3): avatars 
(A), trajectories (B), in-vehicle, and environment (D) heatmaps. 

Spatio-Temporal Events & Annotations. AUI study analysis con-
siders not only the event duration but also their location. Inspired 
by Büschel et al. [16], we propose to visualize such spatio-temporal 
events in the immersive VR view (see Figure 4 a), indicating the 
location and orientation of (inter)action, emotion, driving, and ac-
tivity events, addressing R2 - R4. This enables discovering spatial 
relationships between interactions with in-vehicle UIs, driving en-
vironment, context, and passenger states (e.g., emotion or stress). 
However, automotive events can visually overlap on a vertical axis 
if study vehicles drove the same route. To overcome this, inspired 
by Fouché et al. [53], we propose a vertical axis explode view for 
events of individual participants, triggered via direct touch or ray-
cast. However, events can be distributed across large distances (e.g., 
several kilometers, see the challenge in 3.2) and hidden between 
replicated 3D buildings and trees. Therefore, analysts can visualize 
on hover (e.g., via raycast) events of the same type (e.g., emotion) 
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Figure 3: The AutoVis VR view provides an interactive study replication. A virtual tablet showing physiological data is attached 
to the left VR controller with a timeline for scene playback. The VR view hosts a virtual replication of the ego vehicle, passenger 
movements as avatars and trajectories, and gaze, touch, and pointing as heatmaps in the interior and environment. 

on a visual layer of higher priority than the remaining environment 
to peek through 3D objects. 

AutoVis supports creating, editing, and persistent sharing of 
annotations in VR, addressing R6 and R9. Analysts can place an-
notations in space, similar to 3D markers in MIRIA [16] and MRAT 
[98], by moving to a specifc position and open the edit menu via the 
controller. Such annotations are spatio-temporal labels or comments 
that are linked in space and to the timeline of a dataset (see Figure 4 
b). AutoVis visualizes this link by automatically placing labels on 
the spatial event line. Analysts can use the labels to annotate their 
dataset, for example, for supervised DL. In contrast, comments can 
be set and edited anywhere in the 3D environment, for example, 
to leave hints, descriptions, and opinions about the analysis for 
oneself (when switching views) or collaborators. 

Avatars. In AutoVis, avatars replicate passengers (see Figure 3 
A) from pre-recorded 3D skeleton data of participant movements 
(R1). Inspired by AvatAR [107], AutoVis updates the avatars in 
each playback time step. Free VR movement around avatars en-
ables exploration of posture, relation to the vehicle environment, 
and movement patterns. Analysts can enter an avatar’s POV to 
gain frst-person insights into how passengers interact with their 
surroundings. Such an embodied analysis is impossible using non-
immersive analysis tools. AutoVis displays a distinct avatar for 
each participant. In contrast to AvatAR [107], where avatars repli-
cated room-scale movements, the AutoVis avatars have the same 
positions (e.g., sitting on driver and passenger seats). Therefore, we 
propose an aggregated avatar, which aggregates the positions and 
movements of the individual avatars to increase visual clarity (see 
Figure 5 a). For the aggregated avatar’s skeleton, AutoVis calculates 
the average position and rotation of the individual avatars’ joints 
per frame. Using the aggregated avatar, analysts can explore similar 
passenger behaviors on a meta-level (R3). To further reduce visual 

clutter, the avatars are semi-opaque, and their colors correspond to 
the participants’ tool-wide colors. 

Trajectories. Similar to [16, 67, 107], we employ 3D trajectories. 
The trajectories (see Figure 3 B) correspond to an avatar, providing 
a diferent representation of movements. They replicate hands and 
head movements for a selected time frame (R1). The trajectories 
are colored lines matching their avatar’s color (see Figure 5 b). They 
provide an overview of the passenger movements for a specifc 
time frame without the need for playback in real-time. 

In-Vehicle Heatmaps. In-vehicle heatmaps provide an overview of 
interactions with interior surfaces (R1), such as windshield display, 
center console, or dashboard. Instead of classic 2D heatmaps (e.g., 
as in [107]), AutoVis employs heatmap textures that accurately 
map the 3D interior mesh (see Figure 5 c). Gaze heatmaps visualize 
where passengers looked, for example, to investigate glances at the 
dashboard or center console. This can help determine passenger 
states, such as distraction and cognitive load. Likewise, analysts 
can use touch heatmaps. Combined touch and gaze heatmaps may 
indicate modality interdependencies (R3) (see Figure 5 c). 

Environment Heatmaps. According to our data specifcation (see 
4.1.1), passengers can interact with the vehicle environment via 
gaze, pointing, and speech. Therefore, AutoVis employs gaze and 
pointing heatmap textures accurately mapping the replicated 3D 
meshes of buildings and other road users (see Figure 5 d). These 
heatmaps can help to determine, for example, driver distractions 
or detect movement and gesture patterns (R1). It also highlights 
correlations between environmental context and gaze/pointing 
interactions (R4). Moreover, a trafc heatmap displays the positions 
of other road users (R1) (see Figure 5 d). This enables inferring the 
current driving context and trafc fow. In addition, analysts can 
modify the distinct color schemes of each heatmap (R5). 
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Figure 4: (a) Visualizations of driving-path events, colored for each participant and the timeline in red. (b) Placement and 
visualization of comments and labels attached to the driving-path event line. (c) Virtual tablet visualizing physiological and 
event data. (d) Virtual mini-map displaying a top-down overview of the analysis environment. 

Figure 5: (a) An avatar (white) visualizes the aggregated movements of distinct participant avatars (turquoise, purple, and blue). 
(b) Head and hand movement trajectories. (c) In-vehicle heatmaps visualizing gazes (green) and touches (blue). (d) Environment 
heatmaps visualizing participants’ gazes (green), pointing targets (magenta), and other road users’ positions (red/yellow). 

Context Portals. Large distances between objects of interest and 
volatile in-vehicle and environmental contexts are common chal-
lenges in AUI study analysis (see 3.2). We propose context portals 
to overcome these challenges and to address R3 and R4. Context 
portals provide a glimpse of the referenced context (i.e., a location 
or object) in interactions by showing a spatial portal next to an 
avatar’s fnger or head (e.g., as a thought bubble). The portal shows 
the object or location up close using a render image from an addi-
tional virtual camera (see Figure 6). Analysts can activate a context 
portal by selecting an (inter)action event (see timeline in Appendix 
B) on the event line in 3D or on the virtual tablet. However, only 
one portal can be visible at a time. We distinguish two context 
portal modes: (1) direct and (2) indirect. 

AutoVis displays a (1) direct context portal when participants 
referenced objects or locations in the vicinity using gaze, pointing, 
or speech. The portal then shows a zoomed view of the referenced 
entity from the avatar’s POV, for example, enabling to determine an 
object’s visibility time during an interaction. To explicitly visualize 
gaze and pointing targets, there is an additional ray and hit point 
visualization that reaches through the direct context portal (see 
Figure 6 a and b). Regardless of interacting modality, the referenced 
object’s outline is highlighted to make it stand out against the 
environment (see Figure 6 b). 

