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ABSTRACT
As automated vehicles become more widespread but lack a driver to
communicate in uncertain situations, external communication, for
example, via LEDs or displays, is evaluated. However, the concepts
are mostly evaluated in simple scenarios, such as one person trying
to cross in front of one automated vehicle. The traditional empirical
approach fails to study the large-scale effects of these in this not-
yet-real scenario. Therefore, we built PedSUMO, an enhancement
to SUMO for the simulacra of automated vehicles’ effects on public
traffic, specifically how pedestrian attributes affect their respect for
automated vehicle priority at unprioritized crossings. We explain
the algorithms used and the derived parameters relevant to the
crossing. We open-source our code under https://github.com/M-
Colley/pedsumo and demonstrate an initial data collection and
analysis of Ingolstadt, Germany.

CCS CONCEPTS
• Software and its engineering→ Software design engineering.
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1 BACKGROUND AND SUMMARY
Automated driving is a growing field of research [26], with fully
Automated Vehicles (AVs) being part of current discussions and
research [46]. AVs could provide numerous advantages, such as
improving traffic flow [35]. However, these advantages are currently
only theoretical. The consequences of introducing AVs in greater
numbers into public traffic can only be estimated as conducting
large-scale studies in public is impossible when the safety of AVs
is not clear yet [63, 65]. Also, fear of AVs is still significant in the
population [28, 50]. Additionally, measuring the impact of many
AVs on public traffic in many different locations might be unrealistic
or expensive. Thus, creating virtual scenarios to simulate how AVs
impact public traffic is more feasible.

This project examines the macroscopic effects of AVs in traf-
fic and how the respect of pedestrians towards AVs’ priority at
crossings leads to different or fluctuating traffic flows. Currently,
numerous research studies are concerned about whether AVs will
have to be able to communicate with vulnerable road users such as
pedestrians or cyclists [32]. When AVs are regularly stopped due to
pedestrian behavior, this can ripple through traffic, slowing down
the overall flow. The effect is stronger with an increasing number of
AVs with an external Human-Machine Interface (eHMI) as an eHMI
serves as a communication between the human and the vehicles,
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contributing to a higher feeling of safety around AVs [4, 57]. The
following provides background information about human behavior
modeling, factors on crossing decisions, and eHMIs.

(a) Ulm, Germany. (b) Ingolstadt, Germany.

Figure 2: Overview of (parts of) different cities. Partially
taken from previous work.

Attributes Influencing Street Crossing
Several attributes contribute to pedestrian street-crossing decisions,
including other pedestrians’ behavior, group size, social status, and
experience with AVs [15, 57]. Yagil [73] found that pedestrians are
more likely to follow traffic laws when observing similar behavior
from others. However, Lefkowitz et al. [45] demonstrated that this
imitation is influenced by the appearance of the other pedestrian.
Contrarily, Dolphin et al. [24] argued that social status and gender
do not significantly impact imitation, emphasizing the role of group
size instead. In line with the importance of group size, Heimstra
et al. [31] showed that children often cross streets in groups, which
influences their risk-taking behavior [30, 61, 64, 71]. Studying all
these factors in an empirical study is nearly impossible, therefore,
simulations are necessary.

External Communication of Automated Vehicles
Current human-driven vehicles often rely on gestures and eye con-
tact for communication [56]. Although such explicit communica-
tion is infrequent [44], eHMIs have been proposed as a solution for
AVs [32]. These eHMIs can be classified based on modality, message
type, and communication location [11, 12].

Several studies have explored the effectiveness of eHMIs across
different populations, including children [19], visually [13, 14] or
cognitively [29] impaired individuals, general pedestrians [1, 5, 8–
10, 17, 21, 47], manual drivers [7], and bicyclists [34]. Various
modalities, such as displays [27], LED strips [27, 48], and audi-
tory cues [49], have been tested. Overall, eHMIs have positively
affected pedestrian behavior and comprehension [13, 20]. However,
current research suggests the need to address unresolved questions
such as overtrust [33], scalability [16], and the social aspects of
eHMIs [5, 40, 58, 59]. A major limitation of these studies is the
focus on simple scenarios, often resembling 1:1 (AV:pedestrian)
communication. While Colley et al. [6] approached this with an on-
line simulation studying the effect of multiple lanes and additional
simulated pedestrians, large-scale analyses are missing.

