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Automated vehicles are expected to improve safety, mobility, and inclusion. User acceptance is required for the successful
introduction of this technology. One essential prerequisite for acceptance is appropriately trusting the vehicle’s capabilities.
System transparency via visualizing internal information could calibrate this trust by enabling the surveillance of the vehicle’s
detection and prediction capabilities, including its failures. Additionally, concurrently increased situation awareness could
improve take-overs in case of emergency. This work reports the results of two online comparative video-based studies on
visualizing prediction and maneuver-planning information. Effects on trust, cognitive load, and situation awareness were
measured using a simulation (N=280) and state-of-the-art road user prediction and maneuver planning on a pre-recorded
real-world video using a real prototype (N=238). Results show that color conveys uncertainty best, that the planned trajectory
increased trust, and that the visualization of other predicted trajectories improved perceived safety.
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1 INTRODUCTION
Automated vehicles (AVs) are expected to increase traffic safety [31] by removing the human from the driving task,
which is often attributed to being one contributing cause (others being, for example, flawed street design) of up to
90% of traffic accidents [75]. Simultaneously, AV users can engage in various non-driving-related activities such
as reading, working, or even sleeping [20, 66]. However, we expect first-time users to observe the AV critically.
Until full automation, that is, automation that can handle all possible situations, is reached, challenges such as
under- or overtrust for AV users arise. Regarding undertrust, it was found that most respondents in the USA,
Australia, and the UK mentioned at least slight concerns about system failure in unanticipated situations [73].
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This could, in turn, lead to low adoption rates and, consequently, to a lost opportunity regarding increased traffic
safety despite most of the respondents desiring to use this technology [73]. In contrast, overtrust, trusting the
technology more than the actual capabilities would allow, leads to over-usage and potentially abusive usage of
such automated systems. Calibrated trust [63], in contrast, refers to a state in which the user’s trust is appropriate
to the system’s capabilities.
To support calibrated trust, pedestrian intention [12] was already visualized within the vehicle either on a

dashboard or a windshield with three distinct states: crossing, remaining on the sidewalk, and uncertain. However,
the effects of visualizing the trajectory prediction of other vehicles and the own planned trajectory as crucial
indicators of performance have not yet been investigated. Therefore, we propose to visualize these on a windshield
display. Head-Up Displays (HUDs) are already widely available and are expected to be prevalent in future AVs
in even larger sizes, for example, for gaming as well [79]. Providing information about the AV’s predictions
of other road users and the AV’s planned maneuver could calibrate trust and increase system transparency.
While detecting and recognizing relevant objects is the first prerequisite for automated driving functionality [14],
assessing the future states of the other mobile actors (pedestrians, cyclists, vehicles) is crucial for one’s own
safe trajectory planning. Therefore, numerous works exist with a focus on pedestrian [3, 24, 71, 74] and vehicle
trajectory prediction [62, 77]. However, these were not yet evaluated as a method to convey uncertainty.
Contribution statement: (1) An Augmented Reality (AR) visualization technique of uncertain trajectory pre-
dictions, (2) findings of an online study based on a simulation (N=280) showing that color was most suited
to visualize uncertainty, and (3) findings of a second online study (N=238) based on a video of a real-world
ride with a state-of-the-art vehicle trajectory prediction [77] and maneuver planning [36]. Results show that
visualizing the own planned trajectory increased trust in the AV, and visualizing the predictions of other vehicles’
trajectories increased perceived safety. Additionally, the assessment of lateral and longitudinal was increased
with the visualizations. This work provides evidence for appropriate communication of AV’s capabilities and
intentions and, therefore, helps introduce AVs safely in general traffic.

2 RELATED WORK
Our work focuses on in-vehicle human-machine interfaces and their effect on trust, situation awareness (SA),
and cognitive load. However, we also present previous work on trust. Our work is clearly to be distinguished
from interfaces targeted towards vulnerable road users despite similar trust-related challenges [18, 19, 23, 44, 45].

2.1 Situation Awareness and Trust in Automated Vehicles
Endsley defined SA as “an understanding of the state of the environment” [28, p. 1] providing the “primary
basis for subsequent decision making and performance in the operation of complex, dynamic systems”. Endsley
distinguished three levels: Level 1 refers to the recognition of objects. Level 2 refers to conjuncting the objects
into an understanding. Level 3, finally, refers to the ability to infer future events based on this understanding.
Based on SA, the person can make an informed decision in conjunction with their goals, preconceptions, abilities,
complexity, and an available interface. In our case, the visualization of the own and others’ trajectories can help
inform the user of the AV about relevant objects (Level 1), the derived future states (Level 3), and the vehicle’s
capabilities.
While trust is hard to define [27], a common concept defines trust “as the attitude that an agent will help

achieve an individual’s goals in a situation characterized by uncertainty and vulnerability” [55, p. 51]. Trust is
necessary when (1) there are two agents, (2) there is an incentive, and (3) there is a possibility to fail [55] which
is the case in AVs [27]. Ekman et al. [27] defined a framework for AV human-machine interface design. They
define the three phases Pre-Use Phase, Learning Phase, and Performance Phase. In each, there is an appropriate
level of trust. Is trust too high (i.e., overtrust), then there is misuse. If trust is too low (i.e., undertrust), then there
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will be disuse. Several trust-affecting factors were defined, including Mental model, training, anthropomorphism,
feedback, why & how information (also see [50]), error information, and uncertainty information. According
to Ekman et al. [27], this uncertainty information, which is the focus of this work, is most relevant in a control
transition from manual to automated driving and during the automated journey in the Learning Phase, and for a
change of context in the Performance Phase. In our work, we focus on the uncertainty information via trajectory
visualization in the Learning Phase as AVs are not yet commercially available.

Detjen et al. [22] also name Trust & Transparency one of the acceptance challenge categories for AVs. For
trust calibration, the authors encourage uncertainty visualization. While they state that hue is the best visual
parameter, they state that suitable design metaphors are “bars, percent values, graphs, or pictograms” [22, p. 11].
They also state that “automation trust depends more on performance-oriented qualities” [22, p. 11]. We argue
that these performance-oriented qualities e.g., keeping distances to other road users, recognizing all relevant road
users, etc.) could be context-dependent and possibly better visualized with driving-task-related visualizations
such as trajectories than with more abstract metaphors such as percent values. Percent values in the automotive
context were already argued to be easily misinterpreted or not understood at all [11].