The interaction modality determines the 3D position of the direct 
context portal. In a pointing interaction, the direct context portal 

is displayed in an extended line of two meters from the fngertip 
of the respective avatar (see Figure 6 b). Analogously, the avatar’s 
eyes are the reference point for positioning the portal for gaze 
interactions. However, for speech interaction, the portal is a thought 
bubble next to the respective avatar’s head. In addition, a speech 
bubble is displayed underneath, which contains the utterance for 
the inspected time frame (see Figure 6 d). 

An (2) indirect context portal visualizes referenced objects or 
locations that are not present in the environment. AutoVis queries 
the missing information, for example, from Google Maps, and shows 
a screenshot of the result in the indirect context portal (see Figure 6 
c). Since passengers can only reference objects that are not in the 
vicinity with speech, a thought bubble displays the query result. 
The direct and indirect context portals circumvent searching for 
referenced objects or locations (e.g., a landmark) in the environment. 
Otherwise, this search can be time-consuming and challenging if 
the driving environment is unknown or may result in a barely 
visible distant object or location. 

4.4 Immersive Passthrough VR View 
The passthrough VR view enables leveraging a real vehicle’s in-
terior, layout, and haptics for an immersive AUI domain-specifc 
analysis concept, addressing R8. Using a VR HMD with external 
cameras, analysts can capture the real vehicle, for example, while 
sitting in the passenger seat. AutoVis displays this camera stream 
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Figure 6: Automotive domain-specifc visualizations of direct and indirect links between in-vehicle interactions and environment: 
The direct portal visualizes (a) a gaze target and (b) a pointing target, including heatmaps and highlighting. The speech-referenced 
context is visualized via (c) indirect portal, if present in the environment, and otherwise via (d) render image in a direct portal. 

as a separate visual layer of lower priority than the in-vehicle visu-
alizations to augment the real vehicle with the 3D visualizations. 
Besides, the virtual ego-vehicle’s 3D model is substituted with the 
real vehicle (see Figure 7 a). AutoVis places the 3D in-vehicle vi-
sualizations (avatars, trajectories, and heatmaps) at their intended 
positions within the real vehicle inferred from the dataset. 

However, datasets in the automotive domain may not contain 
vehicle 3D meshes. AutoVis can still infer the mesh by retrieving 
a pre-defned 3D model once for a given real-vehicle model name 
and number in a dataset (e.g., a 2004 BMW 525i Touring). AUI 
practitioners could also integrate the real-vehicle mesh into their 
dataset using an HMD’s spatial understanding. The continuously 
updated infrared depth scans provide the required interior mesh 
to augment the 3D visualizations. Using either approach, AutoVis 
can place avatars at their respective seats and map heatmaps to the 
real-vehicle interior (see Figure 7 b). 

Outside the real vehicle, the 3D analysis environment is still 
visible as in the (normal) VR view. Although possible, we decided 
against augmenting the real environment with 3D visualizations 
to prevent the real environment from interfering with the analysis 
environment (see experts’ concerns on a passthrough VR mode 
in the Appendix A.6). Therefore, this view is only usable during 
parking. To activate the passthrough VR view, analysts can select 
an area within the real vehicle (e.g., dashboard or driver’s seat) via 
direct touch or raycast. Also, this enables real-vehicle passthrough 
only in certain areas of the virtual analysis environment (R5). 

4.5 Interplay between Desktop and VR View 
We describe the interplay between desktop and VR in single and 
multi-user scenarios. Besides, we explain specifc visualizations and 
interaction concepts to foster collaborative analysis in AutoVis. 

4.5.1 Multi-User Scenario. Analysts can collaborate in multi-user 
scenarios (R9) covering any combinations of desktop, VR, and 
passthrough VR views. Similar to the space-time taxonomy of col-
laborative visualization by Isenberg et al. [70] and the defnition 
of collaborative immersive analytics by Billinghurst et al. [10], Au-
toVis supports collaborations across diferent levels of immersion 
(same- vs. mixed-immersion), times (synchronous vs. asynchro-
nous), and spaces (co-located vs. distributed). 

AutoVis enables hosting a persistent analysis environment as 
the basis for collaboration, addressing R9. The host shares the 

analysis environment as a confg fle (similar to a Unity scene 
fle, see 4.1), for example, via cloud storage, to allow remote and 
independent access. The others only import the confg fle into their 
AutoVis instance, which reconstructs the 3D analysis environment. 

To enable efective interplay between desktop and VR views, Au-
toVis provides three visualization concepts that apply to same- and 
mixed-immersion scenarios: (1) AutoVis visualizes other analysts’ 
positions and movements via analyst avatars (see Figure 8 a) in-
spired by Chen et al. [21]. They also display the analysts’ POVs via 
viewing frustums. In addition, (2) AutoVis provides visual book-
marks as ghost ego-vehicles to indicate the analysis position of 
collaborators. By selecting such ghost via direct touch or raycast, 
the analysis replay is set to the selected ghost’s position in time 
and space. Besides, (3) analysts can communicate via virtual labels 
and comments. For example, in asynchronous scenarios, analysts 
on the desktop could leave comments in the 3D environment for 
analysts in VR to observe at a diferent time and vice versa. 

4.5.2 Single-User Scenario. In single-user scenarios, one analyst 
uses a combination of VR and desktop. For example, an analyst 
could use the desktop view for pre- and post-analysis and the VR 
view as the main tool in between. However, when desktop or VR 
devices are unavailable, analysts can only use one view. 

The interaction concept for labels and comments also applies to 
single-user scenarios. However, instead of labeling or commenting 
for others, analysts create self-notes for another session or mark 
interesting aspects in the desktop view before transitioning to VR. 

5 AUTOVIS: PROTOTYPE IMPLEMENTATION 
The prototype of AutoVis consists of three sub-prototypes demon-
strating the companion (see 4.1), the desktop view (see 4.2), and the 
VR view (see 4.3) including the passthrough VR view (see 4.4). 

In our processing pipeline (see 4.1), a (1) companion preprocesses 
the data and creates a JSON confg fle. The Python-based companion 
(see 4.1.2) uses state-of-the-art DL to automatically infer events 
from datasets and merges the results into the JSON confg fle. We 
employed DeepFace [119] for emotion recognition, OpenPose [63] 
for posture/movement recognition, and YOLOv4 [124] for object 
detection. Moreover, to infer passenger states, we use Driver-State-
Detection [47], Drowsiness Detection [4], and Stress Detector [24]. 