Pedestrian Behavior Modeling
There exist several pedestrian simulation approaches. These can be
distinguished into macroscopic or microscopic [55]. Microscopic
refers to simulations where each actor is simulated instead of, for
example, flows. SUMO [22] represents a possibility to simulate
mobility on the microscopic level. While “there are good models
for optimal walking behavior, high-level psychological and social
modeling of pedestrian behavior still remains an open research
question that requires many conceptual issues to be clarified” [3,
p. 1]. Camara et al. [3] showed that algorithms used age, gender,
distraction, social group membership, cultural membership, and
road safety adaptation to model pedestrian behavior. While most
works use a deterministic approach, Völz et al. [70] showed a model
that predicts the crossing decision at a crosswalk using support
vector machines. Due to the unavailability of actual AVs on the
streets equipped with eHMIs, such approaches are infeasible.

In partially related HCI domains, Savino et al. [60] evaluated
bicyclist strategies to reach a given destination. It evaluates the ef-
ficacy of As-the-crow-flies (ATCF) navigation for cyclists, focusing
on how different street network attributes impact the user expe-
rience. Using feature importance analysis across 1,633 cities, the
paper identifies that an ideal environment for ATCF navigation
has long streets, multiple turning options, few dead ends, and a
grid-like structure. East Asian and North American cities are most
suited for this navigation method, while Western Europe’s street
networks are least suited. For this, Savino et al. [60] simulated an
agent using a modified depth-first search. Ikkala et al. [36] adopt a
different method, biomechanically simulating a user’s entire body.
While this is a more accurate representation of a user in physical
terms, the applicability to large-scale analyses is not yet possible.

2 PURPOSE
Using the microscopic traffic simulation tool SUMO [22], we vary
pedestrian attributes that affect decision-making, making them
more or less likely to respect AV priority at crossings. Microscopic
traffic flow models focus on individual road user units, thus rep-
resenting dynamic variables such as the position and velocity of
each vehicle and pedestrian. PedSUMO seeks to measure macro-
scopic changes in traffic flow using different variables for pedestrian
decision-making (e.g., gender of pedestrians, street width, vehicle
size) with different percentages of AVs (with eHMI) in traffic.

3 CHARACTERISTICS
After repository cloning, install the requirements detailed in the
requirements.txt. If Large Language Models (LLMs) are to be
used, the requirements_llm.txt must be installed. The require-
ments are minimal in addition to SUMO but require new versions
for increased performance. If other cities than those provided are
to be used, these must be downloaded and saved in the appropri-
ate directory. We strongly encourage community input, either as
comments, issues, or additional code in the GitHub repository.
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4 CODE/SOFTWARE
4.1 Algorithms
The main idea of PedSUMO is to identify unprioritized crossings
with pedestrians wanting to cross in each step of the simulation
(see Figure 1). Additionally, the algorithm filters those for situations
in which these pedestrians would not usually be able to cross due
to an oncoming vehicle. If that oncoming vehicle is an AV, a chance
for the waiting pedestrian to cross the road anyway and ignore the
vehicle’s right of way is calculated.

To increase performance during simulation time, a dictionary of
all incoming lanes into each unprioritized crossing in the simulation
(see algorithm 1) is created when the scenario is selected. To achieve
this, the successor of each lane in the network is evaluated. If the
successor is an internal foe of an unprioritized crossing, the original
lane is added to the set of lanes of the associated crossing.

After the incoming lanes dictionary (see algorithm 1) is created,
the main simulation loop (see algorithm 4) starts. This simulation
loop runs until the pre-configured last simulation step (default =
3600 or 1h) is reached. At the start of each step, the terminated
entities of the previous step are cleaned up, and newly added en-
tities are adjusted. That includes assigning attributes such as age
and gender to pedestrians and declaring vehicles as automated
or manual. Afterward, every pedestrian’s intent is evaluated. If a
pedestrian intends to walk onto an unprioritized crossing as their
next lane, this pedestrian is added to a list of waiting pedestrians
for that crossing.

For each of these crossings, it is then determined whether the
current situation is an av_crossing_scenario (see algorithm 2). That
is the case whenever a pedestrian would not usually be able to cross
the road due to an oncoming vehicle, but that vehicle is marked as
an AV. On the side, the closest vehicle and its time to collision and
distance to the crossing are calculated for future use.