2.2 Visualizing Uncertainty and Effect on Trust
There are two techniques to communicate uncertainty in general: graphical annotations and visual encodings.
Figures have five types of uncertainty encodings: fuzziness, location, arrangement, size, and transparency [65],
which can be combined. MacEachren et al. [59] additionally includes color (hue, saturation, and value) and shape,
orientation, or grain. They report that fuzziness and location work well and that value and arrangement were
also rated highly. Size and transparency were deemed potentially usable compared to saturation, which was
ranked low [59]. As values and their associated uncertainty value are often mapped independently [21, 49],
Value-Suppressing Uncertainty Palettes have been proposed [21]. This allows more values to be communicated
with low uncertainty and fewer values with high uncertainty.

Van Der Bles et al. [82] showed that communicating limits of information leads to greater uncertainty by the
information receiver. However, this only led to a small decrease in trust.

2.3 In-Vehicle Visualization Concepts
It is an open question which information should be displayed during an automated journey [12, 16, 50, 57, 85, 88].
Two main works conducted interviews regarding the necessity for information presentation. Wintersberger

et al. conducted 56 interviews on automated journeys concluding that there is “an inverse correlation between
situational trust and participants’ desire for feedback” [88, p. 1]. Relevant information themes are predictability,
impact, object characteristics, spatial properties, regulations, and visibility. Wiegand et al. [85] identified 17
relevant situations for information presentation. In a think-aloud study with N=26 participants, they found that
for unexpected driving behavior, the six main concerns are emotion and evaluation, interpretation and reason,
vehicle capability, interaction, future driving prediction, and explanation request times [85].

Regarding the required technology to display such information, using HUDs avoids driver diversion as there
is no necessity to look down while providing spatial proximity [35]. While current HUDs are comparatively
small (e.g., Volkswagen’s HUD is 217 x 88 mm [1], Mercedes Benz’s is 1.750 x 873 mm large [47]), the entire
Windshield Displays (WSDs) are envisioned at continuous depth [38], that is, not only at specific layers (i.e.,
in certain distances from the vehicle user). Other work investigated various modalities and technologies to
communicate with the user. Löcken et al. [58] employed ambient light to communicate the AV’s decisions to the
user. van Huysduynen et al. [83] varied ambient light attached to the a-pillars to alter speed perception, generally
improving user experience. Wilbrink et al. [86] employed light strips to indicate perceived pedestrians’ intentions
or perceptions. Lindemann et al. [56] highlighted potential threats such as pedestrians via an AR WSD. They also
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provided a cube over moving vehicles which indicated their behavior type (e.g., dangerous or unusual), resulting
in higher SA than only presenting basic information (i.e., speed and navigation info). While these visualization
techniques all showed promising results, the question of which display technology provides the best results was
investigated by Colley et al. [16]. They highlight “that no technologically advanced visualization (e.g., AR) is
necessary” [16, p. 17].

A related concern is calibrating appropriate trust [12, 14, 16] while providing a good user experience [33, 83].
It was shown that system transparency increases trust in AVs [12, 26, 50]. Kraus et al. [52] provide evidence that
high system transparency can even prevent a decrease in the trust after a malfunction. Frison et al. [33] showed
that user experience also influences trust in AVs.

Häuslschmid et al. [40] displayed the vehicle’s current situation interpretation via a world inminiature (based on
Tesla’s visualizations) or a simulated chauffeur avatar. Trust was increased the most by the world in miniature [40].
Opinions about the necessity of such a visualization varied greatly [40]. von Sawitzky et al. [84] showed the own
maneuver or trajectory either on a map, world-fixed or as a combination in a simulated AR WSD. The authors
state that they “are aware that even in FAD vehicles will not always be completely reliable and can still fail” [84,
p. 1]. However, different from our approach, no uncertainty information is included in their visualizations. von
Sawitzky et al. [84] found that such visualizations significantly increase trust. While with a focus on gesture
and speech interaction, Tscharn et al. [80] visualized the current traveling path via a blue semi-transparent
path. As their focus was on interaction, no insights regarding the visualization can be drawn. Colley et al. [12]
compared the visualization of pedestrian intention in a virtual reality (VR) study, finding that the AR version
(compared to the tablet version) was significantly better rated in terms of cognitive load. Therefore, we also
employed a simulated AR WSD. Using a similar approach, the effects of object detection were evaluated [14].
This increased SA required little cognitive load, and did not increase trust. The authors, therefore, argue that this
was a possible visualization technique to calibrate trust. In this approach, the uncertainty of object detection
was directly integrated into the visualization. In general, however, automation uncertainty visualization was
less investigated. Colley et al. [17] varied the visualization of situation detection, intention, and ego maneuver
planning. Kunze et al. [53] showed that especially hue conveys urgency in a sorting study on visual variables.
Kunze et al. [54] also argued against using the instrument cluster to reduce workload. Therefore, they used a
light strip and a vibrotactile seat, enabling users to focus on the road. Even more abstract representations of
uncertainty were used by Beller et al. [4]. They displayed an anthropomorphic symbol at system limits. Results
showed that a longer time to collision was available for takeovers. Additionally, SA and trust were higher with
the visualization. Helldin et al. [41] used bars to indicate certainty. They also found quicker control takeovers.
However, participants trusted the automation less when shown this uncertainty information. Schneider et al. [72]
provided live explanations to the passenger of an AV. These included an LED strip and AR information regarding
the destination, speed, street name, and planned trajectory. In an unclear situation, the color intensity of the
planned trajectory was reduced. The main findings include that a live explanation can reduce negative effects on
user experience during an automated journey.

In general, previous work showed the positive influence of communicating the vehicle state and the potential
to include uncertainty information. While previous work did include the own and others’ planned trajectories, un-
certainty information was not included, nor was a real state-of-the-art algorithm used to deduct these trajectories;
instead, these were based on assumptions about how these could work.

2.4 Relation Between Trust, Cognitive Load, and Perceived Safety
According to Hoff and Bashir [43], there are three dimensions to trust: dispositional trust, situational trust, and
learned trust. Especially dispositional trust varies concerning internal and external variability. External variability
refers to the type of system, system complexity, task difficulty, workload, perceived risks, perceived benefits,
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organizational setting, and framing of task (see also Holthausen et al. [46] and Müller et al. [64]). As trust is a
psycho-physiological state, it includes cognitive elements. This is because it involves calculating the subjective
probability in a specific situation, leading to its correlation with cognitive load [69]. Also, the correlation between
cognitive load and trust has been shown in various empirical studies [10, 37, 70].