A Unity-based (2) desktop application generates the 3D analysis 
environment from spatio-temporal data of the ego vehicle, other 
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Figure 7: Leveraging a real vehicle in the analysis via passthrough VR. (a) Selective passthrough of the real interior for tangible 
analysis at the steering wheel and center console. (b) Overlay of the virtual in-vehicle visualizations on the real vehicle. 

road users, and the environment (e.g., weather) given in the JSON 
confg fle. To reconstruct the 3D driving environment, we use Ce-
sium [19], which provides high-resolution real-world photogram-
metry in Unity version 2020.3.33f. Also, the desktop application 
visualizes physiological, event, and metadata returned by the com-
panion. For this, we built a web UI using HTML, JavaScript, D3.js 
[12] to visualize detailed graphs, and gridstack.js [46] for panel 
rearrangement. We embedded the web UI into Unity using 3D Web-
View [131]. The desktop application can modify the JSON confg fle 
and vice versa (e.g., when pausing the replay or selecting objects). 

Using the same JSON confg fle, a Unity-based (3) VR application 
generates the analysis environment for the VR and the passthrough 
VR view. In our prototype, the target platform is the Vive HMD. 
However, for the passthrough VR view, we employ the Meta Quest 
Pro, which provides color passthrough video, gesture, and eye-
tracking. Moreover, the Quest Pro is a mobile VR HMD suitable for 
use in a real vehicle without access to a desktop system hosting the 
VR application. 

To enable multi-user scenarios (same- or mixed-immersion), we 
employ Mirror [129] as a networking library in Unity for live syn-
chronization of object and analyst movements, replay state, 3D 
labels, comments, and active visualizations. 

A supplementary video fgure illustrates the prototype and the 
use cases described below. 

6 ANALYSIS WORKFLOW WITH PRACTICAL 
USE CASES 

We evaluate AutoVis by combining diferent validation approaches 
in several AUI analysis use cases. Our prototype serves as a techni-
cal validation that typical AUI study data can be visualized using 
desktop and current VR devices. Furthermore, similar to the cog-
nitive walkthrough of Reipschlager et al. [108] and [66, 96], we 
report on AutoVis walkthroughs regarding Olsen [100]’s heuris-
tics H: Importance, Unsolved Problem, Generality, Reducing 
Problem Viscosity, Empowering Novices, Power in Combina-

tion, and Scalability. Demonstration and heuristic walkthrough 
are common toolkit evaluation approaches [85]. We have chosen 
our use cases to show the diverse aspects of AutoVis in the visual 
exploration of data, the interplay between desktop and VR, the 
dataset (pre)processing, and the usage of a real vehicle in the anal-
ysis. Similar to Hubenschmid et al. [67], we defned three research 
goals (G1-G3) to guide our evaluation: 

G1 Interplay of Immersive and Non-Immersive Analysis: 
How do they complement each other in AUI research? 

G2 Applicability: Does AutoVis meet the requirements of AUI 
researchers? 

G3 Task Allocation: Which analysis tasks in AUI research 

6.1 Use Case: Multimodal Interactions in AVs 
We demonstrate the applicability of AutoVis on the use case of mul-
timodal interactions in AVs (T5). Evaluating novel input and output 
modalities (e.g., electrodermal or brain interfaces) and modality 
combinations in diferent contexts is challenging. Thus, analysis 
of multimodal interactions could signifcantly beneft from the 
domain-unique visual exploration of spatio-temporal data provided 
by AutoVis. However, to the best of our knowledge, there is no 
publicly available dataset suitable for such analysis. Therefore, we 
recorded authentic data in an exemplary use case study (see details 
in Appendix C) that allowed multiple input modalities in diferent 
contexts during a ride in an AV (SAE 4). 

We imagine an AUI researcher, Anna. She wants to investigate 
the input modality usage order, the time diference between modal-
ity usage, what modalities were used for which tasks, and in which 
environmental contexts. Her research has a crucial efect on the 
passengers of future (automated) vehicles, as the insights could 
make multimodal interactions more usable and safe (H: Impor-

tance). Anna decided to use AutoVis as there is currently no other 
immersive analytics solution enabling her to perform these tasks 
(H: Unsolved Problem). Before using AutoVis, she preprocesses 
the data using the companion (see 4.1.2). 

Anna starts her analysis by looking at the 3D scene view in the 
desktop application. This enables her to see a replicated view of the 
data, providing a much closer match to the original study setting 
than analyzing the video recording (H: Reducing Problem Vis-
cosity). She particularly focuses on a detected pointing interaction 
in the passengers’ environment task, which she retrieved from se-
lecting the event on the timeline. The gaze/pointing heatmaps and 
the avatar visualization help her understand the situation. However, 
Anna is not familiar with San Francisco and has difculties locating 
the referenced landmark. Therefore, she selects the pointing event 
in the spatio-temporal event line to display a direct context portal. 
Anna immediately locates the landmark through the portal without 

beneft from which analysis approach (immersive or non-
immersive)? 

https://gridstack.js
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Figure 8: (a) Driving-path events visualize speech interactions’ location and duration, while heatmaps visualize gazes. A desktop 
analyst’s avatar (left) is present in this multi-user scenario. (b) Avatars visualize participants’ surprising gestures, and the gaze 
heatmap highlights their focus on the cyclist. (c) Avatars visualize pointing gestures, and a heatmap (red) indicates the target. 

moving close to it. In the portal, she notices that some participants 
gazed directly at the landmark and pointed close to the gaze hit 
(see Figure 8 c). However, others pointed in the mere direction with 
bent elbows. Moreover, Anna sees that all participants frst gazed 
at the target, then pointed, and fnally asked about the target via 
speech. The action event annotations on the timeline show her that 
the time diference between the interactions was 0.5 seconds on 
average. This combination of timeline with 3D scene panel supports 
Anna in drawing her conclusions (H: Power in Combination). 

Next, Anna wants to explore how participants reacted to the 
unexpected cyclist crossing. However, she could not fnd anomalies 
compared to the average line when she looked at the physiological 
signals in the 2D panel for this scenario. Anna concluded that there 
was no measurable physiological reaction, likely indicating that 
participants felt safe and trusted the AV. The automatic detection of 
events, such as emotions, helped her select interesting sequences in 
the physiological streams, as she is unfamiliar with physiology (H: 
Empowering Novices). However, Anna assumes that she might 
have missed something and contacts Jacob, who is an expert in 
physiology. Jacob answers her call and loads the shared persistent 
JSON confg fle into his AutoVis desktop application, and takes 
a closer look at the unexpected cyclist sequence. This transforms 
Anna’s analysis into a distributed, asynchronous multi-user sce-
nario. Jacob suspects correlations by comparing the line diagrams 
of the heart rate and the electrodermal activity and creates 3D labels 
at the relevant spots. When Anna resumes the analysis a few days 
later, Jacob’s labels point her to the right spots. 

