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ABSTRACT
Object manipulation in 3D space, meaning translating, rotating, and
scaling, is ubiquitous in virtual reality (VR), and several interaction
techniques have been developed in the past to optimize the task
performance and usability. However, preliminary research indicates
that individual spatial abilities also have an impact. Yet, it was never
investigated if users’ spatial abilities influence VR object manipula-
tion. We assessed this in a user study (N=66) using 21 manipulation
tasks defined in a Fitts’ law-related approach. As interaction tech-
niques, we chose gizmos for simultaneously manipulating 1 and 3
degrees of freedom (DOF) and a handle bar metaphor for 7 DOF.
Higher spatial abilities resulted in significantly shorter task com-
pletion time and more targeted manipulations, while task accuracy
was unaffected. However, an optimized interaction technique could
compensate individual disadvantages. We propose seven guidelines
on spatial abilities in interaction technique design and research to
personalize and improve VR applications.
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1 INTRODUCTION
Manipulating objects, meaning translating, rotating, and scaling,
are one of the primary and most frequent interactions in virtual re-
ality (VR) [51]. They are used to move simple objects, solve riddles
in (serious) games, and create complex three-dimensional construc-
tion drawings using computer-aided design (CAD). Therefore, the
design of VR object manipulation techniques is essential for the in-
terface’s task performance and perceived usability. This is why mul-
tiple works have proposed optimized solutions in the past (e.g., com-
paring a new interaction technique against a baseline [6, 35, 51, 58]),
as the overviews of Mendes et al. [58] and Bergström et al. [6] show.

Another important factor influencing the interface’s task per-
formance and perceived usability could be the individual spatial
abilities, meaning a person’s ability to understand their surround-
ings, as first studies show superior results for individuals with
higher spatial abilities for such measures [3–5, 12, 49]. Based on
these results, we expect that spatial abilities also significantly affect
the VR object manipulation tasks and their typical measures, such
as task completion time and accuracy [6]. Despite these assumed
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Figure 1: We developed a virtual reality application to investigate in a user study (N=66) how the individual spatial abilities,
measured with the test by Vandenberg & Kuse [80] and Peters et al. [64] (d), influence the task performance in object ma-
nipulation tasks (a). The objects could be manipulated (translated, rotated, scaled, (b)) with either gizmos for 1 degrees of
freedom (DOF) (left picture in (c)) and 3 DOF manipulations (middle picture in (c)) as well as a handle bar metaphor for 7 DOF
manipulations (right picture and yellow line in (c)). The currently manipulable axes (1 and 3 DOF) or the whole object (handle
bar, 7 DOF) are highlighted in orange. Our findings show a significant effect of increasing spatial abilities on reducing task
completion time and using a more targeted problem-solving approach in the object manipulation tasks (a).

performance effects on nearly every VR application using object
manipulation, this was never systematically investigated in past
research. Therefore, we defined the following exploratory research
question (RQ): "Do individuals with higher spatial abilities outper-
form individuals with lower spatial abilities in VR mid-air object
manipulation tasks?"

To answer our RQ, we conducted an experimental comparison of
mid-air object manipulation techniques in VR with 66 participants
and correlated the results with their individual spatial abilities (see
Fig. 1 / 3) by exploratory analyzing several dependent variables. We
determined their spatial abilities by measuring their mental rotation
capabilities with a test based on the well-established Shepard and
Metzler [69] as well as Vandenberg & Kuse [80] tests (see Fig. 1d).
Participants were required to complete 21 manipulations/docking
tasks of varying difficulty, similar as proposed by Bergström et
al. [6]. We further present an own Fitts’ law adaption for that as
nothing suitable for controlling the difficulty of our tasks was de-
fined unit now [78] (see Fig. 1a). Our two main metrics were task
completion time and task accuracy (final error/deviation to the
target) to measure our participants’ performance. To provide gen-
eralizable and broadly relevant results, we focused on interaction
techniques applicable to a standard head-mounted display (HMD)
setup based on mid-air controller input [18]. In contrast to previous
works that focused on subsets [6, 51, 58], we wanted to provide
holistic findings regarding all possible degrees of freedom (DOF)
provided by object manipulation. The DOF are nine in total: three
for translation, three for rotation, and three for scaling. We chose
as the first interaction technique the established gizmos/widgets
as used in Unity [79] or Blender [8] for simultaneous 1 DOF and

3 DOF object manipulation (see Fig. 1b/c). Difficult manipulations
must be decomposed and performed sequentially when the task
needs more manipulations than simultaneously possible with the
respective gizmos. We further chose the handle bar metaphor [71]
for simultaneous 7 DOF object manipulation (see Fig. 1c). It can
handle all manipulations simultaneously, and participants needed
no decomposition, even for the most difficult task in our study.

Due to its high level of standardization as well as its generaliz-
ability, our study design is a methodological contribution according
to Wobbrock and Kientz [85]. It can serve as a template and ease re-
searchers’ work in defining and conducting highly standardized ob-
ject manipulation studies based on docking tasks in a Fitts’ law-like
manner (possible target group: [7, 9, 14, 30, 35, 41, 44, 47, 59–
61, 75, 77, 83]). Furthermore, we demonstrated how individual char-
acteristics such as spatial abilities should be considered by design.
Both provisions will improve the comparability of docking tasks
results across studies in the future (see Kulik et al. [48]), which is
why we have added them to our guidelines.

The findings of our exploratory study show that, as assumed,
higher spatial abilities significantly improve task completion time
and result in more targeted manipulations. We found no effect
on task accuracy. Very important is also our interpretation of the
results, that an optimized interaction technique can compensate for
lower spatial abilities. We saw this by the results of the handle bar,
which, in our study, resulted in the best performance - independent
of spatial ability. It also shows that providing multiple simultaneous
DOF (for the handle bar 7 DOF) can be advantageous. To summarize,
when designing a VR application, it is critical to consider both
individual spatial abilities and an optimized interaction technique.
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We advise researchers and designers to do so in the future and,
therefore, created seven guidelines for interaction technique design,
implementation, and user research.

Our main contributions are as follows:
(1) Findings from an exploratory user study (N=66) regarding

the correlations of individual spatial abilities and task com-
pletion time, task accuracy, targeted object manipulations,
cognitive load, usability, interaction technique, and task dif-
ficulty measured by eleven dependent and five control vari-
ables.

(2) The definition of seven guidelines on how to consider the
individual spatial abilities of participants in VR interaction
technique design as well as associated user studies.

(3) The definition of a study design template that considers users’
individual characteristics for object manipulation interaction
technique studies based on docking tasks which are defined
by formulas derived from Fitts’ law. It will ease defining
and conducting studies in a standardized way to improve
across-study result comparability.

2 RELATEDWORK
Our work is based on previous work regarding spatial abilities and
object manipulation, focusing on how to measure and compare
interaction techniques with docking tasks.

2.1 Spatial Abilities
We will first explain spatial abilities before we show selected ex-
amples where spatial abilities were considered in human-computer
interaction (HCI) research.

2.1.1 Introduction to Spatial Abilities. Spatial abilities are an in-
herent characteristic of humans and describe their ability to under-
stand their surrounding environment as well as objects inside it.
Most definitions assume three fundamental abilities: spatial per-
ception, spatial visualization, and mental rotation [52, 82]. Other
definitions include other abilities, such as spatial orientation, spa-
tial relation, and spatial transformation as a separate dimension of
spatial abilities or as a subcategory of one of the first three abil-
ities [13, 38, 40, 52, 86]. Spatial abilities are further not isolated
capabilities and are linked to the working memory and cognitive
load [43, 76]. Previous works have shown that spatial abilities cor-
relate with participants’ performance in tasks where spatial skills
are required, such as assembly tasks [12] or immersive 3D draw-
ing [3]. Several tests were developed to measure spatial abilities
or sub-categories. One of the first were Shepard and Metzler [69]
who developed a test based on objects made of cubes placed side
by side in different orientations to measure mental rotation capa-
bilities. Participants had to decide whether these cube objects were
identical or not. This work will use this principle by using the test
of Vandenberg & Kuse [80], which was frequently used as a men-
tal rotation test in the past (see Zander et al. [86], and Peters et
al. [64]). The test shows one reference cube object and four other
cube objects, where two are identical to the reference object but
rotated, and two are different (see Fig. 1d). Both objects identical to
the reference object have to be selected. Depending on the version,
the test consists of 20 to 24 trials. We used a 12 task subset of the
redrawn 24 trial version of Peters et al. [64]. Using a subset reduced

its duration and eased its feasibility, as Peters et al. [65] did for
digital versions.

2.1.2 Spatial Abilities in HCI Research. Bowman et al. [10] de-
fined five categories influencing performance in virtual environ-
ment (VE): the interaction technique, the task, the environment,
the system, and the users with, e.g., different spatial abilities. While
the firsts can be defined and controlled in a study, spatial abilities
are always user-dependent. In this work, we will focus on the in-
fluence of individual spatial abilities on object manipulation task
performance by controlling the other four in our study.

Despite spatial abilities being an essential factor for interaction
in HCI, previous research has seldom investigated their influence,
as the survey papers and overviews of LaViola et al. [51], Mendes
et al. [58], and Bergström et al. [6] show. Two works doing so were
conducted by Barrett and Hegarty [4, 5], who considered spatial
abilities in their studies as moderators for performance in virtual
molecule manipulation tasks and varied the display dimensionality
(stereo vs. mono) and the hand-held device location (co-located
vs. displaced). Only participants with lower spatial abilities ben-
efited from co-located interfaces and stereoscopic view. Carlson
et al. [12] conducted a study about learning assembly tasks and
showed that higher spatial abilities lead to higher assembly per-
formance. Barrera-Machuca et al. [3] showed a positive effect of
spatial abilities on shape likeliness in a 3D mid-air sketching task.
However, line precision was not affected in their work. Lages and
Bowman [49] investigated if there were differences in VR 3D data
examination when walking around or moving the data itself. They
found that high spatial abilities could improve task completion time
when walking. These works show why we expect a similar positive
effect of increasing spatial abilities on object manipulation in VR,
which we will systematically investigate in this work.

2.2 Object Manipulation in VR
In this section, we will first define what we will consider as object
manipulation in this work before we explain how it is related to the
DOF, show the state of the art of VR object manipulation techniques,
and how they can be evaluated with docking tasks.

2.2.1 Canonical Object Manipulation Tasks. According to LaViola
et al. [51], object interaction can be defined with the canonical ob-
ject manipulation tasks: selection, positioning/translation, rotation,
and scaling. These four basic tasks are building blocks for more
complex interactions [51, 62]. Previous research has mainly focused
on object selection, followed by object manipulation with rotation
and sometimes translation, as the survey papers and overviews of
LaViola et al. [51], Mendes et al. [58], and Bergström et al. [6] show.
Their works further show that scaling is scarcely investigated, and
object manipulation with combined rotation, translation, and scale
manipulation also only in very seldom cases.

This work provides a holistic evaluation of object manipulation
and focuses, therefore, on all three canonical manipulation tasks,
namely rotation, translation, and scale, and investigates the influ-
ence of spatial abilities on them. As selection does not manipulate
objects, we excluded it from our evaluation.

2.2.2 DOF in Object Manipulation. The degrees of freedom (DOF)
in object manipulation can be defined (1) as the absolute number
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of control dimensions in a task and (2) as the number of simulta-
neously controllable dimensions by an interaction technique [51].
Translation, rotation, and scale have each three manipulation axes
resulting in nine possible DOF. The absolute number of control
dimensions of a task (1) describes if translation, rotation, and scale
are possible, which results in one (one axis possible) or up to nine
(all axis possible) DOF. In the following, we will refer to this as
absolute task DOF. The number of simultaneously controllable di-
mensions by an interaction technique (2) describes how many of
the absolute DOF of the task can be manipulated by the interaction
technique at the same time [51]. In the following, we will refer to
this as simultaneous interaction technique DOF. In our study, we use
both (1) the absolute task DOF and (2) the simultaneous interaction
technique DOF as independent variables.

As 3D interaction is difficult and offers potential for improve-
ment [24, 39, 41, 61], previous works have investigated how many
simultaneous DOF for an interaction technique are appropriate for
object manipulation [51]. For example, LaViola et al. [51] proposed
to reduce the interaction technique’s DOF to reduce effort and in-
crease precision. This was investigated by Veit et al. [81] with a
rotation task where they compared a simultaneous 3 DOF interac-
tion technique with a technique with only 1 DOF. Participants using
only 1 DOF were faster, while the achieved precision was the same.
Decomposing the task, meaning rotating the axis sequentially, was
very important for the participants. Contrary results exist by Kulik
et al. [48]. They showed that an interaction technique combining
translation and rotation (6 DOF simultaneously) leads to a shorter
task completion time than decomposing them, meaning performing
all necessary translations and rotations sequentially. Similar results
from Mendes et al. [61] exist that show that participants preferred
simultaneous 3 DOF over 1 DOF interaction techniques for object
manipulation. This is in line with interaction techniques such as the
handle bar [71], which show that object manipulation techniques
for manipulating up to 7 simultaneous DOF can be created and
successfully used. Techniques for 8 or 9 simultaneous DOF object
manipulation for VR do not exist at the moment [58].

These works have in common that they do not consider the
spatial abilities of the participants in their study, which may have
an influence on the results and may explain why contrary results
for how many DOF are best for interaction exist. This assumption
is the base for our research question.