Therefore, we also measured the constructs cognitive load (refers to workload) and perceived safety (refers to
perceived risks and perceived benefits).
Körber [51] based his trust definition on the dimensions by Mayer et al. [60] and Lee and See [55]. In his

definition, trust is influenced by Competence / Reliability (see Ability [60] or Performance [55]), Understand-
ability / Predictability (see Integrity [60] or Process [55]), and Intention of Developers (see Benevolence [60] or
Purpose [55]). Additional relevant factors are Familiarity and Propensity to Trust. We used the understandability
subscale based on his work and his proposed subscale.

3 CONCEPT
We propose to visualize both the results of the trajectory prediction of other vehicles and the planned trajectory
to the passenger.
While Colley et al. [12] presented the discrete decision of whether a pedestrian wants to cross with a symbol
floating over the person’s head, we envision to visualize the future path of other road users. For the AV, only
the binary decision of the pedestrian of whether to cross is relevant. Other behavior (e.g., hesitation) ultimately
only contributes to the understanding of this binary classification. The estimated trajectory of the other vehicles
contains more states: driving on, turning left or right, turning around, stopping. Therefore, visualizing the
estimated trajectory is more appropriate than visualizing discrete states. According to Chen et al. [9], mobile road
users such as pedestrians, vehicles, and cyclists are the most important traffic objects as these influence the AV’s
planning. With regards to previous work [12, 14], anAR-based representation seems most appropriate. Compared
to center-console visualizations, AR-based ones were found to significantly reduce mental workload [12] and
increase trust [12]. Additionally, AR enables information to be presented in perfect spatial relations. Furthermore,
the representation should be visualized in all views (i.e., windshield and peripheral or side windows) to provide
all relevant information. Additionally, as a user might be unfamiliar with the numerous sensors built into an AV
(front, rear, sides), allowing the recognition of objects in the entire surrounding, visualization in all views can
support the user to gain a clearer picture of the AV’s capabilities. Thus, we expect that showing these predictions
in all views to calibrate trust. Displaying the trajectory information allows for the assessment of object detection
and trajectory prediction as only predictions of detected objects can be made. As the estimation of the own’s and
the other’s trajectory becomes less certain the further the estimation goes into the future, an appropriate form
of uncertainty encoding is required. Therefore, we first conducted a simulation-based online survey to find the
most appropriate encoding.

4 ONLINE SIMULATION STUDY

4.1 Visual Design
As outlined in Section 2.2 and 2.3, there are numerous possibilities to visualize uncertainty. Based on the contextual
nature of the trajectory, we omitted location and orientation variations. We omitted fuzziness to prevent the
notion of imperfect visualization (e.g., because of immature technology). We considered size but found in internal
tests that this quickly led to visual clutter in scenes with numerous vehicles.
Therefore, based on the work by Kunze et al. [53], Padilla et al. [65], and MacEachren et al. [59], we included the
visual variables color (hue), shape, and transparency and adapted these for the use case of trajectory visualization.
For the shapes, we employed a line, a double line representing the vehicle’s edges, and a bezier cone (see Figure 1).
The cone inherently incorporates possible future deviations and, therefore, includes uncertainty information.
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While other shapes are possible (e.g., a V-shape), these three shapes represent a prototype for only conveying
the direction (line), including information about the size of the AV (double line), and including uncertainty
information directly represented in the shape (bezier cone). We also considered other shapes, such as an inverse
bezier cone (i.e., a wide start representing certainty ending in a point) but found that this does not align with the
possibility of the vehicles to maneuver and provides possibilities for misunderstandings.
The variables color and transparency had two levels: with and without. For the color, blue to red was chosen as
done by Kunze et al. [53]. Here, blue at the beginning of the trajectory (near the vehicle) stands for high certainty,
and red at the end stands for low certainty. When transparency was included, the shape started solid and “faded
out” to convey that the certainty is high near the vehicle (solid) and low the further the trajectory is away from
the vehicle (high transparency of the shape).

The visualizations change their length based on the velocity of the own and the other vehicles. This is consistent
over all variables. Therefore, the internal consistency for this study is given. The length does alter the perceptibility
of the predictions. However, for the study, we chose videos that include a variety of velocities (and, therefore,
lengths) to ensure that participants can perceive the predictions. The gradients for color and transparency were
adjusted based on the length of the prediction.

4.2 Study Design
Based on the proposed visualizations, we designed the, as a 3 × 2 × 2 design with a baseline. For some of the
combinations, see Figure 1. We designed, implemented, and conducted a video-based online between-subject
study to evaluate the variables. This exploratory study was guided by the research question:

RQ1 What impact do the variables “shape”, “color”, and “transparency” have on passengers in an AV in terms of
(1) cognitive load, (2) trust, (3) situation awareness, (4) perceived safety, (5) visibility, (6) understandability, and (7)
capability assessment?

4.3 Materials

Fig. 1. Overview of the variables shape, color, and trans-
parency. The shapes without color were white in the study
but are shown in black here for better visibility.

Fig. 2. The interior used in the videos for the online study
showing the colored line.

For this, we recorded 13 videos of the simulation in Unity [81] (12 visualizations and baseline without any
trajectory visualization). The simulation showed the same scene but varied in the described visual properties
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of the trajectory visualization. The videos show a ride through a lively city (see Figure 2). Every video took
approximately two minutes. Pedestrians and cyclists cross the road both on and without crosswalks. According to
Kaß et al. [48], the vehicle performs lateral (i.e., driving straight ahead and turning) and longitudinal (i.e., accelerate
and decelerate/break) maneuvers. The future trajectory is deduced based on the known future waypoints and is
dependent on the vehicle’s velocity: the higher the velocity, the longer the predicted trajectory as route changes
become more unlikely, and velocity determines the possible traveled distance for a fixed time frame. Therefore,
in the online simulation, the visualization length solely depends on the velocity. To solely assess the trajectory
visualization, we also visualized the own trajectory accordingly.