Using a VR HMD, Anna immerses herself in the VR view to 
gain a deeper understanding of the link between in-vehicle and 
environmental context. For this, she searches a suitable camera 
perspective by clicking through the predefned positions and selects 
the passenger seat POV. Looking at the avatars, she discovers that 
some participants raised their hands in surprise while focusing on 
the cyclist (see Figure 8 b). In addition, they referred to the cyclist 
in a short conversation with the other passenger. Anna concludes 
that AVs must be aware of the intended interaction partner in 
multimodal interactions (e.g., speech and gaze), especially in social 
settings, to prevent misunderstandings. 

The participants could freely choose modalities to query informa-
tion in the in-vehicle navigation task. Looking at the timeline, Anna 
noticed that all participants used speech to query their location. 

Besides, Anna sees that the in-vehicle touch and gaze heatmaps 
show a widespread pattern (see Figure 8 a). She concludes that 
participants likely were curious about the unfamiliar setting and 
explored the interior by looking around and touching it. 

Overall, Anna successfully retrieved valuable insights on pas-
senger behavior in multimodal interactions regarding interaction 
speed, sequence, and context. However, AutoVis also applies to 
other topics and use cases in which practitioners, such as Anna, are 
interested (H: Generality). For example, in the context of T3, Anna 
could also gain a lot of information on the passenger state using 
the physiological streams overview. Besides, she is interested in 
conversational analysis (T6) and could use AutoVis to explore the 
conversation between participants, vehicle, and other passengers. 
Moreover, Anna could evaluate other novel modalities (T1, T2). 

6.2 Use Case: Analyzing a Real-World Dataset 
We leverage Drive&Act [95] to demonstrate that AutoVis can con-
vert and visualize real-world datasets. Analysts can also employ 
similar datasets (e.g., [73]). However, datasets might be incomplete 
regarding events, 3D poses, or environment recordings. For exam-
ple, we decided against using HARMONY [123], as (in February 
2023) only a ten seconds sample is publicly available. 

Drive&Act is a large-scale dataset for driver activity recognition 
captured in manual and autonomous driving mode (T3 - T5). It 
contains data streams of 3D body poses, head poses, interior model, 
and a camera system with fve interior views. Besides, the dataset 
diferentiates mid-level (e.g., reading the newspaper), action, object, 
and location activities. Drive&Act does not include driving envi-
ronment data, such as scans or video recordings of the surrounding. 
Regardless, AutoVis can reconstruct a 3D driving environment for 
Drive&Act based only on GPS coordinates (H: Generality). Conse-
quently, this environment lacks 3D heatmaps of gestures, pointing, 
and other vehicles, as well as context portal visualizations. 

Accordingly, AUI researchers Jack and Mia focus their analysis 
on the vehicle interior. They want to determine whether passen-
gers’ body pose while reading in AVs is similar to non-driving 
scenarios. Since Jack and Mia each have a Vive VR HMD (same-
immersion), they decide to collaboratively analyze Drive&Act in 
the same room (co-located synchronous) for directly discussing 
their fndings (H: Scalability). Since Drive&Act contains 3D poses 
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Figure 9: (a) Real-world dataset use case. Screenshots of a source video from Drive&Act [95] and its conversion in AutoVis. (b) 
Leveraging a real vehicle (2004 BMW 525i Touring) in the climate control use case. The virtual gaze and pointing heatmaps 
indicate interaction patterns on the real steering wheel and center console. 

and activity events, Jack and Mia only activate the DeepFace [119] 
option for emotion recognition in the AutoVis companion. 

In their analysis, Jack and Mia search for a suitable passenger 
reading event. As Mia perceives the event search in the virtual tablet 
as tedious, she investigates the spatio-temporal event line while 
driving in the virtual ego vehicle. When Mia fnds a "Newspaper 
Reading Task" (H: Power in Combination), she tells Jack the time 
frame. Jack then jumps there, by selecting the event. While Mia 
chooses the passenger seat POV, Jack selects the vehicle’s hood POV 
to have a frontal view on the individual avatars in the driver’s seat 
(see Figure 9 a). After looping the event in VR several times, they 
notice difering head poses. While some passengers focused on the 
reading task and permanently looked down, others looked up more 
often. They conclude that these participants frequently checked 
the driving situation, which might indicate low trust in the AV. As 
environment objects were not replicated due to a lack of data, they 
can make little connection between the driving environment and 
passenger behavior. However, the reconstructed 3D environment 
based on GPS enables them to determine the respective AV driving 
situations (e.g., highway vs. urban) that could explain the difering 
head poses (H: Power in Combination). 

6.3 Use Case: Leveraging a Real Vehicle 
We demonstrate how AutoVis integrates a real vehicle into an 
analysis process (R8). For this, we recorded a test dataset in a BMW 
525i Touring to analyze a novel UI concept for an air conditioning 
control specifc to the driver’s seat area (T1, T2). The control UI 
is located on the driver’s door. As part of a collaborative research 
project, Simon and Emma aim to develop this UI. Emma wants to 
cross-evaluate the results of a user study conducted in a replica of 
the real vehicle’s UI. However, only Simon has access to the real 
vehicle. Therefore, they agree on a distributed synchronous analysis 
session in AutoVis so that Emma can remotely guide Simon, who 
performs in the real vehicle (the BMW) using the passthrough VR 
view. The remote access to the real vehicle (H: Importance and 
H: Unsolved Problem) enables a more efcient cross-evaluation 
(H: Reducing Problem Viscosity). 

Emma creates a mixed-immersion scenario using the AutoVis 
desktop application to access the same analysis environment as Si-
mon. She wants to investigate the infuences of the vehicle replica’s 

button layout on the study results. Emma guides Simon through the 
relevant sequences using her analyst avatar and 3D comments (H: 
Power in Combination). When Simon is in the right place, she sig-
nals him to touch the vehicle’s surface to activate the passthrough 
VR view (see Figure 9 b). Using the heatmaps and the avatars’ hand 
movements, they found that the participants rarely touched and 
looked at the novel UI on the driver’s door. The participants mainly 
searched for the UI at the center display. In the driver avatar POV, 
Emma also notes a mismatch between the study button layout and 
the real vehicle, which may have confused participants. Because 
Simon can use the real-vehicle’s haptics and thus assess spatial 
relations in VR more efectively (H: Power in Combination), he 
further notices a greater distance from the driver to the novel UI 
than the center display. He concludes that participants had a greater 
efort and, therefore, they searched the familiar center display frst. 

7 DISCUSSION 
We  (1)  discuss  how  AutoVis  diferentiates  from  immersive  ana-
lytics  in  other  domains;  (2)  elaborate  on  lessons  learned  from  our  
demonstration  and  heuristic  evaluation;  and  (3)  describe  challenges  
and  insights  for  future  research  on  immersive  analytics  for  AUIs.  