2.2.3 Object Manipulation Techniques. Object manipulation tech-
niques for VR were frequently investigated in the past [6, 58]. How-
ever, their study results comparability is limited, as the used hard-
ware and interaction techniques vary strongly and are often opti-
mized for specific use cases. This could be another explanation for
the contradicting study results presented in Section 2.2.2. To prevent
such effects in this work, we used our own criteria to select appro-
priate VR interaction techniques for this work (see Section 3.1.1).
Using criteria was necessary, as Mendes et al. [58] showed, that
there were plenty of techniques investigated in the past, even for
our use-case mid-air object manipulation for VR. Different tracking
technologies (e.g., controllers/handheld devices, wearable devices,
or hand-tracking), multiple input mappings and metaphors (e.g.,
grabbing or handles), direct and indirect interactions (e.g., in the
vicinity of the user or out-of-reach), and scaffold or manipulation

aids to increase precision (e.g., snapping, scale down movements, or
widgets) exist [58]. Besides this brief summary, we will not provide
a holistic overview of manipulation techniques, which is a topic on
its own, and refer for a broader overview to corresponding survey
papers (see Mendes et al. [58], and Bergström et al. [6]).

2.2.4 Docking Tasks and Fitts’ Law in 3D. Whereas Fitts’ law [34]
exists for comparing object selection interaction techniques, no
equally standardized model exists for comparison of 3D object ma-
nipulation. Nevertheless, many previous works have used so-called
docking task as a setup for comparisons [14, 44, 58, 60]. The goal
of a docking task is to manipulate a given 3D source object by
applying translation, rotation, and scale manipulations so that it
matches a target object. The target object is often visualized as
semitransparent, and the 3D object has to fit inside the target per-
fectly. Docking tasks can be evaluated regarding completion time
and/or accuracy. Task completion time is often measured until the
3D object is fitted within a predefined threshold, which should be
done as fast as possible [44]. In contrast, accuracy means that not
the time counts it takes to manipulate the object, but the highest
achievable accuracy should be reached [60].

Similar to Fitts’ law, which uses the index of difficulty [54, 55, 72],
docking tasks need to be definable with different levels of difficulty,
which makes them further comparable if multiple trials are used
within a study. The difficulty of docking tasks can be varied by
changing the amount objects have to be translated, rotated, or
scaled [6, 14, 41]. As this is a somehow similar approach to chang-
ing the target distance and width for the index of difficulty in Fitts’
law studies [55, 72], previous works focused on transforming Fitts’
law into 3D to apply it to translation and rotation object manipu-
lation [74, 78]. This work will build on the formulas proposed by
Stoelen and Akin [74] (see Section 3.1.2). They adapted Fitts’ law
and its index of difficulty to translation and rotation manipulation
tasks to define docking tasks with comparable difficulty. Kulik et
al. [48] confirmed these formulas as appropriate based on a user
study.

3 USER STUDY
According to LaViola et al. [51], object manipulation can be de-
fined by (1) the absolute number of control dimensions as well
as (2) the number of simultaneously controllable dimensions (see
Section 2.2.2). In our case, these are defined by (1) the object ma-
nipulation task and (2) the interaction technique, which we used as
independent variables in the following. Further, we will show how
our study design is linked to Fitts’ law, our dependent and control
variables, our system’s design and technical details, the study pro-
cedure, and details about our N=66 participants. We oriented the
design of our study on the recommendations and the checklist for
VR object selection and manipulation studies provided by Bergström
et al. [6].

3.1 Independent Variables
In the following, we will show our two independent variables inter-
action techniques and manipulation tasks and explain how we have
chosen the conditions. This is followed by a study design overview,
including a power analysis.



Spatial Abilities and Virtual Reality Object Manipulation CHI ’23, April 23–28, 2023, Hamburg, Germany

3.1.1 Interaction Techniques. The three canonical object manipu-
lations (translation, rotation, scale; see LaViola et al. [51]) can have
up to 3 DOF each, which results in a spectrum from 1 to 9 DOF
(see Section 2.2.2). To inspect our RQ (see Section 1), we investigate
the whole range of the spectrum. As we did not want to invent
a new interaction technique but investigate already existing and
well-established ones (see LaViola et al. [51]), we selected them
based on the overview of Mendes et al. [58].

We started our selection on the lower end with 1 DOF, allowing
to manipulate only one axis of the object simultaneously (either
translation/rotation/scale). Therefore, conducting complex object
manipulation tasks requires decomposing the task and performing
several manipulations sequentially (e.g., first conduct the x-axis
translation, then the y-axis translation, and then the x-axis rota-
tion). 1 DOF manipulations are possible in applications such as
Unity [79] or Blender [8] by using widgets or gizmos (see Fig. 1b/c),
as we will call them in this work. They are well-established and
known to designers and developers [17, 42, 58, 63, 70] and work in
VR as well [58] (see Fig. 1b/c). As they work with the default HMD
controllers, our results will be generalizable for the vast majority
of VR HMDs. As the second interaction technique, we selected
one that allows the manipulation of 3 DOF simultaneously. 3 DOF
are the maximum for one of the canonical tasks translation, ro-
tation, and scale when considered separately. We again selected
the gizmos, as they also allow simultaneous 3 DOF manipulation
(see Fig. 1b/c). Further, gizmos do not mix the canonical tasks, and
the 3 DOF interaction for translation and rotation are in VR quite
similar to an interaction and object manipulation with an object in
the real world. We further selected an interaction technique on the
higher end of the DOF spectrum with the handle bar [71] metaphor,
which allows manipulating 7 DOF simultaneously (3 DOF transla-
tion, 3 DOF rotation, 1 DOF uniform scaling) without any context
switch or additional input (see Fig. 1c). This technique is related to
real-world object manipulation as well (two-hand interaction with
an imaginary intersection that spikes objects). It is also realized
using the default HMD controllers. We could not select an 8 or
9 DOF interaction technique, as all currently proposed interaction
techniques for object manipulation in mid-air only support uniform
scaling [58].

We deliberately decided to select only three interaction tech-
niques for our comparison according to the guidelines of Bergström
et al. [6], which state that the number of independent variables
should be kept low. With the selected 1 DOF, 3 DOF, and 7 DOF
interaction techniques, we covered the whole DOF spectrum.

3.1.2 Manipulation Tasks. Similar to the interaction techniques,
object manipulation tasks can also be divided into the same 1 to
9DOF spectrum (see Section 2.2.2). As formany objectmanipulation
studies (see Section 2.2.4) and as suggested by Bergström et al. [6],
we used docking tasks to inspect our RQ (see Section 1) and will
describe their design and the choice of our manipulation objects in
the following (see Fig. 1a).

Docking Tasks based on Fitts’ Law: To define the difficulty of
our docking tasks (see Section 2.2.4), we extended the formulas of
Stoelen and Akin [74], which are based on the original Fitts’ law
formula:

𝐼𝐷𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 = 𝑙𝑜𝑔2 (
𝐴

𝑊
+ 1)

𝐼𝐷𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 = 𝑙𝑜𝑔2 (
𝛼

𝜔
+ 1)

As we wanted to investigate all three canonical manipulations
(see LaViola et al. [51]), we extended this principle to scaling and
used a similar formula:

𝐼𝐷𝑠𝑐𝑎𝑙𝑒 = 𝑙𝑜𝑔2 (
𝑠

Δ𝑠
+ 1)

𝐴, 𝛼, and 𝑠 define the distance of the translation, rotation, and
scale docking task, whereas𝑊, 𝜔, and Δ𝑠 represent the tolerance
of how accurate the position, orientation, and scale of the target
object have to be met. This way, an 𝐼𝐷 can be calculated for docking
tasks similar to Fitts’ law tasks. As stated by Stoelen and Akin [74]
as well as Kulik et al. [48], the 𝐼𝐷𝑠 of the three formulas can be
combined. However, results exist by Triantafyllidis and Li [78] that
question the generalizability of combining these 𝐼𝐷𝑠 . Therefore,
and as we did not evaluate the generalizability for 𝐼𝐷𝑠𝑐𝑎𝑙𝑒 , we used
the previously provided formulas not to compare the difficulty of,
e.g., a translation with a rotation task, but to formally define our
tasks to have similar difficulties inside the canonical task categories
translation, rotation, and scaling.

To define our tasks, we decided to choose tasks narrowed down to
separated translation, rotation, and scale as our simplest tasks on the
DOF spectrum (3 DOF tasks). As a more difficult task level, we com-
bined two of the canonical tasks to 6 DOF tasks resulting in the three
tasks rotation+translation, rotation+scale, and scale+translation. The
last level combined all three, resulting in the task rotation+transla-
tion+scale. We limited this task to uniform scaling to match it with
our handle bar interaction technique (7 DOF task). This resulted
in seven tasks, similar to our interaction techniques, covering the
whole DOF spectrum. Our seven tasks are part of three groups
(3 DOF/6 DOF/7 DOF), which keeps the independent variables low,
similar to the interaction techniques (see Bergström et al. [6]).

For the translation, we defined 𝐴 = 0.5𝑚 and randomly defined
distinct start positions around the target object, one for each trans-
lation task (see Bergström et al. [6]). We chose a distance of 0.5𝑚 so
that the displaced object is within arm’s reach of the target object.
As the previously introduced formulas reduce the manipulation to
a theoretical 1D movement,𝑊 could also be defined for this 1D
movement. However, as we are always remapping this theoretical
1D movement to our 3D environment, this could lead to minimal
and difficult tolerances on one or several of the x, y, and z axes.
Our goal was to measure the time until this tolerance threshold
was reached, as well as the final time-independent accuracy par-
ticipants match the target object. Therefore, the threshold had to
be difficult enough to challenge the participants. On the other side,
we further wanted that there is still some distance left to improve
the positioning to measure the final time-independent accuracy
as well. By clearly separating the time and accuracy measure this
way by using a threshold, we followed the guidelines of Bergström
et al. [6] and prevented a time and accuracy trade-off present if
measured simultaneously [41]. Therefore, we defined a tolerance
of𝑊 = ±0.05𝑚 for each axis, based on try-runs, and deviated with
this 3D definition slightly from the previously shown 1D formula.



CHI ’23, April 23–28, 2023, Hamburg, Germany Drey, et al.

We defined the rotation in a similar way (𝛼 = 170◦;𝜔 = ±10◦). The
uniform scaling would always be similar if defined with a static
𝑠 . We have chosen a different approach than for translation and
rotation and defined several 𝑠 but Δ𝑠 dependent on 𝑠: Δ𝑠 = ±0.1𝑠 .
This approach also ensured a similar difficulty for the different
scaling tasks. Using these task definitions, the 6 DOF tasks should
be about two times as difficult as the 3 DOF tasks, and the 7 DOF
task should be three times as difficult. As we already varied the 𝐼𝐷
with the 3 DOF, 6 DOF, and 7 DOF tasks, and further 𝐼𝐷 variations
would not help to investigate our RQ, we decided to keep our study
design small and defined not more than one trial for each of the
seven tasks.

Manipulation Object Design: Besides defining the task difficulty,
the manipulation objects have to be defined as well. Previous works
have often used primitives, such as triangles or cubes [30, 47, 48, 59].
Still, as we include rotation tasks, it is important that the objects are
unambiguous in how they have to be rotated (e.g., non-symmetrical
objects) to not confuse participants (see Bergström et al. [6]). For
this, we oriented our object design on the objects used by the test
of Vandenberg & Kuse [80] and created seven individual objects so
that every task has a unique one (see Fig. 1a). This way, there was
no learning effect based on already knowing the object on the later
tasks, and imitating the Vandenberg & Kuse objects allowed us to
create similar difficult to understand objects as well.

3.1.3 Study Design Overview. Based on the previously explained
design decisions, we had the two independent variables interaction
technique with the conditions 1 DOF gizmos, 3 DOF gizmos, and
7 DOF handle bar (which resulted in increasing complexity) as well
as manipulation task with the conditions 3 DOF task, 6 DOF task,
and 7 DOF task (which resulted in increasing difficulty). This re-
sulted in a 3𝑥3 study design shown in Fig. 2. As each interaction tech-
nique had to use all defined tasks, this resulted in 21 tasks in total.
Following the guidelines of Bergström et al. [6], we did a power anal-
ysis with G*Power 3.1.9.7 and decided to conduct a within-subject
study as this would need about 54 participants (MANOVA, repeated
measures, within factors; 𝑓 = 0.25;𝛼 = 0.05; 1 − 𝛽 = 0.95;𝑔𝑟𝑜𝑢𝑝𝑠 =
9;𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑠 = 21) [29]. We selected as effect size 𝑓 = 0.25, as we
wanted to find at least medium-sized effects within our sample (see
Cohen [15, 16]).