4.4 Measurements
Based on the RQ1 , we employed the mental workload subscale of the raw NASA-TLX [39] on a 20-point scale
(“How much mental and perceptual activity was required? Was the task easy or demanding, simple or complex?”;
1=Very Low to 20=Very High) to measure the cognitive demand of integrating the proposed visualizations
into a coherent surroundings assessment. Additionally, we used the subscales Predictability/Understandability
(Understanding from here) and Trust of the Trust in Automation questionnaire by Körber [51]. Understanding
is measured using agreement on four statements (“The system state was always clear to me.”, “I was able to
understand why things happened.”; two inverse: “The system reacts unpredictably.”, “It’s difficult to identify
what the system will do next.”) using 5-point Likert scales (1=Strongly disagree to 5=Strongly agree). Trust is
measured via agreement on equal 5-point Likert scales on two statements (“I trust the system.” and “I can rely on
the system.”). Also, participants rated their perceived safety using four 7-point semantic differentials from -3
(anxious/agitated/unsafe/timid) to +3 (relaxed/calm/safe/confident) [30]. Regarding SA, we used the SA rating
technique (SART) [78]. The SART allowed us to assess the perceived quality of SA [29] which can be viewed
as a predictor of “how a person will choose to act on that situation awareness” [29, p. 86]. Depending on the
user’s capability to understand situations, the user might choose to engage in the driving task and not use the
automation. With high perceived qualitative SA, we would expect AV passengers to take over control less and,
thus, avoid post-automation effects [6, 61]. Participants also rated the AV’s capability of predicting the other
vehicle’s trajectory (“My vehicle recognized where the other vehicles will drive to very well.”), the visibility of the
visualization (“The visualization was clearly visible.”), and the helpfulness of the visualization (“The visualization
helped me understand what the automated vehicle believes the other vehicles will do.”) on 7-point Likert scales.
Finally, participants were able to provide open feedback.

4.5 Procedure
Every participant was randomly assigned to one of thirteen conditions. This represents a 3 × 2 × 2 design (shape,
color, and transparency) with a baseline. First, participants provided informed consent, answered a demographic
questionnaire, and received an overview of the study. Next, the setting was introduced as:

Introduction You are going to see videos of a highly automated ride through a city. The vehicle automatically steers,
brakes, and accelerates (lateral and longitudinal guidance). The automated vehicle will try to predict the other vehicles’
future maneuvers (=intention) via its onboard sensors. While watching the video, you are supposed to imagine sitting
in such an automated vehicle, follow the entire journey attentively, and then assess it.

Participants then watched a single video. The scenario was the same (e.g., with the crossing of pedestrians at
the same position and time) for all conditions. We explained the visualization for the participant as a combination
of the following sentences:
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During this ride, your vehicle will [show not show any visualization]/a [line]/[two lines]/[cone] on the
street in front of the vehicle, indicating their predicted possible future locations.
The color indicates your automated vehicle’s certainty of the prediction of where the other vehicle
could be in the future (blue=high certainty to red=low certainty).
The transparency (also known as alpha) level indicates your automated vehicle’s certainty of the
prediction of where the other vehicle could be in the future (solid=high certainty to transparent= low
certainty).

On average, a session lasted 9 min. Participants were compensated with 0.90€. We ran a script in the background
to ensure that the window was maximized, that participants were not able to skip or rerun the video (thereby
ensuring equal exposure time), and that participants used at least a required Full HD (1980 x 1080 pixels) monitor.

4.6 Results
4.6.1 Data Analysis. Depending on the data (we tested normal distribution and homogeneity of variance as-
sumption), we used the ARTool package by Wobbrock et al. [89]. The procedure is abbreviated, as in the original
publication, with ART. In the case of normally distributed data, an ANOVA was used. To compare the systems,
we employed the Kruskal-Wallis test for non-normal and a Welch test for normal data. We always used Holm
correction for post-hoc tests. Effect sizes are partial Partial eta-squared (𝜂2𝑝 ) calculated with the effectsize package
in version 0.8.3 [5]. R in version 4.3.1 and RStudio in version 2023.06.1 were employed. All packages were up to
date in July 2023.

4.6.2 Participants. We determined the required sample size via an a-priori power analysis using G*Power in
version 3.1.9.7 [32]. To achieve a power of .8 with an alpha level of .05, 273 participants should result in an
anticipated medium effect size (0.26 [34]) in an ANOVA.

We recruited, after exclusions due to failed attention checks, 280 participants with an average age of M=30.73
(SD=9.98) years via https://www.prolific.co/. The participant pool was restricted to US citizens to avoid effects of
traffic handedness (right-hand vs. left-hand traffic) or culture [67]. While this introduces cultural bias, it also
increases internal validity. Using an online participant database allowed us to circumvent biases found when
recruiting mostly from a student population (e.g., see almost three-quarters of CHI publications in 2014 [7]). 90
participants identified as male, 189 as female, and one as non-binary. Participants owned a driver’s license, on
average, for M=11.68 (SD=9.60) years. Demographic information is shown per condition in Table 1.

Table 1. Number of participants and demographic information per condition. Kruskal-Wallis tests found no significant
difference neither for age (p=0.86 nor for owning a driver’s license (p=0.97).

Condition # participants Mean age SD age Mean license SD license
Baseline 21 28.67 8.11 9.29 6.72
Bezier Cone Alpha Color 19 32.95 7.52 13.79 8.78
Bezier Cone Alpha 23 30.91 10.59 12.17 10.54
Bezier Color 22 31.68 11.30 13.64 10.91
Bezier Cone 19 33.11 13.62 13.21 12.64
Double Line Alpha Color 23 31.83 9.91 12.09 10.15
Double Line Alpha 22 29.27 7.09 9.82 6.13
Double Line Color 22 30.95 9.21 11.41 9.98
Double Line 21 31.81 9.99 12.90 9.61
Line Alpha Color 24 27.75 11.40 10.00 9.33
Line Alpha 21 30.05 9.15 10.76 8.90
Line Color 22 29.41 8.26 10.64 7.28
Line 21 31.86 12.60 12.64 12.91
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101 participants drive daily, 88 on working days, 48 3-4 times a week, 9 one time a week, 7 1-3 times per month,
and 27 less than 1 time a month. 63 participants drove less than 7000 km last year, 90 between 7000 and 14999, 69
between 15000 and 24999, 36 between 25000 and 32999, and 22 33000 or more km. Participants indicated that
their highest educational level is College (184), followed by High School (48), Vocational Training (32), Middle
School (15), and Secondary School (1). Regarding their current employment, participants reported that most of
them are employees (145), followed by college students (58), are job seeking (31), are students in school (21),
are self-employed (19), or indicated “other” (6). Participants reported medium to high interest in AVs (M=3.82,
SD=1.29), medium belief that AVs will ease their lives (M=3.76, SD=1.24), and rather believed that AVs would
become reality by 2031 (M=4.18, SD=1.00).
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Fig. 3. Three-way interaction effect (IE) on Understanding.