7.1  Diferentiation  of  AutoVis  to  Prior  
Immersive  Analytics  

We  adapted  visualizations  from  prior  research  on  immersive  analyt-
ics  for  mixed-reality  usage  [67],  human  motion  analysis  [107],  inter-
active  wall  usage  [130],  and  multi-display  scenarios  [16].  Similar  to  
AutoVis,  they  considered  multi-user  scenarios,  various  interaction  
modalities  (e.g.,  touch  and  gaze),  and  diferent  analysis  devices  (VR,  
AR,  and  desktop).  In  line  with  [107],  we  used  avatars  associated  
with  body  part  trajectories  to  replicate  user  movements.  However,  
we  limited  our  concept  to  hand  and  head  trajectories,  as  other  body  
parts  (e.g.,  feet)  are  negligible  for  AUIs.  Besides,  trajectories  for  each  
body  part  would  increase  visual  clutter.  Unlike  prior  work,  we  intro-
duced  an  aggregated  avatar  enabling  overview  movement  analysis  
to  mitigate  the  limitation  of  visual  clutter  for  many  avatars.  Similar  
to  [16,  107,  130],  we  employed  heatmaps  to  visualize  interactions  
with  surfaces.  However,  we  applied  the  heatmaps  as  textures  to  3D  
meshes  of  replicated  study  environment  objects.  This  allowed  us  to  
increase  the  level  of  analysis  detail  compared  to  prior  immersive  
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analytics and efectively utilize the geometry of the replicated ego 
vehicle. A recurring limitation of prior immersive analytics tools 
is the high level of detail required for datasets (e.g., see [67, 107]). 
Therefore, in our processing pipeline, we proposed a companion to 
preprocess data with insufcient detail (e.g., only video data) into 
suitable datasets (i.e., including events, objects, and user states). In 
contrast to prior immersive analytics [16, 67, 98, 107, 130], AutoVis 
includes a real vehicle into immersive analysis processes. We argue 
that AutoVis can serve as a starting point for future immersive 
analytics considering similar prerequisites, such as the dynamic 
environment inside and outside an interaction space (e.g., a vehicle). 

7.2 Lessons Learned 
Applying Olsen’s heuristics (see 6.1) helped to identify heuristics 
partially covered by AutoVis. According to our research goals G1, 
G2, and G3, we discuss lessons learned from the implementation 
and demonstration of AutoVis. 

Task Allocation Between Immersive and Non-Immersive View. In 
line with [67, 80], our heuristic walkthroughs suggest that the desk-
top outperforms the VR view for overview tasks, such as under-
standing the driving environment and in-vehicle events. In contrast, 
we assume that analysts will use the VR view for detailed passenger 
movement analysis. However, we found that transitions from desk-
top to VR (e.g., single-user scenario, see 4.5) may be inappropriate 
due to analysis goals (e.g., analyzing only physiology) and inconve-
nience (e.g., HMD heat and pressure points). Therefore, we argue 
that the desktop view’s 3D scene panel sufces for most in-vehicle 
and driving analysis without transitioning to VR. Our prototype 
also showed that such transitions may lead to initial disorientation. 
In line with Hubenschmid et al. [67], we learned that the 3D la-
bels/comments should be set in the desktop view frst to mitigate 
disorientation. Besides, the indirect context portals (see 4.3) sparked 
confusion in the multimodal interaction use case (see 6.1) as the 
live-queried contents’ locations were unclear. We learned that these 
portals should clarify the location textually and link sources. 

From our use cases, we also learned that the desktop view is 
interchangeable with the VR view regarding the amount of accessi-
ble data. However, the desktop view is more suitable for retrieving 
outliers in passengers’ physiological data, useful in T3, T4, and 
T7. In contrast, the VR view is more appropriate for perceiving 
spatial distances between driving and interaction events, relevant 
in T5. However, we found that analysts could quickly get motion 
sick when scrubbing the timeline in VR moved the ego-vehicle too 
fast. Therefore, we argue that the desktop view should be used to 
prepare driving sections, which are then analyzed in VR. 

Overall, we conclude that novices might have problems orienting 
themselves and, therefore, use inappropriate views for their tasks. 
For example, they may spend much time searching for relevant 
sequences while driving in the VR ego-vehicle in real-time. Ac-
cordingly, AutoVis should further contribute to H: Empowering 
Novices via tutorials and hints of unnecessary VR usage. 

Collaborative Analysis. AutoVis enables collaborative analysis 
using the desktop and VR view (see 4.5), valuable for the ideation of 
novel in-vehicle UIs (T1). According to Hubenschmid et al. [67] and 
the feedback from our expert interviews (see 3.2), analysts would 

Jansen et al. 

perceive such collaboration as advantageous. However, we learned 
that the ghost vehicles may signifcantly occlude the ego vehicle 
and the 3D visualizations. For example, when collaborators join a 
session and want to inspect the current analysis state by navigating 
to the other analysts’ perspectives. The visual occlusion increases 
with the number of collaborators, limiting large scale synchronous 
collaborations. Additionally, we found that switching between the 
ghost vehicles to inspect the collaborators’ analysis states result 
in context switches, as all comments, labels, and exploded driving-
path events would reappear in an altered state, requiring analysts 
to regain situational awareness after switching back. Therefore, we 
argue that other analysis objects should remain visible during such 
switches to preserve the previous analysis context. 

Besides, the current AutoVis prototype provides visualizations 
to foster collaboration only for the 3D scene panel and the VR 
view. Consequently, we learned that collaborative analysis of phys-
iological data and events in the desktop view is challenging, as 
collaborators do not see each other’s mouse positions or selected UI 
elements. Therefore, future research should consider incorporating 
visual aids in the non-immersive panels of the desktop view to 
facilitate collaborative analysis. 

Real-World Study Complexity & Dataset Size. Although AutoVis 
applies to several use cases (see 6.1, 6.2, and 6.3) and is designed 
to generalize to other AUI domains (T1 - T8), H: Scalability is 
currently limited. In our prototype, 3D visualizations (e.g., avatars) 
work efectively due to the small dataset size. However, in the AUI 
domain, (naturalistic) datasets (e.g., required in T3) can become 
large and complex as they include recordings taken over several 
hours of driving. In line with Reipschläger et al. [107], we found 
that avatars overlap, for example, when they are all located on the 
same seats. Likewise, heatmaps overlap for environment objects, 
for example, in trafc jams or pedestrian crowds. Besides, fnding 
relevant data sequences takes longer as using the timeline becomes 
inefcient. For example, analysts using the desktop view would 
often zoom to perceive events and line diagrams without overlaps, 
similar to the editing process for larger videos (see [59]). There-
fore, AutoVis must provide adaptive visualizations for real-world 
datasets with arbitrary size, for example, using large timelines (see 
[3]) and intelligent fltering of unnecessarily logged road users and 
in-vehicle events. Future research should also consider partitioned 
dataset analysis and gradually simplify and merge replications of 
passengers and other road users without losing relevant informa-
tion to reduce visual clutter. In addition, topic-specifc adaptations 
might be necessary due to the per-design high generalizability 
of AutoVis. For example, sophisticated in-vehicle conversational 
analysis (T6) would require additional audio lines. 