If the situation is an av_crossing_scenario, the crossing probabil-
ity is calculated. To avoid redundancy, all defiance factors specific
to the crossing, such as street_width_defiance_factor C.4 or the
vehicle_size_defiance_factor C.6, are calculated. Then, for each
pedestrian wanting to cross the evaluated crossing, their individual
defiance factors, such as the waiting_time_defiance_factor C.1, are
calculated. Section C lists the full list of factors and their calculation.

The total crossing probability is then calculated by multiplying
each factor with the base_automated_vehicle_defiance. The deci-
sion to cross is simulated by comparing this probability with a
random number. If the pedestrian "decides" to cross, they are set to
ignore all vehicles until they completely cross the crossing. Addi-
tionally, the danger of the situation is evaluated (see algorithm 3).
This is done by calculating and then comparing the minimal stop-
ping distance of the closest incoming vehicle in terms of time to
collision with its distance to the crossing. If the stopping distance
is larger than the vehicle’s distance to the crossing, the situation is
deemed dangerous.

Our implementation also allows the use of different LLMs pro-
vided by the HuggingFace transformers library [72] to identify
potentially realistic behavior (see Park et al. [51]). Therefore, a
prompt given the scenario values could start with:

You are a pedestrian. You are standing at a street with some au-
tomated vehicles trying to decide whether you will cross it. You are

distracted by your smartphone. There are no children in your vicinity.
The approaching automated vehicle has an interface attached that
communicates with you. You are not walking. The street is five meters
wide. The vehicle has a front area of three square meter. [...]

After each crossing is evaluated, pedestrians who were altered
in previous steps to ignore vehicles and successfully crossed their
crossing get their alterations reset, and the next simulation step
can begin. The usage of LLMs depends on the size of the Video
Random Access Memory (VRAM) available and the chosen model.
We suggest using 12GB VRAM or more.

4.2 Simulated Pedestrian Crossing Factors
Adjustable factors are diverse and have a different impact by default.
Table 1 shows a description of each factor with the correspond-
ing source for reference: The relevant formulae determining the
distribution of probabilities are described in Section C.

4.3 Measurements/Logging
In addition to SUMO’s standard output (see [23]), we log the pa-
rameters shown in Table 2 in a CSV file. Each crossing event has all
factors listed that are explained in section 4.2, including defiance
values and their impact during the crossing event. Additionally, the
static percentage of AVs (with eHMI) in all vehicles in traffic and
the following data are logged in this file for every crossing event.
These can, as such, easily be used as independent variables.

5 USAGE NOTES
While SUMO generally allows the use of an OpenStreetMap (OSM)
integration to simulate road networks, these often have to be fine-
tuned due to errors. Therefore, we provide already curated scenarios
in Ingolstadt, Wildau, Monaco, and Bologna. Additionally available
for simulation are Ulm and Manhattan, which were generated and
adapted using SUMO’s OSMWebWizard.

While the current implementation is based on the scientific lit-
erature, we highlight that the simulation cannot necessarily be
seen as a true representation of the interaction between an AV and
pedestrians. However, in line with Park et al. [51], the simulacra of
human behavior with PedSUMO can generate insights that plausi-
bly define future behavior. This is currently the most appropriate
avenue to study large-scale effects of eHMI and AVs on traffic flow.

AVs represent a specific manifestation of robots and are, there-
fore, directly relevant to the HRI community (e.g., see [2, 42, 43, 53]).
However, the current implementation can also serve as a basis for
including simulated robots in communication with pedestrians.
This is currently researched in the CHI and HRI community [52].

6 EVALUATION
As we were interested in the large-scale effects of AVs and eHMIs
on traffic, we simulated Ulm, Ingolstadt, Monaco, and Bologna (e.g.,
see Figure 2). Due to time constraints, we chose a step size of 0.2
for the prevalence of AVs, eHMIs, and the base defiance, resulting
in 5 ∗ 5 ∗ 5 = 125 logs per city. A descriptive data report per city
was generated via DataExplorer [18] and is attached in the GitHub
repository under data. Due to the data size (between 275 MB and
4.2 GB), we will make the data available upon request. All relevant

https://sumo.dlr.de/docs/Tutorials/OSMWebWizard.html
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tables for the analyses are also available in the repository. We pro-
vide an initial overview of results for Ingolstadt, Germany, due to its
realistically modeled traffic (taken from [69]). Because of the large
number of data entries, using R or Python was too time-consuming.
Therefore, we provide a Julia script which can be expanded. This
reduced the runtime from hours to a few minutes. Due to our focus
on providing the code, the analysis is not exhaustive.