4.6.3 Mental Workload, Trust, and Perceived Safety. The ART found no significant effects on mental workload,
which was low in all conditions (between M=3.09 (double line with transparency) and M=3.93 (Bezier cone with
color)).
The ART also found no significant effects on trust or perceived safety.
A Kruskal-Wallis test also found no significant differences for trust (𝜒2(12)=13.11, p=0.36), perceived safety

(𝜒2(12)=9.59, p=0.65), or mental workload (𝜒2(12)=8.42, p=0.75).
As the data for Understanding was normally distributed and the homogeneity of variance assumption was

met, we calculated the statistical effects using an ANOVA. An ANOVA found a significant effect of transparency
on Understanding (𝐹 (1, 247) = 7.57, p=0.006) and a significant three-way IE of transparency on Understanding
(𝐹 (2, 247) = 3.09, p=0.047; see Figure 3). Understanding was higher without transparency with all shapes but the
Double Line in the colored case.
A Welch-Test found no significant differences in Understanding between conditions (𝐹 (12, 103.3) = 1.57,

p=0.11).

4.6.4 Situation Awareness. A Kruskal-Wallis test found no significant differences in SA between conditions
(𝜒2(12)=20.00, p=0.07). The ART found a significant main effect of shape on situation awareness (𝐹 (2, 247) = 3.61,
p=0.028, 𝜂2𝑝 = 0.03, Cohen’s f=0.17). However, pairwise comparisons using Dunn’s test showed the differences
not to be significant.
A Kruskal-Wallis test found no significant differences for the SA subscale demand between conditions

(𝜒2(12)=16.20, p=0.18). The ART found a significant IE of color × transparency on the SA subscale demand
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Fig. 4. IE of color × transparency on Demand.

(𝐹 (1, 247) = 4.15, p=0.043, 𝜂2𝑝 = 0.02, Cohen’s f=0.13; see Figure 4). While demand was approximately the same
with and without color with transparency, without transparency, and with color, the Demand declined, while
without color, it increased.

AKruskal-Wallis test found no significant differences in the SA subscale supply between conditions (𝜒2(12)=11.49,
p=0.49). The ART found no significant effects on the subscale supply.
A Welch-Test found a significant difference for the subscale Understanding of the SART between conditions

(𝐹 (12, 103) = 2.40, p<0.001). However, post-hoc tests using the Games-Howell test did not reveal significant
differences.
An ANOVA found a significant main effect of transparency (𝐹 (1, 247) = 4.18, p=0.042, 𝜂2𝑝 = 0.02, Cohen’s f=0.13)
on the subscale Understanding of the SART. Understanding was higher without transparency (M=13.87, SD=3.29)
than with (M=13.05, SD=3.25). An ANOVA also found a significant main effect of shape (𝐹 (2, 247) = 6.32, p=0.002,
𝜂2𝑝 = 0.05, Cohen’s f=0.23). Post-hoc pairwise t-tests showed that the value for the subscale Understanding of
the SART was significantly better for the Line (M=14.44, SD=2.99) compared to both the Bezier Cone (M=12.93,
SD=3.18; p𝑎𝑑 𝑗=0.08) and the Double Line (M=12.95, SD=3.48; p𝑎𝑑 𝑗=0.01).

4.6.5 Visibility, Prediction Certainty, and Visualization Helpfulness. A Kruskal-Wallis test found no significant
differences in visibility between the twelve conditions with a visualization (𝜒2(11)=5.35, p=0.91).
The ART found no significant effects on visibility, which was consistently rated very high (from M=5.74 (Bezier
Cone transparency) to M=6.52 (Line)).

A Kruskal-Wallis test found no significant differences in prediction certainty between conditions (𝜒2(12)=8.25,
p=0.77).

The ART found a significant IE of color × transparency on prediction certainty (𝐹 (1, 247) = 7.83, p=0.006). The
ART found a significant IE of shape × color × transparency on prediction certainty (𝐹 (2, 247) = 3.24, p=0.041;
see Figure 5). Values ranged from M=5.05 (Double Line transparency) to M=6.05 (Double Line)). Without color,
the prediction certainty went up without transparency. With color, it went up for the bezier cone and the line
(slightly) but went down for the double line without transparency.
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Fig. 5. IE of shape × color × transparency on prediction certainty.

A Kruskal-Wallis test found no significant differences in the helpfulness of the visualization (p=0.95; values
ranged fromM=5.16 (Bezier Cone transparency Color) toM=5.91 (Bezier Cone Color and Double Line transparency
Color)).

4.6.6 Open Feedback. Regarding the visualization, participants agreed that the visualization was relevant and
useful. One participant stated, “The visualization was clearly visible. My vehicle recognized where the other
vehicles will drive to very well. The visualization helped me understand what the automated vehicle believes
the other vehicles will do.” Another participant stated that “those predictions about the vehicles were very
helpful”. Regarding the Double Line, which should visualize the vehicle’s edges, one participant stated “The two
transparent lines seem to be easily mistakable for headlights”. One participant also wrote “With this line, I feel
safer because it shows where the vehicle will go.” Two participants deemed the predictions too short.

4.7 Conclusion
There was no clear best visualization based on the online simulation. Kruskal-Wallis tests found no significant
differences between any of the visualizations and the baseline without a visualization. However, based on the
open feedback, we assume that a visualization provides aid for the users of AVs. Regarding the design of the
visualization, we opted for the colored line. This is based on previous work also using color [53] and the line
shape [13, 17, 72]. Understanding was lower with transparency, which is why we omitted this property despite
its wide adoption in uncertainty visualization.
For the online simulation study, we used Unity, and we simulated a potential trajectory prediction. In this setting,
the prediction was also simulated and does not convey the actual capabilities of today’s state-of-the-art.

5 ONLINE STUDY WITH REALISTIC FOOTAGE
To increase external validity, we additionally used videos taken in the real world and applied state-of-the-art
maneuver planning [36] and trajectory prediction [77] for the other vehicles.
While we were generally interested in uncertainty visualizations in the first study and, therefore, always

showed both the own planned and predicted trajectories, in this exploratory study, we were interested in the
research question:
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RQ2 What impact do the visualization of the own planned maneuver and the predicted trajectories of other
road users have on passengers in an AV in terms of (1) cognitive load, (2) trust, (3) situation awareness, (4) perceived
safety, (5) visibility, (6) understandability, and (6) capability assessment?

Therefore, the study followed a 2 × 2 (own planned maneuver visualization: yes/no and visualization of
predicted trajectories of other road users: yes/no) between-subjects study design.

5.1 Procedure, Measurements, and Materials

Fig. 6. Screenshots from the colorized videos with the own planned and predicted trajectories. a) shows the exit of a
roundabout, b) shows that parked vehicles are also predicted by the algorithms as these could start driving at any moment,
c) shows a roundabout, and d) shows an intersection.