Imperfect Data. AutoVis can use datasets that partially meet the 
data specifcation (see 4.1.1). However, if data is missing, the cur-
rent prototype may not display visualizations (e.g., avatars in case 
of missing skeletal data). In real-world conditions within research 
topics T1 - T8, datasets can be incomplete. For example, missing 
video recordings of the vehicle environment (see Drive&Act [95] 
and MDAD [73]). Therefore, AutoVis needs to be further optimized 
for datasets of lower fdelity, for example, by interpolating miss-
ing motion data. Besides, automatic inferences (e.g., for events or 
emotions) in the preprocessing (see 4.1.2) may misinterpret data 
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due to imperfect DL. As a result, analysts must review all inference 
results in the current prototype, which prolongs the analysis. 

Leveraging a Real Vehicle. Evaluations of in-vehicle UIs (T2) may 
beneft from using a real vehicle in the analysis. However, such 
a vehicle should be parked or driven in the original study envi-
ronment to prevent visualizations from interfering with the real 
environment. During driving, safe analysis can only be performed 
in the passenger seat, as analysts cannot simultaneously drive. This 
limits the analysis (at least until AVs can be used), as analysts cannot 
enter the driver’s POV while driving. Besides, current passthrough 
technology (e.g., less than 720p in the Meta Quest Pro) is not yet 
advanced enough to provide highly detailed real-world informa-
tion. Thus, future work might use augmented reality instead of 
passthrough VR for leveraging a real vehicle in the analysis. In 
this case, the AutoVis concept of selectively adding the real to the 
virtual environment would also apply. 

Beyond the Vehicle Interior. Our use cases and most AUI research 
(T1 - T7) consider the vehicle environment only as additional 
information for the analysis. However, AutoVis’s extensive en-
vironment replication based on external sensors and automatic 
object/event recognition can represent interactions outside the ve-
hicle in detail. This enables examining eHMIs (T8) and entering 
other road users’ POVs.Thus, AutoVis is the frst tool providing 
immersive analysis of human-vehicle interactions (in feld studies) 
without interior or exterior restrictions. However, analyzing UI in-
teractions beyond the interior requires extensive LIDAR or external 
camera recordings. 

AutoVis also reduces recording eforts for eHMI studies (e.g., 
[26, 33]) by not requiring other road users equipped with sensors. 
However, AutoVis cannot visualize the physiological data of other 
road users, as such recordings are impractical in naturalistic driving 
studies. Also, 3D movement and intention visualizations are limited 
by available DL recognition approaches. 

7.3 Limitations & Future Work 
We demonstrated the potential of AutoVis, applied heuristics (see 
6), and presented three use cases in the AUI domain, addressing 
T1, T2, T3, and T5. We plan to investigate use cases focusing 
on the research topics of driver distraction (T4), conversational 
UIs (T6), takeovers (T7), and eHMIs (T8). Besides, AutoVis could 
include other forms of mobility, such as urban air mobility (e.g., 
unmanned air cabs) or micro-mobility (e.g., e-scooters). Although 
the technical evaluation of AutoVis may not require usability 
studies (see [69, 85, 100]), an automotive domain expert user study 
might yield additional insights. Therefore, we will conduct an expert 
user study to determine how our interaction concepts are used in a 
real-world analysis, which concepts users prefer, and what faws or 
enhancements they identify. Moreover, we want to use AutoVis 
for analyses of our own AUI research projects to gain valuable 
insights while reducing analysis eforts. As AutoVis is currently a 
prototype, we will create new features and 2D/3D visualizations for 
desktop and VR views in the future. For this, we plan to improve 
the replication of 3D environments from driving data, see NVIDIA 
DRIVE Sim3, and employ procedural building generation (see [115]). 

3https://developer.nvidia.com/drive/drive-sim; Accessed: 01.02.2023 
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8 CONCLUSION 
We presented AutoVis, a mixed-immersion analysis tool combin-
ing an immersive VR with a non-immersive desktop view to enable 
the exploration of AUI interaction studies. The VR view lets ana-
lysts re-experience an interactive recording of the original study. 
Complementary, the desktop view provides an overview of study 
data and facilitates aggregated data analysis. Both views are syn-
chronized, bridging immersive and non-immersive analysis, and 
enabling collaborative analysis in multi-user scenarios. We pro-
posed visualization and tool interaction concepts based on design 
requirements derived from a literature analysis of AUI research 
and domain expert interviews. Our concepts leverage the unique 
spatiality of AUI interactions with the interplay of in-vehicle and 
environmental contexts. We utilize virtual humanoid avatars, 3D 
trajectories, and heatmap textures embedded in the vehicle interior 
and environment to visualize the behaviors of passengers and other 
road users. In addition, we presented context portals and driving 
path events as domain-specifc visualizations to link in-vehicle and 
environmental contexts. To enable in situ visualizations, we also 
enable a real vehicle in the analysis via passthrough VR. AutoVis 
could thus speed up the analysis process and preserve valuable 
contextual and environmental cues. 

We demonstrated our concept’s applicability to real-world anal-
ysis tasks in three use cases: (1) analysis of multimodal interaction 
in AVs, (2) analyzing a real-world dataset, and (3) leveraging a real 
vehicle in the analysis by implementing a prototype of AutoVis. 
By applying heuristic evaluations, we could show that, despite cur-
rently being a research prototype, AutoVis can beneft the analysis 
of AUI interactions. We plan to extend AutoVis and further eval-
uate our system in an expert user study. Our work contributes to 
the underexplored feld of (immersive) analytics for AUI interac-
tions. Besides, we tackle Grand Challenges of Immersive Analytics 
[51] by accurately placing visualizations in space and supporting 
transitions between analysis environments. We are confdent that 
AutoVis can inspire novel immersive analytics and signifcantly 
benefts analysis of human-vehicle interaction. 
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A CODED THEMES FROM THE AUI DOMAIN 
EXPERT INTERVIEWS 

In the following, we present the results from the automotive domain 
expert interviews coded in common themes. Five experts (E1-E5) 
participated in the semi-structured interviews (see 3.2). 

A.1 Visualization of Object Positions and 
Movements 

E1 "There are many objects inside and outside the vehicle, which 
can be recorded in sometimes hours of video footage. These 
are always difcult to keep track of. Manual coding of videos 
is often time-consuming, and interesting aspects could get 
overlooked." 

E2 "The positions and movements of passengers within the 
vehicle should be displayed so that it can be understood 
when, how, and where interaction took place." 