6.1 Heatmap of Interactions
First, we provide a heatmap of all interactions over all parameter
combinations in Figure 3. This heatmap shows that interactions
occurred over the entire city. Attention: due to limits in Julia’s
visualization, the city had to be inverted vertically.

Figure 3: Heatmap of interactions between pedestrians and
AVs in Ingolstadt, Germany over all parameter combinations.

6.2 Interaction Effects on Crossing Probability

Figure 4: Crossing Probability. Linear mixed model results.

We fitted a linear mixed model to predict crossing probability
with regard to AV density, eHMI density, and base AV defiance (see
Figure 4). For a detailed description, see the repository.

6.3 Automated Vehicle Density → Collisions

Figure 5: Collisions with regard to AV density.

We fitted a linear model to find the correlation between AV
density and collisions (see Figure 5). The linear model shows a
downward trend of collisions with higher AV density.

7 DISCUSSION AND FUTUREWORK
In this work, we presented an implementation and preliminary data
to study the effect of AVs and attached eHMIs in their interaction
with pedestrians on a large scale. Our simulacra implementation
relies on empirical data. However, scientific data can be scarce re-
garding certain factors, showing a potential flaw in how scientific
results are reported by solely reporting differences but not quan-
tifying them. Therefore, some numbers may be educated guesses
rather than extracted from studies and statistics. Nonetheless, we
argue it is the most appropriate way to study the large-scale effects.
Additionally, we enable the usage of LLMs for deriving crossing
decisions. Our first evaluations reported in Section 6 show that we
can simulate crossings in various areas of the cities and that, for
example, the impact of AV density on collisions seems negatively
correlated (i.e., more AVs lead to reduced collisions).

Very recently, Tian et al. [67] provided a novel model for the
interaction of pedestrians and AVs. However, they do not provide
an implementation, severely reducing applicability. In the future,
we aim to re-implement this model to compare it against ours. Fur-
thermore, we envision including additional mobility concepts, such
as micromobility, in the interaction simulation and implementing
interaction betweenmanual drivers and other vulnerable road users.
Besides, our approach can be extended to investigate the macro-
scopic effects of novel in-vehicle user interfaces (see [38, 39]) on
traffic. Also, the extensive resulting datasets suggest that spatio-
temporal automotive user interface analysis [37] could facilitate
future simulation analysis.
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A ALGORITHMS

Result: A dictionary containing a set of all incoming lanes into each
unprioritized crossing in the simulation

for lane in traci.lane.getIDList() do
if ("c" in lane) and ("cluster" not in lane) then

internal_foes_dict[lane] = traci.lane.getInternalFoes(lane);
end

end
for lane in traci.lane.getIDList() do

for successor_tuple in traci.lane.getLinks(lane) do
if successor_tuple[5] == ’M’ then

internal_successor = successor_tuple[4];
if internal_successor != ” then

for crossing in internal_foes_dict do
if internal_successor in internal_foes_dict.get(crossing)
then

cross_dict.setdefault(crossing, set()).add(lane);
end

end
end

end
end

end
return cross_dict;
Algorithm 1: Creation of Incoming Lanes Dictionary

Result: True if pedestrians would be unable to cross but the closest vehicle is an AV, False
otherwise

𝑒𝑠𝑡_𝑡𝑖𝑚𝑒_𝑛𝑒𝑒𝑑𝑒𝑑_𝑡𝑜_𝑐𝑟𝑜𝑠𝑠 =
𝑡𝑟𝑎𝑐𝑖.𝑙𝑎𝑛𝑒.𝑔𝑒𝑡𝐿𝑒𝑛𝑔𝑡ℎ (𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔 + ”_0”)/𝑒𝑠𝑡_𝑤𝑎𝑙𝑘𝑖𝑛𝑔_𝑠𝑝𝑒𝑒𝑑 ;

for incoming_lane in crossing_dict[crossing + "_0"] do
for vehicle in traci.lane.getLastStepVehicleIDs(incoming_lane) do

distance_from_start_of_lane = traci.vehicle.getLanePosition(vehicle);
if 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑓 𝑟𝑜𝑚_𝑠𝑡𝑎𝑟𝑡_𝑜 𝑓 _𝑙𝑎𝑛𝑒 >