We used the same procedure and measurements as in the online simulation study but with only four conditions.
We omitted questions regarding visibility but added the subscales Performance, Judgement, and Reaction of the
Situational Trust Scale for Automated Driving [46]. Additionally, participants were asked to rate the capability to
recognize other vehicles (“The automated vehicle recognizes all vehicles in every situation perfectly”), to predict
other vehicle’s paths (“The automated vehicle predicts all vehicle paths in every scene perfectly”), to maneuver
longitudinally (“The automated vehicle has perfect longitudinal guidance (braking, acceleration, ...)”) and laterally
(“The automated vehicle has perfect lateral guidance (keeping track, staying on the road)”) on 7-point Likert
scales (1=Totally Disagree to 7=Totally Agree). These measures were included only in this study as the vehicle
in the Online Simulation Study, due to the scripted approach, was able to predict everything perfectly. In this
realistic study, a real implementation was used. Thus, some minor uncertainties were to be expected. The videos
took approximately 6min and 45s. Participants were compensated with 1.00€.
The introduction to the visualization was given as:

During this ride, your vehicle will show a line on the street in front of the other vehicles indicating
their predicted possible future locations. The color indicates your automated vehicle’s certainty of
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the prediction of where the other vehicle could be in the future (blue=high certainty to red=low
certainty).
The vehicle will show its own planned trajectory. The color indicates your automated vehicle’s
certainty of the prediction of where it will drive to (blue=high certainty to red=low certainty).

For predicting trajectories of other vehicles, we used the approach described by Strohbeck et al. [77]. The
approach uses synthetic agent-centered images to represent the agent’s environment to predict, and forecasts
multiple hypotheses about the vehicle’s future motion over the next few seconds, along with a probability
for each hypothesis and uncertainty information along the predicted trajectories. In our case, we trained the
neural network to predict six hypotheses for the next three seconds. The prediction network was trained on the
Argoverse Motion Forecasting dataset [8], a large-scale dataset of recorded vehicle trajectories with a large variety
of > 300000 situations. On the Argoverse Motion Forecasting dataset [8], this approach achieves a minimum Final
Displacement Error of 4.19, a Drivable Area Compliance of 0.98, and a Miss Rate of 0.63. It won the Argoverse
Motion Forecasting Challenge in 2019. To avoid visual clutter, only the most probable hypothesis was drawn per
vehicle.

The trajectory planning framework used in this work follows the approach presented by Graf et al. [36].
The concept is based on the typical two-staged architecture, where first, a behavior trajectory is calculated
and subsequently optimized. Thereby, the behavior trajectory is obtained using driver models, which allow
for generating reasonable driving behavior efficiently. This behavior trajectory is then integrated into a local
continuous optimization problem that considers the comfort of longitudinal and lateral movement, subject to
safety and kinematic constraints. The authors report that the “driving experience during this scenario can be
described as natural and human-like” [36, p. 129].
We had to use a vehicle equipped with calibrated cameras, radars, and lidars for the approaches to work.

The corresponding sensor data is processed to estimate the states of surrounding vehicles using a Labeled
Multi-Bernoulli Filter [68]. Together with the ego-state estimation and map data, these form the prediction and
trajectory planning module input. As the videos taken are in black and white, we used DeOldify [2] to restore
color for the visualization. The final result can be seen in Figure 6. While the vehicle would have been capable of
driving automated, we drove manually to relieve some of the processing power for a more reliable data recording.
As a result, the predictions and the planned maneuver were calculated after the ride but are real-time capable.
That means that, for the experiment, there was no possibility of a delay in the prediction. Potential inaccuracies
of the systems for this experiment are not to be seen as an error but are part of the uncertainty in the prediction
visualization.

5.2 Results
5.2.1 Participants. To achieve a power of .8 with an alpha level of .05, 232 participants should result in an
anticipated medium effect size (0.22 [34]) in an ANOVA. Therefore, we recruited 362 participants via https:
//www.prolific.co/. The participant pool was again restricted to US citizens to avoid the effects of traffic handedness
(right-hand vs. left-hand traffic). After discarding participants with failed attention checks, we used 238 data
sets for the analysis (54 in the baseline, 62 where only the maneuver was displayed, 61 when only the other
vehicle’s prediction was shown, and 61 when both were shown). The participants were not identical to the Online
Simulation Study.
On average, participants were M=35.87 (SD=13.86; range: 18 — 82) years old. 121 participants identified as

female, 115 as male, and two as non-binary. Participants owned a driver’s license, on average, for M=16.63
(SD=14.42) years. The demographic information is shown per condition in Table 2.

129 participants drive daily, 35 on working days, 41 3-4 times a week, 10 one time a week, 9 1-3 times per
month, and 14 less than one time a month. 30 participants drove less than 7000 km last year, 26 between 7000 and
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Table 2. Number of participants and demographic information per condition. Kruskal-Wallis tests found no significant
difference neither for age (p=0.28) nor for owning a driver’s license (p=0.76)

.

Condition # participants Mean age SD age Mean license SD license
Baseline 54 35.26 13.01 16.04 13.45
Only Ego 62 36.89 13.51 17.02 13.95
Only Predictions 61 37.48 14.79 17.98 15.83
Ego and Predictions 61 33.75 14.00 15.43 14.48

14999, 49 between 15000 and 24999, 26 between 25000 and 32999, and 25 33000 or more km. Participants indicated
that their highest educational level is College (193), followed by High School (32) and Vocational Training (13).
Regarding their current employment, participants reported that most of them are employees (149), followed
by college students (29), are self-employed (22), are seeking a job (15), indicated “other” (22), or are students
in school (1). On a 5-point Likert scale (1=strongly disagree, 5=strongly agree), participants reported medium to
high interest in AVs (M=3.92, SD=1.17), medium belief that AVs will ease their lives (M=3.91, SD=1.16), and rather
believed that AVs would become reality by 2031 (M=4.11, SD=1.01).

5.2.2 Mental Workload, Trust, and Perceived Safety. Neither a Kruskal-Wallis test (p=0.73) nor the ART found
significant effects on mental workload.
Also, neither a Kruskal-Wallis test (p=0.27) nor the ART found significant effects on understanding.
A Kruskal-Wallis test found no significant differences in trust (p=0.09). The ART found a significant main effect

of visualization of the own planned maneuver on trust (𝐹 (1, 152) = 8.61, p=0.004, 𝜂2𝑝 = 0.03, Cohen’s f=0.17).
Trust was significantly higher with (M=3.71, SD=0.91) than without (M=3.41, SD=1.00) the visualization of the
own planned trajectory.

A Kruskal-Wallis test (𝜒2 (3)=7.67, p=0.05) and the ART (p=0.05 for visualization of the own planned trajectories)
found no significant differences in perceived safety.