E3 "Many interactions with AUIs are triggered by external fac-
tors of the vehicle environment, for example, the driver 
might gesture towards or look at other vehicles or pedestri-
ans at a crosswalk. Therefore, it is essential that the positions 
and movements of other objects in the environment, such as 
cars or pedestrians, are visible." 

E4 "For eHMI research, a replication of the exterior of a vehicle 
(or several vehicles) in the same simulation environment 
is of key importance. In this context, the vehicle’s interior 
would be less relevant." 

A.2 Collaborative Analysis 
E2 "Most of the time, many researchers collaborate in an AUI 

research project. They often collaborate across locations 
and diferent time zones. One difculty is working together 
on an analysis at the same time. That’s why people use 
online notebooks that persistently store notes and analysis 
without needing someone to share them live, so they can 
work independently on the same fle." 

E5 "The data from automotive studies are usually analyzed in a 
team, with one person doing the main work, such as prepar-
ing the data for analysis, and then later the other authors 

iterating together over the initially collected results and an-
notating anomalies." 

E3 "For collaboration to be efective, the data should be stored 
persistently (like an online notebook) so that each collabora-
tor can access the data independently of the others (in terms 
of time) and mark relevant passages for later discussions." 

E4 "One’s own knowledge sometimes reaches its limits when 
evaluating extensive AUI studies, for example, if when ana-
lyzing physiological data. In this case, we often consult other 
researchers in this case, who are more experienced in these 
areas. It would be great if these additional experts could be 
also part of the analysis environment to foster interactions." 

A.3 Visualizing Data Interdependencies 
E2 "When we record data that represent diferent passenger 

states, these are stored in logs that are difcult to read manu-
ally. A common problem is that the correlations between the 
position logs of the passengers and the event logs are not 
readable and thus have to be reconstructed in a cumbersome 
way." 

E4 "If video recordings and other measurements, such as the 
heart rate, are added to the event logs, then correlations can 
no longer be analyzed without additional efort." 

A.4 Dataset Annotations 
E4 "Independent of the specifc research topic, one should be 

able to annotate data. This allows one to describe the data 
for collaborators. In addition, annotated datasets can be ef-
fectively used in further processing, such as DL." 

A.5 Data Filtering and Modularity 
E1 "Self-recorded but also public datasets are often very exten-

sive. Therefore, it would be handy if these could be fltered 
so that, for example, only interactions with a specifc dash-
board element are displayed, although the dataset contains 
logs about interactions with the entire interior." 

E5 "Analogous to development environments like Unity or anal-
ysis environments like RStudio, it would be helpful to com-
bine diferent visualizations and view modules. For example, 
I would not always be interested in a video of the driver, or 
I would like the view of the events to be larger to increase 
visibility." 

A.6 Leveraging a Real Vehicle in the Analysis 
E1 "An analysis in a real vehicle only makes sense if the same 

vehicle has been used across all participants in a study. In 
naturalistic driving studies, each study participant drives his 
or her own vehicle. Nevertheless, it would be conceivable 
to use the surfaces of a real vehicle in the analysis, e.g., to 
visualize the interaction pattern directly on the surfaces." 

E3 "I consider the analysis in a real vehicle, while it is driving, to 
be impractical and not purposeful. The driving environment 
(apart from the landscape and the city) is constantly changing 
and therefore not usable in the analysis. Thus, I would rather 
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fnd the movements and the changing background while 
driving distracting for a focused analysis." 

E4 "In studies that take place in a real car or even in a driving 
simulator, the study supervisor often can’t or isn’t allowed 
to be there and ride in the car and observe the participants 
up close. It would be great if exactly that were possible in 
VR, e.g., there could be a detailed simulation of the ride that 
analysts could relive." 

A.7 Enabling Mixed-Immersion Analysis 
E5 "Not everyone has a VR HMD beside their table, so it would 

be handy to have a desktop environment where you can also 
analyze and, in the best case, collaborate with the others and 
not be excluded." 

E2 "I think that the immersive analysis using a VR HMD is over-
head, for example, if one would like to have only an overview 
of the events, retrieving outliers, or other measuring errors 
in the physiological data recordings. Likewise, I don’t always 
fnd an immersive 3D environment helpful, because I often 
have to jump to diferent places and, consequently, have a 
hard time keeping track of a participant’s entire ride." 

E4 "In a VR view, there is often a lack of overview of the situation 
because the viewpoint is usually the frst-person perspective 
of a passenger or bystanders (other cars, pedestrians, etc.). 
In addition, the feeling of missing something is increased 
by the fact that I have to turn my head to capture all the 
information in a 3D space that can appear in 360 degrees." 

A.8 Immersive Analysis via VR 
E2 "When participants make certain interactions, I always fnd 

it hard to assess why they just happened the way they did. 
Taking the perspective of the participants would help to see 
the study from their POV, and then perhaps have a new 
perspective on the data." 

E3 "When analyzing videos and interaction logs, I always have 
to imagine in my head what the (3D) driving environment 
just looked like, so that I have a better context when analyz-
ing data. If I designed the study myself and implemented it 
(e.g., in Unity), I can usually remember the driving environ-
ment or just look it up. With other people’s studies, I can’t 
do that as easily anymore and have trouble establishing a 
spatial relationship between the data." 

A.9 Interplay Between Immersive and 
Non-Immersive Analysis 

E4 "I assume that the transition between a VR and desktop 
application is too cumbersome. If I were analyzing data, I 
might only see the desktop environment for data preparation 
or post-processing. If it makes sense, then, I would only 
use the VR environment as the main analysis tool and not 
constantly switch between VR and desktop." 

E2 "If desktop and VR can be used at the same time, then one 
person could guide the other via desktop, analogous to the 
VR preview in desktop in SteamVR." 

CHI ’23, April 23–28, 2023, Hamburg, Germany 

A.10 Gradual Control Over the Visualization 
E1 "It is very difcult to understand how many things are hap-

pening simultaneously in automotive scenarios (e.g., many 
passengers inside the vehicle, multiple operations outside, 
complicated relationships between inside and outside, etc.). 
Therefore, step-by-step time-lapse control would allow a 
more thorough examination of a scenario at slower or faster 
playback speeds." 

A.11 Linking In-Vehicle and Environment 
Contexts 

E3 "When a landmark is referenced in a gesture interaction, 
one must search for the reference in the environment. Such 
"search" can be time-consuming and difcult if the scene is 
unknown. In addition, the referenced object could be too far 
away to see in detail in VR. Similarly, voice interactions are 
difcult to analyze, if the referenced location/object is not 
even close to the current street." 

A.12 Automatic Conversion of Datasets and 
Data Preprocessing 

E5 "An analysis tool in the automotive area should merge all 
available data of a dataset so that one can easily access video, 
audio, and other logs without having to open three diferent 
programs and switch back and forth between windows." 