3.2 Dependent Variables
To investigate our RQ "Do individuals with higher spatial abilities
outperform individuals with lower spatial abilities in VR mid-air
object manipulation tasks?", we thought of performance character-
istics for object manipulation tasks that could be linked with the
individual spatial abilities extending the typical measures of task
completion time [7, 14, 30, 35, 41, 44, 47, 48, 56, 59, 61, 66, 81, 87]
and accuracy [7, 35, 41, 44, 48, 61, 66, 81] (see Section 2.2.4). As first
step, we split the time measures up to the several phases of the
docking tasks (see Poupyrev et al. [66]) to be able to make more
precise statements. The same applied to the accuracy measures,
which were split into the different canonical operations (transla-
tion, rotation, scale). As shown by Barrera-Machuca et al. [3] for
sketching, we could also expect more targeted manipulations to
solve a manipulation task by higher spatial ability participants. We,
therefore, counted the needed interactions and the absolute length
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Figure 2: The study design consisted of the independent vari-
ables interaction technique with the conditions 1DOF gizmos,
3 DOF gizmos, and 7 DOF handle bar that provide increas-
ing complexity andmanipulation task with the conditions
3 DOF task, 6 DOF task, and 7 DOF task that provide increas-
ing difficulty based on a derived Fitts’ law approach. We de-
fined seven individual tasks and used a within-subject design
which resulted in 21 trials for each participant. T=translation;
R=rotation; S=scale

of the required manipulation way. Cognitive load is further a way
to measure problem-solving skills [76]. We expected that higher
spatial abilities should ease problem-solving of object manipulation
tasks (see Just and Carpenter [43]), which is why we expected re-
duced cognitive load. Measuring the usability could further help to
investigate how different interaction techniques are perceived and
rated by participants with different spatial abilities. Table 1 shows
all dependent variables.

We analyzed our results on three different levels, the overall
level (OV) not distinguishing the interaction techniques and manip-
ulation tasks but only investigating the influence of the covariates,
e.g., the spatial abilities (see Section 3.3), the interaction technique
level (IT) considering the interaction technique and the covariates,
and the manipulation task level (MT) considering the manipulation
task and the covariates. In the following, we will add the prefixes
OV, IT, or MT to our dependent variables to indicate the level of
investigation.

3.3 Spatial Ability Measure and Control
Variables

We used the test of Vandenberg & Kuse [80] to measure the men-
tal rotation capabilities of our participants as our spatial abilities
measure and selected this instead of other measures (e.g., spatial
orientation; see Section 2.1), as mental rotation is directly linked to
our object manipulation docking tasks.

To further characterize our participants, we collected demograph-
ics (age and gender) as well as their 3D modeling experience, which
showed us if they were familiar with our interaction techniques,
and their VR experience, which told us how advanced they were
in using VR HMDs. As we measured both time and accuracy/error
as dependent variables, we also asked participants to self-assess
how accurately/perfectionist they, in general, solve tasks with the
measurement task accuracy self-assessment stating this. This could
tell us if participants would rush through a task or diligently solve
it, which influences the achieved time and accuracy.
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Table 1: We measured several dependent variables and analyzed them on three levels: overall level (OV), interaction technique
level (IT), and manipulation task level (MT). We created sums or averaged values if multiple trials were combined (see Mendes
et al. [59]), and streamlined the dependent variables on the IT and MT level to focus on our main measures. m=mean; s=sum;
o=original

Dependent Variable OV IT MT Unit Explanation
threshold time m m m seconds (s) the time until an accuracy threshold was reached

first interaction time m seconds (s) the time from the task start until the first interaction (initial
thoughts and planning time)

task time s s s seconds (s) the time participants actually conducted the task (= threshold time
- first interaction time)

interaction time s seconds (s) the time, only measured when an interaction was performed
think time s seconds (s) the time, only measured when no interaction was performed

trans./rot./scal. error s s s meters (m) /
degree (°) / -

the final error/deviation/accuracy to the target split up to the canon-
ical tasks translation, rotation, and scale

interactions s - the number of conducted/needed interactions
trans./rot./scal. sum s meters (m) /

degree (°) / -
the absolute length of the needed manipulation way split up to the
canonical tasks translation, rotation, and scale

SUS o - the System Usability Scale (SUS) questionnaire [11]
active cognitive load m o - single-item question according to Klepsch and Seufert [46]

passive cognitive load m o - single-item question according to Klepsch and Seufert [46]

3.4 System
We used a plumber’s environment as our application’s setting as it
worked perfectly for our setup and gamified our study. The chosen
manipulation objects (see Section 3.1.2) based on the Vandenberg
& Kuse [80] mental rotation test could be perfectly modeled with
pipe sections (see Fig. 1a/d). Laying pipes further fitted into our
story as we mapped this to our object manipulation docking tasks
(see Section 3.1.2; see Fig. 1a). The solid source pipe had to be
manipulated to match the red transparent target pipe. If the defined
threshold (see Section 3.1.2) was met, a bell sound as well as a spark
animation indicated that now the speed-dependent part was over,
and the task switched to the accuracy-dependent one. Participants
then had as much time as they wanted to manipulate and fit the
object perfectly and then proceed to the next task. As described
in Section 3.1.1, we implemented 1 DOF and 3 DOF gizmos and
a 7 DOF handlebar (see Fig. 1b/c) as interaction techniques. To
disregard the handedness of our participants, interactions could be
performed equally and interchangeably with the right as well as
the left controller.

The Vandenberg & Kuse [80] mental rotation test consisted of
four stacks of boxes, aka the test objects (see Fig. 1d). The reference
object was placed on a clipboard with limited mobility to fixate
the perspective on the object as in the original test. This way, the
two out of four identical to the clipboard but rotated objects on the
boxes had to be selected, which is identical to the original test (see
Fig. 1d). We used the redrawn version of Peters et al. [64] and used
the first half of the test to limit its duration to 3 minutes1 to ease
its feasibility for our digital version (see Peters et al. [65]). All other
questionnaires were also implemented in-game.

We implemented our application based on Unity [79] and devel-
oped it for the Meta Quest 1 and 2 [28], which have only minor hard-
ware differences and similar controller designs and worked, there-
fore, interchangeably for our study [84]. We chose to implement

1We used the MRT-A set.

for the Quests, as they are the most popular HMDs on Steam [18],
and we also planned to collect data via online distribution of our
application. This was also why we gamified our application, as
we wanted to motivate a wide range of persons to participate. We
restricted gamification to the plumber story as well as the setting
of the environment but did not change any specifics necessary by
our study design.

3.5 Procedure
We designed our app in a way that it could run as an unsupervised
online study considering the best practices of Radiah et al. [68]
for conducting remote VR studies. This way, we could recruit re-
mote participants online and also local participants with different
local study supervisors without affecting our results. Therefore,
we included an in-game examiner that guided the participants and
provided all necessary information with texts and voice-overs.

In the first scene, participants entered a hallway, where they got
an initial introduction of our study’s purpose and the consent form.
When this was accepted, the first game scene, the warehouse (see
Fig. 1d), started where the participants conducted the Vandenberg
& Kuse mental rotation test [80] and answered our demographic
questions (see Section 3.3). After this, the first interaction technique
was randomly selected, and the first basement scene (see Fig. 1a/b/c)
started. We implemented a tutorial where participants got familiar
with the manipulation tasks, as well as the interaction techniques.
The tutorial included four example manipulation tasks, one for
translation, rotation, and scale each, and one including all three.
After this, the first seven study tasks allocated to the interaction
technique started in the order as shown in Fig. 2. Most of our
dependent variables (see Table 1) were unobtrusively measured
by our app while the participants conducted the tasks. When the
seven tasks were finished, the participants answered the SUS as
well as the cognitive load questionnaires. Then the next basement
scene started with the next randomly selected interaction technique,
beginning once again with a tutorial. After all three interaction



CHI ’23, April 23–28, 2023, Hamburg, Germany Drey, et al.

technique basement scenes were finished, the data was uploaded
to our university’s Nextcloud [36] server, and the app closed itself.
We ensured that the online version of our app could only be started
once as a study run. Beginning with the second run, our app entered
the free-to-play mode, where only the basement scenes were loaded,
but no data was collected anymore.

3.6 Participants
We recruited 66 participants (see power analysis in Section 3.1.3) in
four different ways. The largest group (n=47) was collected using
the app during the university’s curriculum. Another 14 participants
were recruited through convenience sampling. We also used Pro-
lific [67] to recruit four participants online. Prolific participants
were compensated with 7.50 €. Our 66 participants were between
18 and 61 years (𝑀 = 23.70, 𝑆𝐷 = 8.56) old. 52 identified them-
selves as female, 13 as male, and one participant preferred not to
answer. The overall VR experience of the participants was low, with
58 participants stating to use VR HMDs less than 1 hour per month
(1-2h: n=2; 3-5h: n=1; 5-10h: n=3; >10h: n=2). The same applied
to the 3D modeling experience, with 58 participants stating to use
3D modeling applications less than 1 hour per month (1-2h: n=3;
3-5h: n=2; 5-10h: n=0; >10h: n=3). Their rating for the task accuracy
self-assessment was slightly above the midpoint of the scale rang-
ing from "strongly disagree (1)" to "strongly agree (5)" (𝑀 = 3.55,
𝑆𝐷 = .85). We did not normalize these participants’ characteristics
when used for statistical analysis. The vision of the participants
was normal or corrected to normal.

We analyzed the results of the Vandenberg & Kuse [80] mental
rotation test to measure the spatial abilities of our participants.
For scoring, we used the approach where one point is given for
each correct answer, and one point is subtracted for each missing
or incorrect answer2. We further normalized the scores to range
from 0 (no correct answer in the test) to 1 (everything answered
correctly in the test). This resulted in the histogram shown in Fig. 3
(𝑀 = .46, 𝑆𝐷 = .20, 𝑀𝑑𝑛 = .42). It shows that the spatial abilities
of our participants have a broad range with a peak near the mean.
As we have N > 30, we treat this data as approximately normally
distributed [32]. During our statistical analysis, we tested this data
and its effects on our dependent variables with multiple linear
regressions but also conducted a median split to create two nearly
equally sized groups (see Barrera-Machuca et al. [3] and Lages and
Bowman [49]), one with lower spatial abilities (n=37) and one with
higher spatial abilities (n=29) for group comparisons.

4 RESULTS
In the following, we explain our exploratory statistical method and
present our study results. They are presented following our study
design (see Fig. 2/Table 1).

4.1 Statistical Methods
We conducted as our main analysis multiple linear regressions to
analyze whether the spatial abilities, age, VR experience, 3Dmodeling
experience, and the task accuracy self-assessment of the participants
contribute significantly to explaining the variance of the depen-
dent variables (see Table 1). A linear statistical method allowed us
2We explain the test in Section 2.1. Its implementation is described in Section 3.4.
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Figure 3: This histogram shows the mental rotation capabil-
ities (spatial abilities) of our participants based on the test
of Vandenberg & Kuse [80]. We normalized the test scores to
range from 0 (no correct answer in the test) to 1 (everything
answered correctly in the test) (M = .46, SD = .20,Mdn = .42).

to consider the linearity of our data, e.g., the spatial abilities (see
Fig. 3), and predict trends showing linear relationships not possible
with group comparisons (e.g., MANOVA) which would reduce our
linear data to predefined artificial groups and just test for significant
differences between the groups. Using multiple linear regressions
instead of correlations further allowed us to investigate the effect
of our proposed main predictor spatial abilities together with the
covariates in one model [32]. This method allowed us to show if
our RQ "Do individuals with higher spatial abilities outperform indi-
viduals with lower spatial abilities in VR mid-air object manipulation
tasks?", predicting the dominant effect of spatial abilities is correct
and if there are further dominant covariates we considered in our
study design. For our analysis, it was not important to create exact
models that perfectly predict the dependent variables but to find
significant influencing factors and show their effects. We, therefore,
also made no model selection and always used all control variables
for all dependent variables.

Based on our study design (see Fig. 2/Table 1), we started our
analysis on the overall level (OV), followed by the interaction tech-
nique level (IT) and the manipulation task level (MT) and use these
abbreviations for the dependent variables in the following. As the
interaction technique (IT) and the manipulation task (MT) levels
provide groups (the conditions of the independent variables) by
study design, we further conducted as a second-level analysis group
comparisons in addition to the multiple linear regressions. To con-
sider the spatial abilities in these group comparisons as well, we
performed a median split for the spatial abilities (𝑀𝑑𝑛 = .42; see
Fig. 3; see Barrera-Machuca et al. [3] and Lages and Bowman [49]).
We created two groups, one with lower (𝑛 = 37) and one with
higher (𝑛 = 29) spatial abilities. Conducting a median split to create
these two groups is appropriate due to the approximately normal
distribution of the spatial abilities displayed in the histogram [32]
(see Section 3.6/Fig. 3). This way, we created two nearly equally
sized groups, one with below-average and one with above-average
spatial abilities. We conducted for the group comparisons MANOVA
analysis with univariate post hoc tests (ANOVA) using Bonferroni
correction for the pairwise comparisons [33]. We used SPSS 27.0.1.0.
We deliberately did not compare the two groups below-average and
above-average spatial abilities with MANOVA analysis against each
other as this was investigated already by multiple linear regressions,
as previously explained, which had the benefit of not reducing an
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interval scaled variable as spatial abilities is (see Fig. 3) into two ar-
tificial groups. We did not want a second and, as explained, weaker
analysis for the same question. The MANOVA analysis focused on
comparing the conditions of the independent variables.

For all our results, we report the effect sizes (𝑓 2, 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝜂2,
or 𝛽 ; see Acock [1], Cohen [15, 16], Dragicevic [21], and Fey et
al. [31]) (𝑓 2 : > .02 = small, > .15 = medium, > .35 = large effect;
𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝜂2 : > .01 = small, > .06 = medium, > .14 = large effect;
𝛽 : < .2 = small, > .2 = medium, > .5 = large effect).