𝑓 𝑢𝑟𝑡ℎ𝑒𝑠𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑓 𝑟𝑜𝑚_𝑠𝑡𝑎𝑟𝑡_𝑜 𝑓 _𝑙𝑎𝑛𝑒 then
furthest_distance_from_start_of_lane = distance_from_start_of_lane;
closest_vehicle = vehicle;

end
end
if 𝑐𝑙𝑜𝑠𝑒𝑠𝑡_𝑣𝑒ℎ𝑖𝑐𝑙𝑒! = ”” then

distance = traci.lane.getLength(incoming_lane) -
furthest_distance_from_start_of_lane;

if 𝑡𝑟𝑎𝑐𝑖.𝑣𝑒ℎ𝑖𝑐𝑙𝑒.𝑔𝑒𝑡𝑆𝑝𝑒𝑒𝑑 (𝑐𝑙𝑜𝑠𝑒𝑠𝑡_𝑣𝑒ℎ𝑖𝑐𝑙𝑒 )! = 0 then
ttc = distance / traci.vehicle.getSpeed(closest_vehicle);
if 𝑡𝑡𝑐 < 𝑙𝑜𝑤𝑒𝑠𝑡_𝑡𝑡𝑐_𝑡𝑜𝑡𝑎𝑙 then

lowest_ttc_total = ttc;
closest_vehicle_total = closest_vehicle;

end
closest_vehicles_dict[incoming_lane] = {"vehicle": closest_vehicle,
"distance": distance, "ttc": ttc};

else
lowest_ttc_total = 10.0;
closest_vehicle_total = closest_vehicle;
closest_vehicles_dict[incoming_lane] = {"vehicle": closest_vehicle,
"distance": distance, "ttc": 10.0};

end
if 𝑐𝑙𝑜𝑠𝑒𝑠𝑡_𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠_𝑑𝑖𝑐𝑡 [𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔_𝑙𝑎𝑛𝑒 ] [”𝑡𝑡𝑐”] <
𝑒𝑠𝑡_𝑡𝑖𝑚𝑒_𝑛𝑒𝑒𝑑𝑒𝑑_𝑡𝑜_𝑐𝑟𝑜𝑠𝑠 then

if closest_vehicle in avs then
av_crossing_scenario = True;

else
av_crossing_scenario = False;
break;

end
end

end
end
return av_crossing_scenario;

Algorithm 2: check_for_av_crossing_scenario
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Input: vehicle string ID of the closest vehicle to the crossing
Result: True if the current situation is evaluated as dangerous, False otherwise
speed = traci.vehicle.getSpeed(closest_vehicle);
𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑠𝑝𝑒𝑒𝑑 ∗ 𝑐 𝑓 .𝑑𝑟𝑖𝑣𝑒𝑟_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒 ;
𝑏𝑟𝑒𝑎𝑘𝑖𝑛𝑔_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑝𝑜𝑤 (𝑠𝑝𝑒𝑒𝑑, 2)/(2 ∗
𝑡𝑟𝑎𝑐𝑖.𝑣𝑒ℎ𝑖𝑐𝑙𝑒.𝑔𝑒𝑡𝐸𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦𝐷𝑒𝑐𝑒𝑙 (𝑐𝑙𝑜𝑠𝑒𝑠𝑡_𝑣𝑒ℎ𝑖𝑐𝑙𝑒 ) ) ;

stopping_distance = reaction_distance + breaking_distance;
lane = traci.vehicle.getLaneID(closest_vehicle);
distance_to_crossing = traci.lane.getLength(lane) -
traci.vehicle.getLanePosition(closest_vehicle);

if 𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 >= 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑡𝑜_𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔 then
return True;

else
return False;

end
Algorithm 3: check_for_dangerous_situation

B CONFIGURABLE FACTORS

while 𝑡𝑟𝑎𝑐𝑖.𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛.𝑔𝑒𝑡𝑇𝑖𝑚𝑒 ( ) <= 𝑟𝑢𝑛_𝑠𝑖𝑚_𝑢𝑛𝑡𝑖𝑙_𝑠𝑡𝑒𝑝 do
traci.simulationStep();
vehicles = traci.vehicle.getIDList();
pedestrians = traci.person.getIDList();
increment_pedestrian_waiting_time(waiting_pedestrians);
terminated_vehicles = last_step_vehicles - set(vehicles);
terminated_pedestrians = last_step_pedestrians - set(pedestrians);
for terminated_pedestrian in terminated_pedestrians do

del ped_attribute_dict[terminated_pedestrian];
end
avs = avs - terminated_vehicles;
ehmi = ehmi - terminated_vehicles;
adjust_newly_added_entities(vehicles, last_step_vehicles, avs, ehmi,
pedestrians, last_step_pedestrians);