5.2.3 Situation Awareness and Capability Assessment. Kruskal-Wallis tests found no significant effects neither on
SA (𝜒2(3)=2.00, p=0.57) nor on the subscales demand (𝜒2(3)=3.09, p=0.38), or understanding (𝜒2(3)=5.17, p=0.16).
A Welch-test found no significant difference for the SA subscale supply (𝐹 (3, 82.24) = 0.37, p=0.77)
An ART also found no significant effects on any of the scales but Understanding. The ART found a significant
main effect of visualization of the own planned trajectories on Understanding (𝐹 (1, 234) = 4.07, p=0.045, 𝜂2𝑝 = 0.02,
Cohen’s f=0.13). Understanding was higher with (M=14.57, SD=3.51) than without (M=13.76, SD=3.63) the ego
trajectory.
A Kruskal-Wallis test found no significant effects neither on the perceived ability to recognize other vehicles

(𝜒2(3)=1.83, p=0.61) nor on the perceived ability to predict other vehicles’ trajectory (𝜒2(3)=1.11, p=0.77). An ART
also found no significant effects.
Kruskal-Wallis tests found significant effects on perceived longitudinal (𝜒2(3)=14.53, p<0.001) and lateral

control (𝜒2(3)=16.44, p<0.001). Post-hoc tests using Dunn’s test showed in both cases that the baseline (M=4.88 for
longitudinal and M=5.14 for lateral) was rated significantly worse than the prediction-only visualization (M=5.62
for longitudinal and M=6.03 for lateral) and the combined visualization (M=5.83 for longitudinal and M=5.98 for
lateral).
The ART found a significant main effect visualization of predicted trajectories (𝐹 (1, 234) = 8.38, p=0.004,

𝜂2𝑝 = 0.03, Cohen’s f=0.19) on longitudinal control. The visualization (M=5.67, SD=1.30) to higher scores (without:
M=5.24, SD=1.30).

The ART found a significant main effect of visualization of predicted trajectories on lateral control (𝐹 (1, 234) =
10.42, p=0.001, 𝜂2𝑝 = 0.04, Cohen’s f=0.21). The ART also found a significant IE of visualization of the own planned
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trajectories × visualization of predicted trajectories on lateral control (𝐹 (1, 234) = 6.47, p=0.012, 𝜂2𝑝 = 0.03,
Cohen’s f=0.17; see Figure 7). Lateral control was rated high with visualization of predicted trajectories (M=5.93,
SD=1.18) and lower without the visualization of predicted trajectories (M=5.51, SD=1.17). However, the decline
was smaller with the visualization of the own planned trajectories.
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Fig. 7. IE of visualization of the own planned trajectories × visualization of predicted trajectories on lateral control.

5.2.4 Judgment, Performance, Reaction, Clarity. Kruskal-Wallis tests found no significant differences between
conditions for Judgement (𝜒2(3)=1.77, p=0.62), Performance (𝜒2(3)=3.75, p=0.29), Reaction (𝜒2(3)=5.71, p=0.13), or
clarity of the next actions (𝜒2(3)=6.96, p=0.07).

ARTs also found no significant effects on Performance and Reaction. The ART found a significant main effect of
visualization of predicted trajectories on Judgement (𝐹 (1, 234) = 8.34, p=0.004, 𝜂2𝑝 = 0.03, Cohen’s f=0.19). Without
the visualization of predicted trajectories (M=2.44, SD=1.47), Judgement was rated higher than with M=2.30,
SD=1.60). An ART found, however, a significant difference in the clarity of the next actions (𝐹 (1, 234) = 5.62,
p=0.019, 𝜂2𝑝 = 0.02, Cohen’s f=0.15) based on visualization of the own planned trajectories. With visualization of
the own planned trajectories (M=5.10, SD=1.52), it was significantly clearer what the AV will do than without
(M=4.90, SD=1.49). The ART found a significant IE of visualization of the own planned trajectories × visualization
of predicted trajectories on clarity of the next actions (𝐹 (1, 234) = 4.31, p=0.039, 𝜂2𝑝 = 0.02, Cohen’s f=0.14; see
Figure 8). While clarity was almost equal with the ego trajectory independent of the availability of predicted
other trajectories, this clarity was much lower when the ego was gone and there was no prediction.

5.2.5 Open Feedback. Feedback regarding the visualization was mainly positive. Most participants stated that
the visualizations helped them understand the AV’s actions (e.g., “The video was really neat to see. I’ve often
wondered what it would be like to be in a self-driving car and had a lot of doubts. I’m still not convinced but
I’m more open to it then ever before.”). However, one participant was more critical of the visualization of the
own planned maneuver. The participant stated that the visualization with the uncertainty shown via the color
made them doubt whether the AV could perform the driving task. Another participant proposed a cone-shaped
visualization to better visualize the potential space occupied by the other vehicles. Various participants also
indicated their astonishment at how well the predictions and the driving style are.
When not having the visualization, one participant stated: “Not knowing where the vehicle is going and me

worried the whole time so i think that might be an issue”. There were also additional comments to situations not
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Fig. 8. IE of visualization of the own planned trajectories × visualization of predicted trajectories on clarity of the next
actions.

shown in the videos, such as: “What happens if the cameras become covered with ice?” or “I am not sure how the
vehicle would react in situations in which the r̈ight of wayïs complicated. I would not feel safe passengering in
an automated car if, for example, we were turning left at a light with a green circle and had to yield to oncoming
traffic” or “I am wondering what the car will do in a situation where it comes upon a police officer directing
traffic. Can it respond appropriately to the officer’s hand signals?” or “I think to properly evaluate it, I would
want to see heavy traffic, things darting out in front of it, etc.”

6 DISCUSSION
This work presents the results of two online studies with N=280 and N=238 participants. In the first study, we
evaluated the most appropriate trajectory planning and prediction visualization under uncertain circumstances.
In line with previous work by Kunze et al. [53], we deemed the color to convey uncertainty best. Therefore, in the
subsequent study using real-world videos and state-of-the-art algorithms, we evaluated the effect of visualizing
the own planned maneuver and/or the predicted trajectories of the other vehicles.