E4 "As there are always many diferent sensor recordings, logs, 
video recordings, etc., it would be an enormous relief if a 
tool could automatically convert and prepare all this data to 
use it in a plug-and-play environment." 

B NON-IMMERSIVE DESKTOP VIEW DETAILS 
In this section, we describe the detailed concepts for the non-
immersive desktop view (see 4.2). The desktop view is divided 
into fve panels (see Figure 2): 2D panel (A), 3D scene panel (B), 
video (C), inspector (D), overview (E), and timeline (F). 

The timeline panel consists of: a timeline, event line, and con-
trol elements (see Figure 2 F). Similar to ReLive [67], analysts can 
examine events R2 and control the tool-wide study playback, for 
example, to directly jump to interesting points within the data. An-
alysts can also annotate sections on the timeline with labels that 
are automatically added to the dataset and visualized as tags on 
the event line R6. The timeline enables audio playback and shows 
when participants spoke as audio events R7. The event line hosts 
four types of events: (inter)action, emotion, driving, and activity, 
which can be automatically derived from a dataset (see 4.1.2). The 
participants’ events are color-coded to reduce visual clutter (see 
Figure 2 F). Interaction events describe passenger interactions, such 
as touches or gestures. In contrast, activity events are any passenger 
activity unrelated to UI interactions. Lastly, driving events describe 
the driving scenario (e.g., red trafc lights or accelerations). 

While the timeline was adopted from Hubenschmid et al. [67], 
we added line diagrams in the 2D panel for non-spatial tempo-
ral data, such as physiological data, to overcome the AUI-specifc 
challenge of ubiquitous physiological measures (see 3.2). The 2D 
panel provides an overview of 2D data and events (see Figure 2 
A) enabling quick identifcation of relevant data sequences R3 for 
further examinations on the timeline, in the 3D scene, or VR. At the 
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bottom, an event line facilitates the vertical recognition of correla-
tions between data streams and events. In addition, a red horizontal 
line helps detect deviations from the mean and, combined with 
an outlier detection (in yellow, based on the 1.5xIQR rule [128]), 
hints at data anomalies. However, like other outlier detectors, this 
should be used cautiously, due to false positives. Besides, analysts 
can mark sections in the line diagrams to zoom R5. 

To address R1 and R4, the 3D scene panel replicates the original 
study environment and visualizes the study vehicles’ movements 
using a virtual ego-vehicle (see Figure 2 B). The 3D panel also 
replicates objects (in the range of vehicle sensors), such as buildings, 
pedestrians, cars, and cyclists R1. In contrast to ReLive [67], which 
replicates smaller environments (e.g., a room), the 3D scene panel 
replicates large environments (using GPS logs) to overcome the AUI-
specifc problem of large distances between objects of interest (see 
3.2). Similar to immersive analytics tools, such as MIRIA [16] and 
ReLive [67], analysts can re-experience the scene from any POV 
using free movement and predefned virtual (isometric) camera 
positions. However, to account for the AUI-specifc challenge of 
volatile in-vehicle and environmental contexts (see 3.2), analysts 
can slice the virtual ego-vehicle at any axis to see inside the interior 
(see Figure 2 B) and select objects to track them through the scene 
R5. The 3D scene panel shows the same content as the VR view, as 
they are generated from the same JSON confg fle. 

The inspector panel provides meta information on 3D scene 
objects upon selection in the 3D scene panel (e.g., the ego vehicle’s 
speed) and study-specifc metrics, such as demographic data (see 
Figure 2 D). The overview panel lists all 3D scene objects, available 
participants samples, and visualization settings addressing R5 (see 
Figure 2 E). Participants have a unique adjustable color throughout 
AutoVis. In addition, analysts can select which subsets of partici-
pants are visualized tool-wide. They can also toggle the visibility 
of avatars, trajectories, heatmaps, and events. 

C USE CASE STUDY DETAILS: MULTIMODAL 
INTERACTIONS IN AVS 

We provide the details on the apparatus and procedure of the use 
case study on multimodal in-vehicle interactions (see 6.1). 

Apparatus. We leverage a static VR simulator using the Vive 
Pro Eye, as safety regulations forbid a real-world AV study at our 

Jansen et al. 

institution. We placed two chairs next to each other to resemble the 
front seats (see Figure 10). We employed the Empatica E4 [50] wrist-
band to record physiological signals (blood volume pulse, inter-beat 
interval, skin temperature, electrodermal activity, and acceleration). 
For body tracking, we used Microsoft Kinect for Windows v2, and 
for hand tracking, we used the Leap Motion attached to the Vive 
HMD. In a Wizard of Oz approach, the study supervisor manually la-
beled hand gestures, such as pointing, by watching the participants 
and pressing a button. In contrast to camera-based methods, this 
approach can recognize gestures only understandable to humans. 
However, the timing could be slightly of. The Vive microphone was 
used to record speech input, and the built-in eye-tracking recorded 
gaze and pupil size. We also captured the participants’ behavior 
using a webcam. As a virtual ego-vehicle, we instrumented a Tesla 
Model X capable of automated driving. We detected touch inputs 
via Unity GameObject collisions with the virtual hands.

The virtual test track has a total length of about 2400 meters 
and resembles the downtown of San Francisco, see Figure 10 right. 
We selected this environment as Waymo currently employs fully 
automated taxis in that area4, making it a realistic testbed. The 
environment was created in Unity 2020.3.37f1, and the city layout 
was generated with CityGen3D [23] using OpenStreetMap data of 
a 3.9 ��2 area. 

Procedure. For a demonstration of AutoVis, we recorded data 
from only three participants. One recording session lasted 12 min-
utes. In the real world, the participants wore a VR HMD and sat on 
the left chair, resembling the driver’s seat. The automated vehicle in 
the VR simulation traveled at a speed of approx. 35 ��/ℎ. Overall, 
the participants performed four tasks, see Figure 10 (1-4), in-vehicle, 
social, unexpected, and environment, covering important aspects for 
the analysis of multimodal interactions. First, they queried their 
current location (Lombard Street) in an in-vehicle navigation task. 
Then, another passenger entered the AV in the VR simulation, trans-
forming the vehicle into a social place. However, in the real world, 
this passenger just sat down on a chair next to the participant. After 
that, the AV performed an unexpected emergency break because 
a cyclist crossed the street. Finally, the participants referred to a 
landmark in the environment (Transamerica Pyramid). In each task, 
participants could freely interact with one or multiple modalities 
(i.e., touch, gesture, gaze, and speech) simultaneously. 
4https://waymo.com/sf/; Accessed: 01.02.2023 

https://waymo.com/sf/
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Figure 10: Left, use case study setup. Right, test track in San Francisco with: (1) in-vehicle navigation task at Lombard Street, (2) 
passenger in the social event, (3) unexpected cyclist crossing, and (4) environment sightseeing at the Transamerica Pyramid. 
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