find_pedestrians_about_to_enter_unprioritized_crossing(pedestrians,
waiting_pedestrians, crossing_waiting_dict);

for crossing in crossing_waiting_dict do
av_crossing_scenario = check_for_av_crossing_scenario();
if av_crossing_scenario then

group_size = len(crossing_waiting_dict[crossing]);
incoming_lanes = crossing_dict[crossing + "_0"];
general_defiance_factors =
get_general_defiance_factors(crossing_waiting_dict, crossing,
closest_vehicle_total, lowest_ttc_total, group_size, ehmi,
incoming_lanes);

for pedestrian in crossing_waiting_dict[crossing] do
individual_defiance_factors =
get_individual_defiance_factors(pedestrian,
waiting_pedestrians);

𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔_𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =

𝑏𝑎𝑠𝑒_𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑒𝑑_𝑣𝑒ℎ𝑖𝑐𝑙𝑒_𝑑𝑒𝑓 𝑖𝑎𝑛𝑐𝑒 ∗
𝑔𝑒𝑛𝑒𝑟𝑎𝑙_𝑑𝑒𝑓 𝑖𝑎𝑛𝑐𝑒_𝑓 𝑎𝑐𝑡𝑜𝑟𝑠 [”𝑔𝑟𝑜𝑢𝑝_𝑠𝑖𝑧𝑒_𝑑𝑒𝑓 𝑖𝑎𝑛𝑐𝑒_𝑓 𝑎𝑐𝑡𝑜𝑟 ”]∗
𝑔𝑒𝑛𝑒𝑟𝑎𝑙_𝑑𝑒𝑓 𝑖𝑎𝑛𝑐𝑒_𝑓 𝑎𝑐𝑡𝑜𝑟𝑠 [”𝑡𝑡𝑐_𝑑𝑒𝑓 𝑖𝑎𝑛𝑐𝑒_𝑓 𝑎𝑐𝑡𝑜𝑟 ”]∗
𝑔𝑒𝑛𝑒𝑟𝑎𝑙_𝑑𝑒𝑓 𝑖𝑎𝑛𝑐𝑒_𝑓 𝑎𝑐𝑡𝑜𝑟𝑠 [”𝑒ℎ𝑚𝑖_𝑑𝑒𝑓 𝑖𝑎𝑛𝑐𝑒_𝑓 𝑎𝑐𝑡𝑜𝑟 ”]∗
𝑔𝑒𝑛𝑒𝑟𝑎𝑙_𝑑𝑒𝑓 𝑖𝑎𝑛𝑐𝑒_𝑓 𝑎𝑐𝑡𝑜𝑟𝑠 [”𝑠𝑡𝑟𝑒𝑒𝑡_𝑤𝑖𝑑𝑡ℎ_𝑑𝑒𝑓 𝑖𝑎𝑛𝑐𝑒_𝑓 𝑎𝑐𝑡𝑜𝑟 ”]∗
𝑔𝑒𝑛𝑒𝑟𝑎𝑙_𝑑𝑒𝑓 𝑖𝑎𝑛𝑐𝑒_𝑓 𝑎𝑐𝑡𝑜𝑟𝑠 [”𝑐ℎ𝑖𝑙𝑑_𝑝𝑟𝑒𝑠𝑒𝑛𝑡_𝑑𝑒𝑓 𝑖𝑎𝑛𝑐𝑒_𝑓 𝑎𝑐𝑡𝑜𝑟 ”]∗
𝑔𝑒𝑛𝑒𝑟𝑎𝑙_𝑑𝑒𝑓 𝑖𝑎𝑛𝑐𝑒_𝑓 𝑎𝑐𝑡𝑜𝑟𝑠 [”𝑣𝑒ℎ𝑖𝑐𝑙𝑒_𝑠𝑖𝑧𝑒_𝑑𝑒𝑓 𝑖𝑎𝑛𝑐𝑒_𝑓 𝑎𝑐𝑡𝑜𝑟 ”]∗
𝑔𝑒𝑛𝑒𝑟𝑎𝑙_𝑑𝑒𝑓 𝑖𝑎𝑛𝑐𝑒_𝑓 𝑎𝑐𝑡𝑜𝑟𝑠 [”𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦_𝑟𝑎𝑡𝑒_𝑑𝑒𝑓 𝑖𝑎𝑛𝑐𝑒_𝑓 𝑎𝑐𝑡𝑜𝑟 ”]∗
𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙_𝑑𝑒𝑓 𝑖𝑎𝑛𝑐𝑒_𝑓 𝑎𝑐𝑡𝑜𝑟𝑠 [”𝑝𝑒𝑑_𝑠𝑝𝑒𝑒𝑑_𝑑𝑒𝑓 𝑖𝑎𝑛𝑐𝑒_𝑓 𝑎𝑐𝑡𝑜𝑟 ”]∗
𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙_𝑑𝑒𝑓 𝑖𝑎𝑛𝑐𝑒_𝑓 𝑎𝑐𝑡𝑜𝑟𝑠 [”𝑠𝑚𝑜𝑚𝑏𝑖𝑒_𝑑𝑒𝑓 𝑖𝑎𝑛𝑐𝑒_𝑓 𝑎𝑐𝑡𝑜𝑟 ”]∗
𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙_𝑑𝑒𝑓 𝑖𝑎𝑛𝑐𝑒_𝑓 𝑎𝑐𝑡𝑜𝑟𝑠 [”𝑤𝑎𝑖𝑡𝑖𝑛𝑔_𝑡𝑖𝑚𝑒_𝑑𝑒𝑓 𝑖𝑎𝑛𝑐𝑒_𝑓 𝑎𝑐𝑡𝑜𝑟 ”]∗
𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙_𝑑𝑒𝑓 𝑖𝑎𝑛𝑐𝑒_𝑓 𝑎𝑐𝑡𝑜𝑟𝑠 [”𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒_𝑑𝑒𝑓 𝑖𝑎𝑛𝑐𝑒_𝑓 𝑎𝑐𝑡𝑜𝑟 ”];