4.2 Overall Influence of Spatial Abilities
When analyzing the overall level with multiple regressions, we
found that the spatial abilities significantly decrease OV threshold
time, OV task time, OV think time, OV interactions, OV transla-
tion sum, OV rotation sum, and OV scale sum. The task accuracy
self-assessment significantly decreased OV threshold time, OV task
time, OV translation error, OV rotation error, OV scale error, and
OV rotation sum. The age significantly increased OV think time.
Table A1 provides detailed reporting. We discuss these results in
Section 5.1.

4.3 Influence of Spatial Abilities on Interaction
Technique Level

We also analyzed the interaction technique level with multiple
regressions for the 1 DOF and 3 DOF gizmos and the 7 DOF handle
bar. We further performed group comparisons.

4.3.1 Interaction Technique Multiple Regressions. We found for
the 1 DOF gizmos that spatial abilities significantly decrease IT
1DOF threshold time, IT 1DOF task time, and IT 1DOF rotation er-
ror. The task accuracy self-assessment significantly decreased IT
1DOF threshold time, IT 1DOF task time, IT 1DOF translation error,
IT 1DOF rotation error, and IT 1DOF scale error. The VR experience
significantly increased IT 1DOF translation error. For the 3 DOF giz-
mos task accuracy self-assessment significantly decreased IT 3DOF
rotation error and increased IT 3DOF SUS. The VR experience sig-
nificantly decreased, and the 3D modeling experience significantly
increased IT 3DOF SUS. For the 7 DOF handle bar task accuracy
self-assessment significantly decreased IT 7DOF threshold time, IT
7DOF task time, IT 7DOF scale error, and increased IT 7DOF SUS.
The 3D modeling experience significantly increased IT 7DOF thresh-
old time and decreased IT 7DOF SUS. Table A2 provides detailed
reporting. We discuss these results in Section 5.2.

4.3.2 Interaction Technique Group Comparisons. We found signifi-
cant differences for IT threshold time and IT task time for partici-
pants with lower and higher spatial abilities for 1DOF vs. 3DOF vs.
7DOF (see Fig. 4a-d). For IT rotation error, there was a significant
difference for higher spatial ability participants for 1DOF vs. 7DOF
(see Fig. 4e). Higher spatial ability participants further had a signif-
icant difference for IT scale error for 3DOF vs. 7DOF (see Fig. 4f).
For IT SUS, we found significant differences for both lower and
higher spatial ability groups for 1DOF vs. 7DOF (see Fig. 4g-h). The
IT passive cognitive load was significantly different for lower and
higher spatial ability participants for 1DOF vs. 7DOF (see Fig. 4i-j).
Table A3 provides detailed reporting. We discuss these results in
Section 5.2.

4.4 Influence of Spatial Abilities on
Manipulation Task Level

Similar as before, we also analyzed the manipulation task level with
multiple regressions for the 3 DOF, 6 DOF, and the 7 DOF tasks
and also performed group comparisons.

4.4.1 Manipulation Task Multiple Regressions. We found for the
3 DOF tasks that spatial abilities significantly decrease MT 3DOF
threshold time andMT 3DOF task time. The task accuracy self-assess-
ment significantly decreasedMT 3DOF rotation error. For the 6 DOF
tasks task accuracy self-assessment significantly decreasedMT 6DOF
threshold time, MT 6DOF task time, MT 6DOF translation error, MT
6DOF rotation error, and MT 6DOF scale error. For the 7 DOF tasks
task accuracy self-assessment significantly decreased MT 7DOF ro-
tation error and MT 7DOF scale error. Table A4 provides detailed
reporting. We discuss these results in Section 5.3.

4.4.2 Manipulation Task Group Comparisons. We found significant
differences for MT threshold time for participants with lower and
higher spatial abilities for 3DOF vs. 6DOF and 3DOF vs. 7DOF (see
Fig. 5a-b). For MT task time, there was a significant difference for
the lower spatial abilities participants for 3DOF vs. 6DOF vs. 7DOF
and for the higher spatial abilities participants for 3DOF vs. 6DOF
and 6DOF vs. 7DOF (see Fig. 5c-d). The MT translation error was
significant for participants with lower and higher spatial abilities
for 3DOF vs. 7DOF and 6DOF vs. 7DOF (see Fig. 5e-f). For MT
rotation error, there was a significant difference for participants
with lower and higher spatial abilities for 3DOF vs. 6DOF vs. 7DOF
(see Fig. 5g-h). The MT scale error was significant for participants
with lower spatial abilities for 3DOF vs. 7DOF and 6DOF vs. 7DOF
and for the higher spatial abilities participants for 3DOF vs. 6DOF
vs. 7DOF (see Fig. 5i-j). Table A5 provides detailed reporting. We
discuss these results in Section 5.3.

5 DISCUSSION
To answer our RQ "Do individuals with higher spatial abilities out-
perform individuals with lower spatial abilities in VR mid-air object
manipulation tasks?", we will now discuss our results (see Section 4).
They are split into the three levels, overall, interaction technique,
and manipulation task (see Fig. 2/Table 1), which guided this sec-
tion’s structure. This discussion is the base for our guidelines pre-
sented in Section 6.

5.1 Discussing the Overall Influence of Spatial
Abilities

For the overall level, we grouped our discussion by the dependent
variables (see Section 3.2).

5.1.1 OV Task Completion Time: Our results show that spatial abil-
ities significantly reduced the OV threshold time (the time to achieve
the task’s threshold),OV task time (the time needed to actually solve
the task), and OV think time (the time participants think about a
solution) (see Table A1). The effect sizes are all medium, according
to Cohen [15, 16]. This confirms our RQ and shows that partici-
pants with higher spatial abilities completed the tasks in a shorter
time. Interestingly, we found a further significant reduction of OV
threshold time and OV task time by the task accuracy self-assessment
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Figure 4: We found significant differences for the three interaction techniques for our dependent variables based on a median
split for the spatial abilities of the participants. The green box plots with patterns represent the results for the participants
with lower spatial abilities, and the blue ones without patterns the results for the participants with higher spatial abilities.
Asterisk (*) indicates a statistically significant difference between conditions: p < .05 (*); p < .01 (**); p < .001 (***).

covariate. This means that participants who judged themselves to
work more accurately could finish the tasks faster. One possible
explanation could be that they work more concentrated, which
would relate to the theory that perfectionists have a greater work
engagement [73]. According to the results of the multiple regres-
sion (see 𝛽 values in Table A1), the task accuracy self-assessment
has even a slightly higher influence on these two measures than
the spatial abilities. This means that besides spatial abilities, the
accuracy individuals usually solve tasks is also a very important
factor that should be considered when it comes to task completion
times. These results have a strong influence on object manipulation
technique design as well as the correlated user studies.

5.1.2 OV Task Accuracy: We found no significant contribution of
spatial abilities to OV translation error, OV rotation error, and OV
scale error, which describe the final accuracy of the docking tasks.
This means that spatial abilities did not influence the achievable
accuracy. Users with lower spatial abilities can, therefore, perform
the same high-precision tasks as users with higher spatial abilities.
However, as the discussion of task completion time (see Section 5.1.1)
shows, they may need more time for the same result. Though,

as we separated our time and accuracy measure as proposed by
Bergström et al. [6] (see Section 3.1.2), we can make this statement
only for the threshold times, but not for the final accuracy times.
These results are linked to Barrera-Machuca et al. [3] who showed
that spatial abilities have a positive effect on shape-likeliness in
3D freehand sketching but not on line precision. As expected, we
found an influence of the task accuracy self-assessment on these
three variables with small and medium effect sizes.

5.1.3 OV Problem-solving Approach: We measured the performed
OV interactions and the in total performed manipulations of the
object with OV translation sum, OV rotation sum, and OV scale
sum, to predict how targeted and problem-oriented participants
solved the docking tasks. We found a significant reduction for
all of them, which means that users with higher spatial abilities
conducted 3D manipulations more targeted and less based on a
trial-and-error approach (see Table A1). We think our high spatial
ability participants needed fewer interactions, as they better knew
which ones were necessary. As a result, they could choose a more
direct and, therefore, shorter manipulation path. The effect sizes
were primarily medium and only small for the OV rotation sum.
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Figure 5: We found significant differences for the three manipulation task levels for our dependent variables based on a median
split for the spatial abilities of the participants. The green box plots with patterns represent the results for the participants
with lower spatial abilities, and the blue ones without patterns the results for the participants with higher spatial abilities.
Asterisk (*) indicates a statistically significant difference between conditions: p < .05 (*); p < .01 (**); p < .001 (***).

Our findings extend the work of Zander et al. [86], who found a
similar improvement of target rotation when spatial abilities were
trained first at a tablet-based object rotation study. They are also
linked to Barrera-Machuca et al. [3], who stated that participants
with higher spatial abilities moved more systematically during
sketching. Besides the OV rotation sum, where we also found a
significant contribution by the task accuracy self-assessment, the
spatial abilitieswere the only significant contributor. This shows the
significant importance of spatial abilities when it comes to efficient
object manipulations, especially compared to the other covariates,
and shows why these user characteristics should be considered
for interface design in general and, in particular, for interaction
technique design.

5.1.4 OV Cognitive Load: Interestingly we found no significant
result for the cognitive load on our overall level, as we would have
expected a correlation with the spatial abilities based on the usage
of the working memory [43, 76]. However, our participants rotated
the object in VR and not mentally as in these previous works, which
could explain the different results. It is also possible that a more
differentiated cognitive load questionnaire measuring intrinsic cog-
nitive load (ICL), germane cognitive load (GCL), and extraneous

cognitive load (ECL) such as the one by Klepsch et al. [45] would
provide further information, especially regarding learning aspects
(see e.g., Drey et al. [22], or Albus et al. [2]). There was also no
linear relationship with one of the other covariates. These results
show why it is essential to specify the interaction technique for
cognitive load analysis, as we found significant differences on the
interaction technique level (see Fig. 4). We will discuss this in the
following section.

5.2 Discussing the Influence of Spatial Abilities
on the Interaction Techniques

The discussion of the interaction technique level is once again
grouped by the dependent variables.

5.2.1 IT Task Completion Time: Our results show that IT 1DOF
threshold time and IT 1DOF task time are, with a medium effect,
significantly decreasing with higher spatial abilities of the partici-
pants (see Table A2). However, we did not find these effects for the
3 DOF gizmos and the 7 DOF handle bar. Interestingly, we found
that the 7 DOF handle bar significantly outperformed the 3 DOF
gizmos, which significantly outperformed the 1 DOF gizmos for
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IT 1DOF threshold time and IT 1DOF task time for both users with
higher and lower spatial abilities (see Fig. 4). The effect sizes were
large in all cases. This shows a dominant effect of the interaction
technique with better results for more simultaneously controllable
DOF. This is similar to the findings of Kulik et al. [48], Mendes et
al. [61], and Hinckley et al. [41] and suggests that this is a universal
finding not influenced by the individual spatial abilities. Therefore,
the interaction technique can compensate for lower spatial abilities,
which we considered in our guidelines.

5.2.2 IT Task Accuracy: Similar to the overall level (see Section 5.1)
and as expected, the effect of task accuracy self-assessment on the
task accuracy was more prominent than that of the spatial abilities,
as we found only one significant contribution for spatial abilities on
IT 1DOF rotation error (see Table A2). However, for task accuracy
self-assessment, we found significant contributions on the IT 1DOF
translation error, IT 1DOF rotation error, IT 1DOF scale error, IT 3DOF
rotation error, and IT 7DOF scale error. Similar to the IT task comple-
tion time (see Section 5.2.1), we see that the effect of task accuracy
self-assessment drops with multiple DOF interaction techniques as
either the effect sizes become smaller or it is not present at all. Nev-
ertheless, we see no significant improvement for the task accuracy
dependent variables for multiple DOF interaction techniques (see
Fig. 4), which is in line with Veit et al. [81]. Therefore, and similar
as stated for the spatial abilities (see Section 5.1.2), the interaction
technique has no influence on the general task accuracy.

5.2.3 IT Usability: We measured the usability of every interaction
technique with the SUS questionnaire and found no significant
contribution of the spatial abilities. We saw that, independent of
the spatial abilities, the usability was rated higher with more DOF
simultaneously possible to manipulate. However, only the differ-
ence between the 1 DOF and 7 DOF interaction techniques was
significant, but these effects were large (see Fig. 4). This shows
once again as for the IT task completion time (see Section 5.2.1)
the dominant effect of the interaction technique with a favor for
multiple DOF, which is a highly valuable result for our guidelines.

5.2.4 IT Cognitive Load: Consistent with our findings for OV cog-
nitive load (see Section 5.1.4), we found no effects for spatial abilities
considering the used interaction techniques for active cognitive load
and passive cognitive load. Nevertheless, we found a decrease of
the passive cognitive load independent of the spatial abilities for
interaction techniques with more simultaneously manipulable DOF
(see Fig. 4). This was significant for the 1 DOF gizmos vs. the 7 DOF
handle bar, but not for a comparison with the 3 DOF gizmos. It
means that especially the highly sequential 1 DOF gizmos were
more exhausting for the participants than the parallel interaction
technique 7 DOF handle bar. This could be due to the technique it-
self but also linked to the shorter task completion time discussed in
IT task completion time (see Section 5.2.1) as both could have effects
on the working memory [43, 76]. This finding is very important
and consistent with the findings of the other dependent variables
showing the strong influence of the used interaction technique. It is
further essential that we did not find significant differences for the
active cognitive load, as it shows that our participants were similarly
engaged in conducting all the trials for the different interaction
techniques, which shows that our data is sound.