6.1 Calibration of Passenger Expectations
Schneider et al. [72] provided evidence that a live explanation during an automated journey improves user
experience. Our data support that showing the own planned trajectory, for example, improves trust significantly.
Therefore, such explanatory approaches seem to have multiple beneficial outcomes. While the own planned
trajectory implicitly includes the assumptions about the other vehicles as these have to be taken into account [9],
we explicitly evaluated the effect of displaying these visualizations. The data showed that perceived safety was
higher with the visualized predicted trajectories. We found no significant effects on the SA or the capability
assessment. However, the baseline was rated significantly worse in lateral and longitudinal control. Our results
are somewhat contrary to the work by Colley et al. [14], who showed that visualizing the semantic segmentation
task did not lead to increased trust but increased capability assessment. The reasons for this are not clear. The
scene (busy inner-city vs. calm town) and the abstraction of the information (low abstraction in the semantic
segmentation task vs. higher abstraction for the prediction and planning) could be an explanation. Nonetheless,
the open feedback of the participants suggests that the visualizations were useful for them to understand the
capabilities of the AV. We assume that visualizing the uncertainty of the planning and prediction is crucial to
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avoid overtrust in an AV. Therefore, we argue that the more explicit use of color (compared to color intensity [72])
should be focused on. Therefore, we argue that the chosen visualizations are appropriate to calibrate passengers’
expectations of AVs. The open feedback suggests that this might make some user “nervous”. While this is an
unwanted effect for manufacturers, this, depending on the prior beliefs of the user, is a desired property of the
visualization. Assessing the appropriate trust level, however, is an unsolved challenge.

6.2 On the Visualization Design
The proposed visualizations had no significant effect on mental workload. Therefore, we argue that the visualiza-
tions are an appropriate tool to convey information about the own planned and predicted trajectories. The design
using a color gradient from blue to red was based on the online simulation study showing that color helped in
Understanding (see Figure 3) and lowered demand (see Figure 4). While the participants assessed the visualizations
as helpful, chevrons could improve understandability by providing directional information. Additional elements,
such as stopping lines, could further improve the user experience. Our simulation study showed that transparency
(in line with previous work [53]) was inappropriate in conveying uncertainty information. We decided against
discrete states (e.g., turning, stopping) as the continuous nature of the line allows us to continuously assess
the correctness of the prediction and the own planned maneuver. However, participants requested this kind of
information in their open feedback. Furthermore, our work showed that even without providing explanations for
the own trajectory, visualizing it increased trust significantly.

6.3 On the Study Methodology
In both experiments, we employed a video-based methodology with simulated and recorded situations. Therefore,
the setting of the study limited the possibility of simulating the AV’s vection. Future work could improve this
aspect by using VR (for a higher immersion) and simulators with higher degrees of freedom (e.g., [15, 42]). Another
drawback is that the real-world videos had to be captured in black and white and were, therefore, recolored.
Thus, while the result is convincing, informal discussions indicate that the quality is lower than Full HD RGB
videos. We see three reasons why the approach is still valid. (1) A real-world scenario was not possible due to the
unavailability of AVs and WSDs, as well as the requirement to run advanced algorithms for intention prediction.
While it would have been possible to study the effects of these visualizations, for example, in VR, we opted
for the video-based methodology due to the increased diversity of participants and the possibility of recruiting
sufficiently large numbers of participants, as done in other work [14, 72]. (2) Prior work in which the experiences
of passengers in an AV at an intersection with crossing pedestrians was evaluated in a monitor-based setup, a
simulator, and in an actual vehicle showed that most (but not all) effects could be found with the monitor-based
setup [76]. (3) As it is unclear whether a manufacturer will include such visualizations in their final design, these
visualizations could be used to educate the public about the potential drawbacks of this technology and, thus,
to calibrate their trust. As such an education could be most effectively via a website or, for example, YouTube
videos, we argue that the effects evaluated in the two surveys are relevant to inform future work.

6.4 Practical Implications
The study using the real-world videos confirmed some of the results of related work that transparent systems [26,
50] and AR systems [12, 14, 16, 40, 87] lead to higher trust and perceived safety. Already, HUDs are available in
commercially available vehicles (e.g., [1]). These HUDs already allow displaying at least the own planned trajectory.
Therefore, we argue that our data shows that the introduction of AVs should be accompanied by the visualization of
driving-task relevant information. While AR WSD will be beneficial also to visualize information regarding other
road users, the already available technology should be used for trust enhancement and calibration. If manufacturers
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do not want to incorporate these visualizations due to marketing concerns (see “autonowashing” [25]), then a
different approach has to be found to educate the public about current AV capabilities.

6.5 Limitations and Future Work
In the two studies, numerous participants took part (N=280 and N=238). However, the demographic information
shows that especially younger people participated. This demographic can be attributed to the younger demography
on prolific.co. It is, therefore, unclear whether the findings of our two studies can be transferred to other
demographic groups (i.e., age groups). Furthermore, due to the setting of the study as an online video-based
study, we were only able to measure and study subjective dependent measures such as trust. Therefore, while AVs
are not generally available, the results of this study have to be confirmed in real-world settings when possible.
This setting also limits the generalizability of the findings to real-world driving conditions.

As we also drove manually during the video recording for the study with realistic footage, the driving style
was actually not determined by the algorithm. While this introduces a potential deviation between the projection
of the maneuver and the actual ride, we believe this to be minor. Also, no participant mentioned this.

There might also be a contortion in the data by inattentive participants (e.g., for mental workload) despite our
best efforts to conduct an internally and externally valid study, for example, by including attention checks.
Finally, participants self-rated their understanding of the visualizations. However, this could have been

erroneous, which could have led to misconstrual errors. However, the qualitative results showed no such pattern
and the included attention checks should most likely have reduced mischievous participants.

Future work should also consider the effects of such uncertainty visualizations on usability and user experience
measures. These could also influence trust. Additionally, personality characteristics and personal values also
could influence trust, therefore, future work is encouraged in this area. Additionally, the open feedback showed
the necessity to evaluate the visualizations in other scenarios and also the possibility to add more discrete
visualizations (e.g., upcoming actions instead of continuous paths. Finally, our work shows the effects of different
visualization patterns and the effect of visualizing one pre-trained approach. To actually evaluate calibration, a
quantification of automation capability has to be defined and different capability levels must be compared. This is
possible with the used methodology but requires future work.

7 CONCLUSION
Overall, this work showed the potential to visualize the own planned trajectory and the predicted trajectory of
other vehicles. These tasks are crucial for the successful operation of AVs. In the first online simulation-based
study (N=280), we evaluated the use of shape, transparency, and color to convey uncertainty. Afterward, we
used color to convey uncertainty in visualizing the planned and predicted trajectories using state-of-the-art
real-world footage approaches, increasing external validity. Finally, we evaluated the effects of showing the own
planned and the other predicted trajectories in an online video-based study (N=238), finding that the visualizations
increased trust and perceived safety. Our work further shows possibilities to convey information about AVs for
their successful introduction.
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