if 𝑟𝑎𝑛𝑑𝑜𝑚 <= 𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔_𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 then
crossing_decision = ’cross’;
dangerous_situation =
check_for_dangerous_situation(closest_vehicle_total);

else
crossing_decision = ’not_cross’;
dangerous_situation = False;

end
vehicle_types = traci.vehicletype.getIDList();
traci.person.setParameter(pedestrian,
"junctionModel.ignoreTypes", " ".join(vehicle_types));

end
end

end
reset_crossed_pedestrians(waiting_pedestrians, crossing_waiting_dict);
last_step_vehicles = set(vehicles);
last_step_pedestrians = set(pedestrians);

end
Algorithm 4: Simulation Loop
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Table 1: Table with configurable factors. The Value refers to the pre-configured value based on literature and own assumptions.

Name Abbr. Value Range Source Description
av_density 0.0 <= 𝑥 <= 1.0 density of AVs compared to the total number of vehicles.
ehmi_density 0.0 <= 𝑥 <= 1.0 density of AVs with eHMI compared to density of AVs.
est_walking_speed 1.0 𝑥 > 0.0 assumed average walking speed of pedestrians in meters per second.
driver_reaction_time 0.5 𝑥 >= 0.0 assumed driver reaction time in seconds.
base_automated_vehicle_defiance 𝑥 >= 0.0 base probability for a pedestrian to defy the right of way of incoming

AVs.
ehmi_dfv 1.3 𝑥 >= 0.0 [4] defiance factor value (DFV) to defy priority of AVs with eHMI.
walking_pedestrian_dfv 1.2 𝑥 >= 0.0 pedestrian-already-walking DFV.
group_size_dfv_two_to_three 1.2 𝑥 >= 0.0 [4] DFV for groups of two or three.
group_size_dfv_over_three 1.4 𝑥 >= 0.0 [4] DFV for groups of more than three.
ttc_lower_extreme_time ttc_let 1.0 𝑥 >= 0.0 [1] time to collision (TTC) in seconds under which extreme DFV is used.
ttc_lower_bound_time ttc_lbt 3.0 𝑥 >= ttc_let [1] TTC in seconds under which the lower bound DFV is used.
ttc_upper_bound_time ttc_upt 6.0 𝑥 >= ttc_lbt [1] TTC in seconds over which the upper bound DFV is used.
ttc_dfv_under_lower_extreme ttc_ule 0.01 𝑥 >= 0.0 [1] DFV for extremely low TTC.
ttc_dfv_under_lower_bound ttc_ulb 0.1 𝑥 >= ttc_ule [1] DFV if TTC is under lower bound.
ttc_dfv_over_upper_bound ttc_oub 3.0 𝑥 >= ttc_ulb [1] DFV if TTC is over upper bound.
ttc_base_at_lower_bound ttc_blb 0.2 𝑥 >= ttc_ulb [1] value from lower bound for linear increase.
ttc_base_at_upper_bound ttc_bub 2.0 ttc_blb <= 𝑥 <= ttc_oub [1] value from upper bound for linear increase.
waiting_time_accepted_value wt_av 28 𝑥 >= 0.0 [66] accepted waiting time for pedestrians in seconds.
waiting_time_dfv_under_accepted_value wt_uav 1.0 𝑥 >= 0.0 [66] DFV if waiting time is under accepted value.
waiting_time_dfv_over_accepted
_value_increase_per_second