5.3 Discussing the Influence of Spatial Abilities
on the Manipulation Tasks

And again, the discussion of the manipulation task level is grouped
by the dependent variables.

5.3.1 MT Task Completion Time: We see a significant contribution
of the spatial abilities for the task completion time only forMT 3DOF
threshold time and MT 3DOF task time (see Table A4). This means,
as we stated for OV task completion time (see Section 5.1.1), that
spatial abilities positively influence the task completion time, but
participants with higher spatial abilities have no over-proportional
advantage the more difficult the tasks get. Nevertheless, we saw
that the MT threshold time significantly increased when comparing
the 3 DOF tasks with the 6 DOF and 7 DOF tasks (see Fig. 5). We
expected this, as it reflects that they have increased difficulty as
intended and predicted by our used formulas based on Stoelen and
Akin [74] (see Section 3.1.2). As the effect sizes are large, this is a
strong verification of our study design’s soundness.

5.3.2 MT Task Accuracy: Regarding the task accuracy, we saw no
influence of the individual spatial abilities on the task accuracy
measuresMT translation error,MT rotation error, andMT scale error.
But as discussed for OV task accuracy (see Section 5.1.2) and IT task
accuracy (see Section 5.2.2), we found once again an influence of
task accuracy self-assessment on these dependent variables. Further-
more, the 7 DOF task had the smallest error, which was significant
compared to the 3 DOF and 6 DOF tasks. This applied similarly
for translation, rotation, and scaling (see Fig. 5). As the 7 DOF task
is the most difficult one, this is surprising but could be explained
by the task order. The 7 DOF task was always conducted last for
each interaction technique, which means that the participants have
mastered it the best.

5.4 Summary
Answering our RQ, we can state that higher spatial abilities are
significantly correlated with lower task completion time as well
as more targeted manipulations. Our further results show that
independent of the spatial abilities, all users can achieve similar
task accuracy, and the task accuracy is affected by the individual
self-assessed perfectionism but neither task nor interaction tech-
nique dependent. The cognitive load depends not on the individual
spatial abilities but on the interaction technique and is lowest if
multiple DOF can be manipulated simultaneously and no sequen-
tial task execution is necessary. In general, we found a dominant
effect of the interaction technique that could compensate for the
differences in spatial abilities with better performance results for
more simultaneously manipulable DOF. We conclude that higher
spatial abilities help to solve object manipulation tasks faster and
more targeted, but the interaction technique has a more dominant
effect.

As one might say that ~20% for our 𝑅2
𝑎𝑑 𝑗

values of the multiple
linear regressions is a low model fit, we want to emphasize that
the opposite is the case. With our exploratory RQ, we wanted to
investigate if spatial abilities influence object manipulation in VR.
We never intended to create exact models (see Section 4.1), which
probably have a lot of further influencing factors as indicated by pre-
vious works (e.g., satisfaction, simulator sickness, presence, fatigue,
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immersion; see survey of Bergström et al. [6]). Our current models
only consider spatial abilities and other demographic characteris-
tics and can explain ~20% of the manipulation task performances.
We think that ~20% contribution of a factor, which was completely
neglected in such studies in the past (see Sections 2.1.2 and 2.2.2),
is a very high value and combined with the effect sizes which were
mostly medium or large, a powerful result of our work, showing
how important it is to consider spatial abilities in future work (see
guidelines Section 6). Combining spatial abilities with the previ-
ously named other influencing factors could create a model fit >20%,
which could be investigated in the future.

These findings are the basis for our guidelines presented in the
following.

6 GUIDELINES FOR OBJECT MANIPULATION
Extending the guidelines of LaViola et al. [51] and Bergström et
al. [6] based on our results, we define the following guidelines for
VR and controller-based interaction techniques used for object ma-
nipulation. They are split into ones addressing general interaction
technique design and implementation and ones for user research.
The guidelines should be self-explaining, which is why we delib-
erately repeat some of the previous findings in the explanations.
They are based and formulated on our VR study but could be an
inspiration for other systems as well and we encourage researchers
to extend them further. We recommend considering them when
appropriate but advise researchers and designers, especially when
transferring them to other domains, to always tailor them to their
specific needs and consider the exploratory nature of our work.

6.1 Guidelines for Interaction Technique Design
I1: The individual spatial abilities should be considered for in-

teraction technique design as users’ performance is linked to
them.
Our results show that the task completion time significantly
drops with increasing spatial abilities (see Table A1). We
further saw that higher spatial abilities contribute to a more
targeted solution, leading to fewer necessary interactions
and manipulations. Therefore, we suggest that interaction
techniques should at least (1) provide means to help users
with lower spatial abilities to solve tasks faster and more
targeted/problem-oriented. This could be done with hints
that provide a solution approach or visualizations that show
the current accuracy/error. Further support, such as grids or
snapping, is possible, too. But we also state that this is maybe
not always necessary for users with higher spatial abilities
and suggest (2) allowing these users to use the interaction
technique unrestricted and without support.

I2: The individual spatial abilities should be measured in appli-
cations to adapt interaction techniques appropriately.
Our guideline I1 suggests adapting the interaction technique
to the individual spatial abilities. However, to do so, they
have to be measured. This is possible with a standardized
test such as the one of Vandenberg & Kuse [80], which we
used. However, others also exist, as discussed in Section 2.1.
It is possible to integrate a gamified version inside the appli-
cation as we proposed in this work (see Section 3.3). Further

possibilities to assess the individual spatial abilities could be
to use time thresholds as our results show that task comple-
tion time is linked to the spatial abilities (see Table A1/A2)
or to use a self-assessment. Doing so will allow adaptive
interaction techniques which keep the flow high [19, 20] and
prevent users from getting stuck in their work [23, 25, 26].

I3: Input device and task optimized interaction techniques should
be preferred over universal but maybe well-known ones.
We found a dominant effect of the interaction technique,
compensating for lower spatial abilities. Our interpretation
is that with an interaction technique ideally suited for the
task and the current input device/hardware, even users with
lower spatial abilities can outperform users with higher spa-
tial abilities that use an inappropriate and not optimized
interaction technique (see Fig. 4). Therefore, choosing the
proper interaction technique should always come first before
it is optimized regarding the spatial abilities with I1 and I2.
Following LaViola et al. [51], we suggest that this does not
have to mean necessarily always inventing a new interaction
technique. As we for example saw an improvement from the
1 DOF gizmos to the 3 DOF gizmos, it is also a valid option
to use the most appropriate of the existing ones or optimize
existing ones for a specific task.

I4: Independent of their individual characteristics such as spatial
abilities or perfectionism, users should not be restricted in the
usable DOF, neither for the used interaction technique nor for
the task.
Our results for the interaction technique show that the task
completion time and the measured usability are positively
affected by more simultaneously controllable DOF. We also
found positive implications for the passive cognitive load
(see Fig. 4). Even more complex tasks with more DOF can
have similar or even better results for accuracy as easier
ones (see Fig. 5). This guideline is in line with the results of
Kulik et al. [48], Mendes et al. [61], and Hinckley et al. [41].
Therefore, we state that it is generalizable and not depen-
dent on individual characteristics such as spatial abilities or
perfectionism.

6.2 Guidelines for Research and User Studies
R1: Interaction technique user studies should always consider

and control participants’ individual characteristics such as
spatial abilities or perfectionism, as this could significantly
influence the dependent variables.
Our results show that spatial abilities significantly influenced
the task completion time, while the self-assessed task accu-
racy/perfectionism significantly influenced task accuracy
(see Section 5.1). This means that these individual character-
istics significantly change the results in object manipulation
studies and possibly in similar affiliated ones such as ob-
ject selection studies. For within-subject designs, this could
mean that the own sample does not represent the population,
which would cause non-generalizable results [50]. Examples
are studies at universities with students of STEM disciplines,
which tend to have above-average spatial abilities [53]. For
between-subject studies, the implications are even higher,
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as this could mean imbalanced groups, which also could
cause non-generalizable results [50]. Such effects could be
an explanation for contradicting results in previous works
(see Section 2.2.2). Using these individual characteristics as
covariates and ensuring they are normally distributed could
prevent such errors. We showed that this was not done very
often in the past (see Section 2.1.2), but based on our results,
we encourage researchers to do so in the future.

R2: Study results should not always strive to create one result
for the whole population but investigate it in a differentiated
way, as the entire population is highly diverse due to multiple
individual characteristics.
Research always tries to find generalizable results, which is a
good thing. However, our results show the strong influence
of individual characteristics on standard measures such as
task completion time and accuracy (see Table A1). As these
individual characteristics scatter strongly (see Fig. 3), we
encourage authors to also state findings only valid for a
specific part of a population. This guideline is related to
the advice of Lance and Hattori [50] about how to sample a
population representatively. It is also linked to the findings
of Lages and Bowman [49], who also advise considering
individual characteristics such as spatial abilities or game
experience, as they significantly influenced their 3D data
examination task. Our guideline should create awareness
for this, especially for the individual spatial abilities and
self-assessed perfectionism, where we found a significant
influence on object manipulation, and encourage authors to
consider this in future research.

R3: Object manipulation studies in VR should use Fitts’ law-de-
rived approaches to adjust task difficulty.
We presented in Section 3.1.2 our study design template to
adjust the task difficulty of our docking tasks based on for-
mulas derived from Stoelen and Akin [74] which are based
on Fitts’ law. They divide the task into the canonical object
manipulations translation, rotation, and scale [51]. Similar
to Kulik et al. [48], our results showed that these formu-
las can be used to increase and decrease the task difficulty
appropriately, which resulted in higher and lower task com-
pletion times in our case (see Fig. 5). This shows that they
are accurate for similar object manipulation studies, are an
own methodological contribution according to Wobbrock
and Kientz [85], and can be used as a distance/difficulty met-
ric. Using our study design template will ease researchers’
work in defining and conducting such studies in a standard-
ized way to improve across-study result comparability in a
Fitts’ law-like manner (see Kulik et al. [48]; possible target
group: [7, 9, 14, 30, 35, 41, 44, 47, 59–61, 75, 77, 83]).

7 LIMITATIONS
We explained in Section 2.1 that multiple different types of spatial
abilities exist. Nevertheless, we decided to limit our analysis to
mental rotation capabilities and only measured them as they are
contrary to the others directly linked to our object manipulation
tasks as described in Section 3.3. We also limited the test to a subset
to ease its digital feasibility (see Peters et al. [65]). However, this

way, our results do not show possible effects of other spatial abili-
ties, which could be investigated in future work as we discuss in
Section 8.

The results for our covariates 3D modeling experience and VR
experience are quite limited, as they are not normally distributed,
and they have their peaks at the lowest level of experience (see Sec-
tion 3.6). This means that our participants were primarily novices
and that repeating the study with expert users (e.g., gamers, design-
ers, or developers) may lead to different results. We further have a
gender imbalance that could also limit our results’ generalizability.
Conducting a study in the wild further has a trade-off between
external and internal validity as well as to gamify a study applica-
tion to motivate participants [27, 37]. There is further a trade-off
using two very similar device types during data collection, Quest 1
and 2 [84] (see Section 3.4), to increase available participants. How-
ever, our main research focus was our participants’ mental rotation
capabilities, which we could accurately measure, and where we had
an approximately normal distribution [32] (see Section 3.6). This
ensured a proper sample for our RQ (see Lance and Hattori [50]).

This work is exploratory, analyzing several dependent variables.
We advise considering this when interpreting our results (see Mc-
Donald [57]) and, therefore, provide all conducted tests in the ap-
pendix for transparency.

8 FUTUREWORK
Our results show that spatial abilities can significantly influence,
e.g., task completion time. But as discussed in the limitations (see
Section 7), our results only focused on mental rotation capabilities.
However, other spatial abilities, such as spatial orientation or spatial
relation (see Section 2.1), exist, which could have potential further
effects. It is also possible that effects exist for other interaction
techniques than the ones we used (see Section 2.2.3) as well as
when using gestures or locomotion or other non-immersive devices
such as 2D screens with touch input. Different tasks could also
provide promising future research direction, such as selection tasks,
which a classic Fitts’ law study could investigate. As discussed in
Section 5.4, further influencing factors may exist that could be used
together with the spatial abilities to build a model with a higher
performance prediction. These ideas show that there are plenty of
future research directions considering individual spatial abilities.

9 CONCLUSION
Spatial abilities are highly individual and can influence how users
interact. However, such individual characteristics were seldom con-
sidered for interaction technique design nor corresponding user
research. We exploratory investigated if the spatial ability sub-type
mental rotation has a significant effect on the dependent variables
task completion time as well as task accuracy in a VR-based ob-
ject manipulation study. Each of our 66 participants conducted 21
docking tasks with varying difficulty, similar to a Fitts’ law design,
and used three interaction techniques in a randomized order (either
1 DOF gizmos, 3 DOF gizmos, or a 7 DOF handle bar metaphor).
We found that task completion time significantly depends on the
individual spatial abilities and decreases if they get higher. Fur-
thermore, participants with higher spatial abilities perform more
targeted object manipulations and need fewer interactions. Our
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findings further show that lower spatial abilities can be compen-
sated by an appropriate interaction technique. This was evident in
our case for the handle bar, which also shows that multiple simulta-
neously usable DOF can be beneficial. Our second main dependent
variable, task accuracy, was not influenced by spatial abilities or
the interaction technique. All participants could achieve similar ac-
curacy. Our findings highlight the significance of individual spatial
abilities and the selection of an optimized interaction technique,
which we recommend that researchers consider in future work. We,
therefore, defined seven guidelines for interaction techniques on
how to consider spatial abilities for VR object manipulation design,
implementation, and user research. Our work will assist researchers
and designers in personalizing and improving object manipulation
in VR.
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APPENDIX
Table A1:Multiple regressions overall level: This table shows the results of themultiple regressions and how the control variables
contributed to the dependent variables on the overall level (OV). Significant regressions, as well as significant contributions,
are highlighted in bold.

Dependent Variables Control Variable Statistics

OV threshold time F(5, 60) = 4.075, p = .003,R2
adj = .191, f2 = .236

spatial abilities 𝜷 = −.290, t = −2.531, p = .014
age 𝛽 = .077, 𝑡 = .613, 𝑝 = .542
VR experience 𝛽 = −.025, 𝑡 = −.203, 𝑝 = .840
3D modeling experience 𝛽 = .014, 𝑡 = .105, 𝑝 = .917
task accuracy self-assessment 𝜷 = −.368, t = −3.134, p = .003

OV first interaction time 𝐹 (5, 60) = 2.165, 𝑝 = .070, 𝑅2
𝑎𝑑 𝑗

= .082, 𝑓 2 = .089
spatial abilities 𝛽 = −.035, 𝑡 = −.285, 𝑝 = .777
age 𝛽 = .122, 𝑡 = .911, 𝑝 = .366
VR experience 𝛽 = .043, 𝑡 = .330, 𝑝 = .743
3D modeling experience 𝛽 = .301, 𝑡 = 2.187, 𝑝 = .033
task accuracy self-assessment 𝛽 = .025, 𝑡 = .202, 𝑝 = .840

OV task time F(5, 60) = 4.219, p = .002,R2
adj = .198, f2 = .247

spatial abilities 𝜷 = −.287, t = −2.513, p = .015
age 𝛽 = .064, 𝑡 = .512, 𝑝 = .610
VR experience 𝛽 = −.030, 𝑡 = −.242, 𝑝 = .810
3D modeling experience 𝛽 = −.019, 𝑡 = −.144, 𝑝 = .886
task accuracy self-assessment 𝜷 = −.371, t = −3.175, p = .002

OV interaction time 𝐹 (5, 60) = 1.728, 𝑝 = .142, 𝑅2
𝑎𝑑 𝑗

= .053, 𝑓 2 = .056
spatial abilities 𝛽 = −.255, 𝑡 = −2.054, 𝑝 = .044
age 𝛽 = .277, 𝑡 = 2.032, 𝑝 = .047
VR experience 𝛽 = −.145, 𝑡 = −1.084, 𝑝 = .283
3D modeling experience 𝛽 = −.092, 𝑡 = −.660, 𝑝 = .512
task accuracy self-assessment 𝛽 = −.006, 𝑡 = −.050, 𝑝 = .960

OV think time F(5, 60) = 3.452, p = .008,R2
adj = .159, f2 = .189

spatial abilities 𝜷 = −.259, t = −2.214, p = .031
age 𝜷 = .377, t = 2.933, p = .005
VR experience 𝛽 = −.199, 𝑡 = −1.581, 𝑝 = .119
3D modeling experience 𝛽 = −.013, 𝑡 = −.096, 𝑝 = .924
task accuracy self-assessment 𝛽 = .202, 𝑡 = 1.685, 𝑝 = .097

OV translation error F(5, 60) = 2.387, p = .048,R2
adj = .096, f2 = .106

spatial abilities 𝛽 = −.094, 𝑡 = −.773, 𝑝 = .443
age 𝛽 = −.234, 𝑡 = −1.754, 𝑝 = .085
VR experience 𝛽 = .175, 𝑡 = 1.342, 𝑝 = .185
3D modeling experience 𝛽 = −.018, 𝑡 = −.132, 𝑝 = .895
task accuracy self-assessment 𝜷 = −.253, t = −2.036, p = .046

OV rotation error F(5, 60) = 5.153, p < .001,R2
adj = .242, f2 = .319

spatial abilities 𝛽 = −.091, 𝑡 = −.820, 𝑝 = .416
age 𝛽 = −.159, 𝑡 = −1.301, 𝑝 = .198
VR experience 𝛽 = .078, 𝑡 = .654, 𝑝 = .516
3D modeling experience 𝛽 = −.102, 𝑡 = −.814, 𝑝 = .419
task accuracy self-assessment 𝜷 = −.437, t = −3.841, p < .001

OV scale error F(5, 60) = 2.849, p = .023,R2
adj = .125, f2 = .143

spatial abilities 𝛽 = −.101, 𝑡 = −.846, 𝑝 = .401
age 𝛽 = −.121, 𝑡 = −.921, 𝑝 = .361
VR experience 𝛽 = .053, 𝑡 = .415, 𝑝 = .680
3D modeling experience 𝛽 = −.118, 𝑡 = −.881, 𝑝 = .382
task accuracy self-assessment 𝜷 = −.320, t = −2.615, p = .011

OV interactions F(5, 60) = 3.031, p = .017,R2
adj = .135, f2 = .156

spatial abilities 𝜷 = −.338, t = −2.847, p = .006
age 𝛽 = .261, 𝑡 = 2.002, 𝑝 = .050
VR experience 𝛽 = −.185, 𝑡 = −1.447, 𝑝 = .153
3D modeling experience 𝛽 = −.145, 𝑡 = −1.083, 𝑝 = .283
task accuracy self-assessment 𝛽 = −.066, 𝑡 = −.542, 𝑝 = .590

OV translation sum F(5, 60) = 3.301, p = .011,R2
adj = .150, f2 = .176

spatial abilities 𝜷 = −.272, t = −2.312, p = .024
age 𝛽 = −.138, 𝑡 = −1.071, 𝑝 = .289
VR experience 𝛽 = .164, 𝑡 = 1.291, 𝑝 = .202
3D modeling experience 𝛽 = −.121, 𝑡 = −.915, 𝑝 = .364
task accuracy self-assessment 𝛽 = −.212, 𝑡 = −1.757, 𝑝 = .084
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OV rotation sum F(5, 60) = 2.926, p = .020,R2
adj = .129, f2 = .148

spatial abilities 𝜷 = −.268, t = −2.247, p = .028
age 𝛽 = −.049, 𝑡 = −.375, 𝑝 = .709
VR experience 𝛽 = .052, 𝑡 = .402, 𝑝 = .689
3D modeling experience 𝛽 = −.058, 𝑡 = −.434, 𝑝 = .666
task accuracy self-assessment 𝜷 = −.271, t = −2.222, p = .030

OV scale sum F(5, 60) = 3.019, p = .017,R2
adj = .134, f2 = .155

spatial abilities 𝜷 = −.351, t = −2.958, p = .004
age 𝛽 = .240, 𝑡 = 1.839, 𝑝 = .071
VR experience 𝛽 = .119, 𝑡 = .930, 𝑝 = .356
3D modeling experience 𝛽 = −.043, 𝑡 = −.320, 𝑝 = .750
task accuracy self-assessment 𝛽 = −.111, 𝑡 = −.913, 𝑝 = .365

OV active cognitive load 𝐹 (5, 60) = 1.479, 𝑝 = .210, 𝑅2
𝑎𝑑 𝑗

= .036, 𝑓 2 = .037
spatial abilities 𝛽 = −.068, 𝑡 = −.542, 𝑝 = .590
age 𝛽 = .282, 𝑡 = 2.046, 𝑝 = .045
VR experience 𝛽 = −.143, 𝑡 = −1.057, 𝑝 = .295
3D modeling experience 𝛽 = −.257, 𝑡 = −1.823, 𝑝 = .073
task accuracy self-assessment 𝛽 = .029, 𝑡 = .226, 𝑝 = .822

OV passive cognitive load 𝐹 (5, 60) = 1.302, 𝑝 = .275, 𝑅2
𝑎𝑑 𝑗

= .023, 𝑓 2 = .024
spatial abilities 𝛽 = −.235, 𝑡 = −1.863, 𝑝 = .067
age 𝛽 = .169, 𝑡 = 1.223, 𝑝 = .226
VR experience 𝛽 = −.072, 𝑡 = −.531, 𝑝 = .597
3D modeling experience 𝛽 = −.193, 𝑡 = −1.358, 𝑝 = .180
task accuracy self-assessment 𝛽 = .079, 𝑡 = .613, 𝑝 = .542

Table A2: Multiple regressions interaction technique level: This table shows the significant results of the multiple regressions
and how the control variables contributed to the dependent variables on the interaction technique level (IT). Significant
regressions, as well as significant contributions, are highlighted in bold.

Dependent Variables Control Variable Statistics

IT 1DOF threshold time F(5, 60) = 4.071, p = .003,R2
adj = .191, f2 = .236

spatial abilities 𝜷 = −.263, t = −2.289, p = .026
age 𝛽 = −.009, 𝑡 = −.073, 𝑝 = .942
VR experience 𝛽 = .005, 𝑡 = .039, 𝑝 = .969
3D modeling experience 𝛽 = −.093, 𝑡 = −.717, 𝑝 = .476
task accuracy self-assessment 𝜷 = −.346, t = −2.943, p = .005

IT 1DOF task time F(5, 60) = 4.321, p = .002,R2
adj = .203, f2 = .255

spatial abilities 𝜷 = −.263, t = −2.308, p = .024
age 𝛽 = −.004, 𝑡 = −.030, 𝑝 = .976
VR experience 𝛽 = −.007, 𝑡 = −.053, 𝑝 = .958
3D modeling experience 𝛽 = −.101, 𝑡 = −.788, 𝑝 = .434
task accuracy self-assessment 𝜷 = −.356, t = −3.049, p = .003

IT 1DOF translation error F(5, 60) = 4.751, p = .001,R2
adj = .224, f2 = .289

spatial abilities 𝛽 = −.162, 𝑡 = −1.443, 𝑝 = .154
age 𝛽 = −.202, 𝑡 = −1.634, 𝑝 = .107
VR experience 𝜷 = .309, t = 2.553, p = .013
3D modeling experience 𝛽 = −.121, 𝑡 = −.960, 𝑝 = .341
task accuracy self-assessment 𝜷 = −.305, t = −2.649, p = .010

IT 1DOF rotation error F(5, 60) = 6.020, p < .001,R2
adj = .279, f2 = .387

spatial abilities 𝜷 = −.227, t = −2.092, p = .041
age 𝛽 = −.070, 𝑡 = −.590, 𝑝 = .557
VR experience 𝛽 = .212, 𝑡 = 1.818, 𝑝 = .074
3D modeling experience 𝛽 = −.207, 𝑡 = −1.696, 𝑝 = .095
task accuracy self-assessment 𝜷 = −.370, t = −3.338, p = .001

IT 1DOF scale error F(5, 60) = 2.640, p = .032,R2
adj = .112, f2 = .126

spatial abilities 𝛽 = −.169, 𝑡 = −1.405, 𝑝 = .165
age 𝛽 = −.056, 𝑡 = −.425, 𝑝 = .672
VR experience 𝛽 = .054, 𝑡 = .414, 𝑝 = .680
3D modeling experience 𝛽 = −.153, 𝑡 = −1.129, 𝑝 = .263
task accuracy self-assessment 𝜷 = −.276, t = −2.241, p = .029

IT 1DOF SUS 𝐹 (5, 60) = 1.574, 𝑝 = .181, 𝑅2
𝑎𝑑 𝑗

= .042, 𝑓 2 = .044
spatial abilities 𝛽 = .029, 𝑡 = .230, 𝑝 = .819
age 𝛽 = .138, 𝑡 = 1.009, 𝑝 = .317
VR experience 𝛽 = −.121, 𝑡 = −.901, 𝑝 = .371
3D modeling experience 𝛽 = .201, 𝑡 = 1.429, 𝑝 = .158
task accuracy self-assessment 𝛽 = .153, 𝑡 = 1.196, 𝑝 = .236
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IT 1DOF active cognitive load 𝐹 (5, 60) = 1.429, 𝑝 = .227, 𝑅2
𝑎𝑑 𝑗

= .032, 𝑓 2 = .033
spatial abilities 𝛽 = −.037, 𝑡 = −.293, 𝑝 = .771
age 𝛽 = .186, 𝑡 = 1.346, 𝑝 = .184
VR experience 𝛽 = −.101, 𝑡 = −.746, 𝑝 = .459
3D modeling experience 𝛽 = −.286, 𝑡 = −2.025, 𝑝 = .047
task accuracy self-assessment 𝛽 = −.082, 𝑡 = −.635, 𝑝 = .528

IT 1DOF passive cognitive load 𝐹 (5, 60) = 1.580, 𝑝 = .180, 𝑅2
𝑎𝑑 𝑗

= .043, 𝑓 2 = .045
spatial abilities 𝛽 = −.237, 𝑡 = −1.898, 𝑝 = .063
age 𝛽 = −.007, 𝑡 = −.049, 𝑝 = .961
VR experience 𝛽 = −.052, 𝑡 = −.389, 𝑝 = .699
3D modeling experience 𝛽 = −.214, 𝑡 = −1.520, 𝑝 = .134
task accuracy self-assessment 𝛽 = .104, 𝑡 = .812, 𝑝 = .420

IT 3DOF threshold time 𝐹 (5, 60) = 2.089, 𝑝 = .079, 𝑅2
𝑎𝑑 𝑗

= .077, 𝑓 2 = .083
spatial abilities 𝛽 = −.248, 𝑡 = −2.024, 𝑝 = .047
age 𝛽 = .123, 𝑡 = .910, 𝑝 = .367
VR experience 𝛽 = −.046, 𝑡 = −.351, 𝑝 = .727
3D modeling experience 𝛽 = .035, 𝑡 = .255, 𝑝 = .800
task accuracy self-assessment 𝛽 = −.254, 𝑡 = −2.028, 𝑝 = .047

IT 3DOF task time 𝐹 (5, 60) = 2.128, 𝑝 = .074, 𝑅2
𝑎𝑑 𝑗

= .080, 𝑓 2 = .087
spatial abilities 𝛽 = −.250, 𝑡 = −2.042, 𝑝 = .046
age 𝛽 = .121, 𝑡 = .903, 𝑝 = .370
VR experience 𝛽 = −.050, 𝑡 = −.379, 𝑝 = .706
3D modeling experience 𝛽 = .019, 𝑡 = .140, 𝑝 = .889
task accuracy self-assessment 𝛽 = −.256, 𝑡 = −2.042, 𝑝 = .046

IT 3DOF translation error 𝐹 (5, 60) = 1.211, 𝑝 = .315, 𝑅2
𝑎𝑑 𝑗

= .016, 𝑓 2 = .016
spatial abilities 𝛽 = −.068, 𝑡 = −.538, 𝑝 = .592
age 𝛽 = −.218, 𝑡 = −1.570, 𝑝 = .122
VR experience 𝛽 = .127, 𝑡 = .932, 𝑝 = .355
3D modeling experience 𝛽 = −.014, 𝑡 = −.098, 𝑝 = .923
task accuracy self-assessment 𝛽 = −.150, 𝑡 = −1.158, 𝑝 = .252

IT 3DOF rotation error F(5, 60) = 3.026, p = .017,R2
adj = .135, f2 = .156

spatial abilities 𝛽 = −.014, 𝑡 = −.119, 𝑝 = .905
age 𝛽 = −.098, 𝑡 = −.753, 𝑝 = .454
VR experience 𝛽 = −.062, 𝑡 = −.483, 𝑝 = .631
3D modeling experience 𝛽 = −.072, 𝑡 = −.540, 𝑝 = .591
task accuracy self-assessment 𝜷 = −.382, t = −3.142, p = .003

IT 3DOF scale error 𝐹 (5, 60) = 1.587, 𝑝 = .178, 𝑅2
𝑎𝑑 𝑗

= .043, 𝑓 2 = .045
spatial abilities 𝛽 = −.136, 𝑡 = −1.092, 𝑝 = .279
age 𝛽 = −.082, 𝑡 = −.598, 𝑝 = .552
VR experience 𝛽 = .041, 𝑡 = .305, 𝑝 = .762
3D modeling experience 𝛽 = −.175, 𝑡 = −1.247, 𝑝 = .217
task accuracy self-assessment 𝛽 = −.157, 𝑡 = −1.226, 𝑝 = .225

IT 3DOF SUS F(5, 60) = 3.665, p = .006,R2
adj = .170, f2 = .205

spatial abilities 𝛽 = .089, 𝑡 = .762, 𝑝 = .449
age 𝛽 = −.096, 𝑡 = −.755, 𝑝 = .453
VR experience 𝜷 = −.271, t = −2.167, p = .034
3D modeling experience 𝜷 = .284, t = 2.170, p = .034
task accuracy self-assessment 𝜷 = .288, t = 2.418, p = .019

IT 3DOF active cognitive load 𝐹 (5, 60) = 1.242, 𝑝 = .301, 𝑅2
𝑎𝑑 𝑗

= .018, 𝑓 2 = .018
spatial abilities 𝛽 = −.019, 𝑡 = −.151, 𝑝 = .880
age 𝛽 = .279, 𝑡 = 2.009, 𝑝 = .049
VR experience 𝛽 = −.025, 𝑡 = −.182, 𝑝 = .857
3D modeling experience 𝛽 = −.283, 𝑡 = −1.991, 𝑝 = .051
task accuracy self-assessment 𝛽 = .019, 𝑡 = .150, 𝑝 = .881

IT 3DOF passive cognitive load 𝐹 (5, 60) = 1.276, 𝑝 = .286, 𝑅2
𝑎𝑑 𝑗

= .021, 𝑓 2 = .021
spatial abilities 𝛽 = −.163, 𝑡 = −1.293, 𝑝 = .201
age 𝛽 = .212, 𝑡 = 1.532, 𝑝 = .131
VR experience 𝛽 = .039, 𝑡 = .288, 𝑝 = .775
3D modeling experience 𝛽 = −.250, 𝑡 = −1.757, 𝑝 = .084
task accuracy self-assessment 𝛽 = −.051, 𝑡 = −.392, 𝑝 = .696

IT 7DOF threshold time F(5, 60) = 4.698, p = .001,R2
adj = .221, f2 = .284

spatial abilities 𝛽 = −.196, 𝑡 = −1.741, 𝑝 = .087
age 𝛽 = .232, 𝑡 = 1.876, 𝑝 = .066
VR experience 𝛽 = −.071, 𝑡 = −.584, 𝑝 = .562
3D modeling experience 𝜷 = .338, t = 2.664, p = .010
task accuracy self-assessment 𝜷 = −.309, t = −2.677, p = .010
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IT 7DOF task time F(5, 60) = 3.327, p = .010,R2
adj = .152, f2 = .179

spatial abilities 𝛽 = −.198, 𝑡 = −1.684, 𝑝 = .097
age 𝛽 = .165, 𝑡 = 1.280, 𝑝 = .205
VR experience 𝛽 = −.056, 𝑡 = −.443, 𝑝 = .659
3D modeling experience 𝛽 = .251, 𝑡 = 1.898, 𝑝 = .063
task accuracy self-assessment 𝜷 = −.326, t = −2.709, p = .009

IT 7DOF translation error 𝐹 (5, 60) = 1.513, 𝑝 = .199, 𝑅2
𝑎𝑑 𝑗

= .038, 𝑓 2 = .040
spatial abilities 𝛽 = −.018, 𝑡 = −.146, 𝑝 = .884
age 𝛽 = −.214, 𝑡 = −1.553, 𝑝 = .126
VR experience 𝛽 = .028, 𝑡 = .209, 𝑝 = .835
3D modeling experience 𝛽 = .106, 𝑡 = .749, 𝑝 = .457
task accuracy self-assessment 𝛽 = −.260, 𝑡 = −2.033, 𝑝 = .047

IT 7DOF rotation error 𝐹 (5, 60) = 1.650, 𝑝 = .161, 𝑅2
𝑎𝑑 𝑗

= .048, 𝑓 2 = .050
spatial abilities 𝛽 = −.024, 𝑡 = −.196, 𝑝 = .846
age 𝛽 = −.196, 𝑡 = −1.432, 𝑝 = .157
VR experience 𝛽 = .103, 𝑡 = .768, 𝑝 = .446
3D modeling experience 𝛽 = .010, 𝑡 = .070, 𝑝 = .945
task accuracy self-assessment 𝛽 = −.260, 𝑡 = −2.039, 𝑝 = .046

IT 7DOF scale error F(5, 60) = 2.379, p = .049,R2
adj = .096, f2 = .106

spatial abilities 𝛽 = .055, 𝑡 = .452, 𝑝 = .653
age 𝛽 = −.167, 𝑡 = −1.253, 𝑝 = .215
VR experience 𝛽 = .039, 𝑡 = .299, 𝑝 = .766
3D modeling experience 𝛽 = .033, 𝑡 = .240, 𝑝 = .811
task accuracy self-assessment 𝜷 = −.370, t = −2.979, p = .004

IT 7DOF SUS F(5, 60) = 2.754, p = .026,R2
adj = .119, f2 = .135

spatial abilities 𝛽 = .200, 𝑡 = 1.673, 𝑝 = .100
age 𝛽 = .071, 𝑡 = .536, 𝑝 = .594
VR experience 𝛽 = .164, 𝑡 = 1.271, 𝑝 = .209
3D modeling experience 𝜷 = −.323, t = −2.397, p = .020
task accuracy self-assessment 𝜷 = .271, t = 2.210, p = .031

IT 7DOF active cognitive load 𝐹 (5, 60) = 1.718, 𝑝 = .144, 𝑅2
𝑎𝑑 𝑗

= .052, 𝑓 2 = .055
spatial abilities 𝛽 = −.121, 𝑡 = −.978, 𝑝 = .332
age 𝛽 = .264, 𝑡 = 1.932, 𝑝 = .058
VR experience 𝛽 = −.246, 𝑡 = −1.837, 𝑝 = .071
3D modeling experience 𝛽 = −.087, 𝑡 = −.623, 𝑝 = .536
task accuracy self-assessment 𝛽 = .144, 𝑡 = 1.131, 𝑝 = .262

IT 7DOF passive cognitive load 𝐹 (5, 60) = .983, 𝑝 = .436, 𝑅2
𝑎𝑑 𝑗

= −.001, 𝑓 2 = −.001
spatial abilities 𝛽 = −.152, 𝑡 = −1.189, 𝑝 = .239
age 𝛽 = .198, 𝑡 = 1.408, 𝑝 = .164
VR experience 𝛽 = −.147, 𝑡 = −1.068, 𝑝 = .290
3D modeling experience 𝛽 = −.001, 𝑡 = −.009, 𝑝 = .993
task accuracy self-assessment 𝛽 = .123, 𝑡 = .940, 𝑝 = .351

Table A3: MANOVAs interaction technique level: This table shows the MANOVAs for the interaction technique level (IT) as
well as the univariate post hoc tests (ANOVA) using Bonferroni correction for the pairwise comparisons. Significant tests are
highlighted in bold. It complements Fig. 4.

Dependent Variables Pairwise Comparisons Statistics

Lower Spatial Abilities Group (MANOVA) F(16, 21) = 6.787, p < .001,Wilks′ Λ = .162, partial 𝜼2 = .838
IT threshold time F(1.310, 47.145) = 50.223, p < .001, partial 𝜼2 = .582

1DOF vs. 3DOF p < .001
1DOF vs. 7DOF p < .001
3DOF vs. 7DOF p < .001

IT task time F(1.285, 46.271) = 47.773, p < .001, partial 𝜼2 = .570
1DOF vs. 3DOF p < .001
1DOF vs. 7DOF p < .001
3DOF vs. 7DOF p < .001

IT translation error 𝐹 (2, 72) = .642, 𝑝 = .529, 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝜂2 = .018
1DOF vs. 3DOF 𝑝 = 1.000
1DOF vs. 7DOF 𝑝 = .904
3DOF vs. 7DOF 𝑝 = 1.000

IT rotation error 𝐹 (1.478, 53.215) = .805, 𝑝 = .419, 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝜂2 = .022
1DOF vs. 3DOF 𝑝 = 1.000
1DOF vs. 7DOF 𝑝 = .251
3DOF vs. 7DOF 𝑝 = 1.000

IT scale error 𝐹 (2, 72) = 1.271, 𝑝 = .287, 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝜂2 = .034
1DOF vs. 3DOF 𝑝 = .662
1DOF vs. 7DOF 𝑝 = 1.000
3DOF vs. 7DOF 𝑝 = .498
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IT SUS F(2, 72) = 6.250, p = .003, partial 𝜼2 = .148
1DOF vs. 3DOF 𝑝 = .251
1DOF vs. 7DOF p = .005
3DOF vs. 7DOF 𝑝 = .225

IT active cognitive load 𝐹 (2, 72) = 1.800, 𝑝 = .173, 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝜂2 = .048
1DOF vs. 3DOF 𝑝 = 1.000
1DOF vs. 7DOF 𝑝 = .233
3DOF vs. 7DOF 𝑝 = .373

IT passive cognitive load F(2, 72) = 5.855, p = .004, partial 𝜼2 = .140
1DOF vs. 3DOF 𝑝 = .108
1DOF vs. 7DOF p = .009
3DOF vs. 7DOF 𝑝 = .602

Higher Spatial Abilities Group (MANOVA) F(16, 13) = 4.691, p = .004,Wilks′ Λ = .148, partial 𝜼2 = .852
IT threshold time F(1.324, 37.082) = 38.430, p < .001, partial 𝜼2 = .579

1DOF vs. 3DOF p < .001
1DOF vs. 7DOF p < .001
3DOF vs. 7DOF p < .001

IT task time F(1.332, 37.307) = 42.514, p < .001, partial 𝜼2 = .603
1DOF vs. 3DOF p < .001
1DOF vs. 7DOF p < .001
3DOF vs. 7DOF p < .001

IT translation error 𝐹 (2, 56) = .766, 𝑝 = .470, 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝜂2 = .027
1DOF vs. 3DOF 𝑝 = .614
1DOF vs. 7DOF 𝑝 = 1.000
3DOF vs. 7DOF 𝑝 = 1.000

IT rotation error F(2, 56) = 6.623, p = .003, partial 𝜼2 = .191
1DOF vs. 3DOF 𝑝 = .262
1DOF vs. 7DOF p = .007
3DOF vs. 7DOF 𝑝 = .160

IT scale error F(2, 56) = 3.919, p = .026, partial 𝜼2 = .123
1DOF vs. 3DOF 𝑝 = 1.000
1DOF vs. 7DOF 𝑝 = .329
3DOF vs. 7DOF p = .018

IT SUS F(2, 56) = 5.336, p = .008, partial 𝜼2 = .160
1DOF vs. 3DOF 𝑝 = .211
1DOF vs. 7DOF p = .028
3DOF vs. 7DOF 𝑝 = .279

IT active cognitive load 𝐹 (2, 56) = 1.481, 𝑝 = .236, 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝜂2 = .050
1DOF vs. 3DOF 𝑝 = 1.000
1DOF vs. 7DOF 𝑝 = .391
3DOF vs. 7DOF 𝑝 = .809

IT passive cognitive load F(2, 56) = 4.480, p = .016, partial 𝜼2 = .138
1DOF vs. 3DOF 𝑝 = .635
1DOF vs. 7DOF p = .029
3DOF vs. 7DOF 𝑝 = .249

Table A4: Multiple regressions manipulation task level: This table shows the significant results of the multiple regressions and
how the control variables contributed to the dependent variables on the manipulation task level (MT). Significant regressions,
as well as significant contributions, are highlighted in bold.

Dependent Variables Control Variable Statistics

MT 3DOF threshold time F(5, 60) = 3.513, p = .007,R2
adj = .162, f2 = .193

spatial abilities 𝜷 = −.419, t = −3.584, p < .001
age 𝛽 = .151, 𝑡 = 1.179, 𝑝 = .243
VR experience 𝛽 = −.041, 𝑡 = −.326, 𝑝 = .746
3D modeling experience 𝛽 = −.074, 𝑡 = −.563, 𝑝 = .575
task accuracy self-assessment 𝛽 = −.138, 𝑡 = −1.152, 𝑝 = .254

MT 3DOF task time F(5, 60) = 3.708, p = .005,R2
adj = .172, f2 = .208

spatial abilities 𝜷 = −.412, t = −3.550, p < .001
age 𝛽 = .119, 𝑡 = .930, 𝑝 = .356
VR experience 𝛽 = −.019, 𝑡 = −.150, 𝑝 = .881
3D modeling experience 𝛽 = −.142, 𝑡 = −1.089, 𝑝 = .280
task accuracy self-assessment 𝛽 = −.140, 𝑡 = −1.174, 𝑝 = .245

MT 3DOF translation error 𝐹 (5, 60) = 1.595, 𝑝 = .175, 𝑅2
𝑎𝑑 𝑗

= .044, 𝑓 2 = .046
spatial abilities 𝛽 = −.081, 𝑡 = −.653, 𝑝 = .516
age 𝛽 = −.190, 𝑡 = −1.387, 𝑝 = .171
VR experience 𝛽 = .207, 𝑡 = 1.543, 𝑝 = .128
3D modeling experience 𝛽 = −.005, 𝑡 = −.036, 𝑝 = .972
task accuracy self-assessment 𝛽 = −.193, 𝑡 = −1.510, 𝑝 = .136

continued on next page...
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MT 3DOF rotation error F(5, 60) = 3.443, p = .008,R2
adj = .158, f2 = .188

spatial abilities 𝛽 = −.159, 𝑡 = −1.358, 𝑝 = .180
age 𝛽 = −.128, 𝑡 = −.997, 𝑝 = .323
VR experience 𝛽 = .196, 𝑡 = 1.556, 𝑝 = .125
3D modeling experience 𝛽 = −.166, 𝑡 = −1.261, 𝑝 = .212
task accuracy self-assessment 𝜷 = −.285, t = −2.381, p = .020

MT 3DOF scale error 𝐹 (5, 60) = 1.625, 𝑝 = .167, 𝑅2
𝑎𝑑 𝑗

= .046, 𝑓 2 = .048
spatial abilities 𝛽 = −.198, 𝑡 = −1.592, 𝑝 = .117
age 𝛽 = −.018, 𝑡 = −.132, 𝑝 = .895
VR experience 𝛽 = .008, 𝑡 = .057, 𝑝 = .955
3D modeling experience 𝛽 = −.084, 𝑡 = −.600, 𝑝 = .551
task accuracy self-assessment 𝛽 = −.208, 𝑡 = −1.627, 𝑝 = .109

MT 6DOF threshold time F(5, 60) = 3.861, p = .004,R2
adj = .180, f2 = .220

spatial abilities 𝛽 = −.167, 𝑡 = −1.449, 𝑝 = .153
age 𝛽 = −.014, 𝑡 = −.114, 𝑝 = .910
VR experience 𝛽 = −.047, 𝑡 = −.375, 𝑝 = .709
3D modeling experience 𝛽 = .066, 𝑡 = .507, 𝑝 = .614
task accuracy self-assessment 𝜷 = −.440, t = −3.716, p < .001

MT 6DOF task time F(5, 60) = 3.938, p = .004,R2
adj = .184, f2 = .225

spatial abilities 𝛽 = −.164, 𝑡 = −1.426, 𝑝 = .159
age 𝛽 = −.021, 𝑡 = −.164, 𝑝 = .871
VR experience 𝛽 = −.056, 𝑡 = −.452, 𝑝 = .653
3D modeling experience 𝛽 = .051, 𝑡 = .394, 𝑝 = .695
task accuracy self-assessment 𝜷 = −.441, t = −3.735, p < .001

MT 6DOF translation error F(5, 60) = 2.666, p = .031,R2
adj = .114, f2 = .129

spatial abilities 𝛽 = −.082, 𝑡 = −.680, 𝑝 = .499
age 𝛽 = −.246, 𝑡 = −1.861, 𝑝 = .068
VR experience 𝛽 = .113, 𝑡 = .874, 𝑝 = .386
3D modeling experience 𝛽 = −.005, 𝑡 = −.036, 𝑝 = .971
task accuracy self-assessment 𝜷 = −.290, t = −2.361, p = .021

MT 6DOF rotation error F(5, 60) = 3.733, p = .005,R2
adj = .174, f2 = .211

spatial abilities 𝛽 = −.012, 𝑡 = −.108, 𝑝 = .915
age 𝛽 = −.133, 𝑡 = −1.042, 𝑝 = .302
VR experience 𝛽 = −.014, 𝑡 = −.112, 𝑝 = .911
3D modeling experience 𝛽 = −.034, 𝑡 = −.261, 𝑝 = .795
task accuracy self-assessment 𝜷 = −.434, t = −3.653, p < .001

MT 6DOF scale error F(5, 60) = 2.941, p = .019,R2
adj = .130, f2 = .149

spatial abilities 𝛽 = .013, 𝑡 = .108, 𝑝 = .914
age 𝛽 = −.206, 𝑡 = −1.579, 𝑝 = .120
VR experience 𝛽 = .109, 𝑡 = .852, 𝑝 = .397
3D modeling experience 𝛽 = −.138, 𝑡 = −1.031, 𝑝 = .307
task accuracy self-assessment 𝜷 = −.301, t = −2.474, p = .016

MT 7DOF threshold time 𝐹 (5, 60) = 1.412, 𝑝 = .233, 𝑅2
𝑎𝑑 𝑗

= .031, 𝑓 2 = .032
spatial abilities 𝛽 = −.204, 𝑡 = −1.621, 𝑝 = .110
age 𝛽 = .180, 𝑡 = 1.301, 𝑝 = .198
VR experience 𝛽 = .092, 𝑡 = .682, 𝑝 = .498
3D modeling experience 𝛽 = −.030, 𝑡 = −.209, 𝑝 = .835
task accuracy self-assessment 𝛽 = −.147, 𝑡 = −1.143, 𝑝 = .258

MT 7DOF task time 𝐹 (5, 60) = 1.527, 𝑝 = .195, 𝑅2
𝑎𝑑 𝑗

= .039, 𝑓 2 = .041
spatial abilities 𝛽 = −.217, 𝑡 = −1.738, 𝑝 = .087
age 𝛽 = .195, 𝑡 = 1.421, 𝑝 = .160
VR experience 𝛽 = .068, 𝑡 = .502, 𝑝 = .618
3D modeling experience 𝛽 = −.034, 𝑡 = −.241, 𝑝 = .811
task accuracy self-assessment 𝛽 = −.155, 𝑡 = −1.212, 𝑝 = .230

MT 7DOF translation error 𝐹 (5, 60) = 2.113, 𝑝 = .076, 𝑅2
𝑎𝑑 𝑗

= .079, 𝑓 2 = .086
spatial abilities 𝛽 = −.112, 𝑡 = −.915, 𝑝 = .364
age 𝛽 = −.202, 𝑡 = −1.503, 𝑝 = .138
VR experience 𝛽 = .074, 𝑡 = .564, 𝑝 = .575
3D modeling experience 𝛽 = −.110, 𝑡 = −.795, 𝑝 = .430
task accuracy self-assessment 𝛽 = −.199, 𝑡 = −1.589, 𝑝 = .117

MT 7DOF rotation error F(5, 60) = 3.351, p = .010,R2
adj = .153, f2 = .181

spatial abilities 𝛽 = −.132, 𝑡 = −1.128, 𝑝 = .264
age 𝛽 = −.162, 𝑡 = −1.256, 𝑝 = .214
VR experience 𝛽 = .049, 𝑡 = .387, 𝑝 = .700
3D modeling experience 𝛽 = −.089, 𝑡 = −.676, 𝑝 = .502
task accuracy self-assessment 𝜷 = −.329, t = −2.739, p = .008

continued on next page...
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MT 7DOF scale error F(5, 60) = 2.851, p = .022,R2
adj = .125, f2 = .143

spatial abilities 𝛽 = −.039, 𝑡 = −.329, 𝑝 = .744
age 𝛽 = −.087, 𝑡 = −.666, 𝑝 = .508
VR experience 𝛽 = .000, 𝑡 = .001, 𝑝 = .999
3D modeling experience 𝛽 = −.067, 𝑡 = −.497, 𝑝 = .621
task accuracy self-assessment 𝜷 = −.382, t = −3.127, p = .003

Table A5: MANOVAsmanipulation task level: This table shows theMANOVAs for themanipulation task level (MT) as well as the
univariate post hoc tests (ANOVA) using Bonferroni correction for the pairwise comparisons. Significant tests are highlighted
in bold. It complements Fig. 5.

Dependent Variables Pairwise Comparisons Statistics

Lower Spatial Abilities Group (MANOVA) F(10, 27) = 17.119, p < .001,Wilks′ Λ = .136, partial 𝜼2 = .864
MT threshold time F(2, 72) = 16.470, p < .001, partial 𝜼2 = .314

3DOF vs. 6DOF p < .001
3DOF vs. 7DOF p < .001
6DOF vs. 7DOF 𝑝 = 1.000

MT task time F(1.352, 48.659) = 40.441, p < .001, partial 𝜼2 = .529
3DOF vs. 6DOF p < .001
3DOF vs. 7DOF p = .002
6DOF vs. 7DOF p < .001

MT translation error F(1.376, 49.541) = 12.946, p < .001, partial 𝜼2 = .264
3DOF vs. 6DOF 𝑝 = 1.000
3DOF vs. 7DOF p = .005
6DOF vs. 7DOF p < .001

MT rotation error F(1.452, 52.282) = 32.476, p < .001, partial 𝜼2 = .474
3DOF vs. 6DOF p = .019
3DOF vs. 7DOF p < .001
6DOF vs. 7DOF p < .001

MT scale error F(2, 72) = 37.086, p < .001, partial 𝜼2 = .507
3DOF vs. 6DOF 𝑝 = .188
3DOF vs. 7DOF p < .001
6DOF vs. 7DOF p < .001

Higher Spatial Abilities Group (MANOVA) F(10, 19) = 20.172, p < .001,Wilks′ Λ = .086, partial 𝜼2 = .914
MT threshold time F(2, 56) = 40.959, p < .001, partial 𝜼2 = .594

3DOF vs. 6DOF p < .001
3DOF vs. 7DOF p < .001
6DOF vs. 7DOF 𝑝 = 1.000

MT task time F(1.276, 35.725) = 73.730, p < .001, partial 𝜼2 = .725
3DOF vs. 6DOF p < .001
3DOF vs. 7DOF 𝑝 = .327
6DOF vs. 7DOF p < .001

MT translation error F(2, 56) = 17.340, p < .001, partial 𝜼2 = .382
3DOF vs. 6DOF 𝑝 = .466
3DOF vs. 7DOF p = .001
6DOF vs. 7DOF p < .001

MT rotation error F(1.616, 45.247) = 61.837, p < .001, partial 𝜼2 = .688
3DOF vs. 6DOF p < .001
3DOF vs. 7DOF p < .001
6DOF vs. 7DOF p < .001

MT scale error F(2, 56) = 43.179, p < .001, partial 𝜼2 = .607
3DOF vs. 6DOF p < .001
3DOF vs. 7DOF p < .001
6DOF vs. 7DOF p < .001
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