wt_ips 0.0494 𝑥 >= 0.0 [66] DFV increase per second if waiting time is above-accepted value (linear
increase).

neutral_street_width 7.0 𝑥 >= 0.0 [57] street width in meters that is considered neutral.
child_age 14 𝑥 >= 0.0 [54] up to what age a person is viewed as a child.
girl_present_dfv 0.85 𝑥 >= 0.0 [54] DFV if a girl is present.
boy_present_dfv 0.9 𝑥 >= 0.0 [54] DFV if a boy is present.
smombie_dfv 1.5 𝑥 >= 0.0 DFV of a pedestrian distracted by their smartphone. A smartphone

zombie (smombie).
smombie_start_age s_sa 8 𝑥 >= 0.0 start age in years for linear increase in chance to be a smombie.
smombie_peak_age s_pa 16 𝑥 >= s_sa age where smombie chance reaches it’s peak.
smombie_end_age s_ea 50 𝑥 >= s_pa end age for linear decrease in chance to be a smombie.
smombie_chance_at_start_age s_csa 0.02 𝑥 >= 0.0 starting chance to be a smombie at smombie_start_age (linear increase

to smombie_peak_age).
smombie_chance_at_peak_age s_cpa 0.1 𝑥 >= s_csa peak chance to be a smombie at smombie_peak_age.
smombie_chance_at_end_age s_cea 0.01 𝑥 <= s_cpa ending chance to be a smombie at smombie_end_age (linear decrease

from smombie_peak_age).
smombie_base_chance s_bc 0.01 𝑥 <= s_csa smombie chance for ages outside the defined interval.
small_vehicle_size svs 1.755 𝑥 >= 0.0 [41] front area in square meters for an ElectraMeccanica Solo.
neutral_vehicle_size nvs 2.52 𝑥 >= svs [41] front area in square meters for a VW Scirocco 3.
large_vehicle_size lvs 4.0 𝑥 >= nvs [41] front area in square meters for a Hummer H2.
small_vehicle_size_dfv svs_dfv 1.3 𝑥 >= 0.0 [41] upper bound DFV for small vehicles (linear increase from neu-

tral_vehicle_size_dfv).
neutral_vehicle_size_dfv nvs_dfv 1.0 𝑥 >= 0.0 [41] DFV for average sized vehicles.
large_vehicle_size_dfv lvs_dfv 0.7 𝑥 >= 0.0 [41] lower bound DFV for large vehicles (linear decrease from neu-

tral_vehicle_size_dfv).
lane_low_occupancy_rate lor 0.02 0 <= 𝑥 <= 1.0 [62] lower bound lane occupancy rate in (length of all vehicles) / (street

length).
lane_high_occupancy_rate hor 0.1 l_lor <= 𝑥 <= 1.0 [62] upper bound lane occupancy rate (0.1means 10% of street is filled with

vehicles.
low_occupancy_rate_dfv lor_dfv 1.2 𝑥 >= 0.0 [62] upper bound DFV for a low lane occupancy rate (linear increase with

decreasing occupancy rate).
high_occupancy_rate_dfv hor_dfv 0.8 𝑥 >= 0.0 [62] lower bound DFV for a high lane occupancy rate.
male_gender_dfv 1.8 𝑥 >= 0.0 [68] DFV for male pedestrians.
female_gender_dfv 1.0 𝑥 >= 0.0 [68] DFV for female pedestrians.
other_gender_dfv 1.4 𝑥 >= 0.0 [68] DFV for diverse pedestrians.
impaired_vision_dfv 1.2 𝑥 >= 0.0 [25] DFV for pedestrians with impaired vision.
healthy_vision_dfv 1.0 𝑥 >= 0.0 [25] DFV for pedestrians with healthy vision.

End of table
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C.1 get_waiting_time_defiance_factor

𝑓 (𝑤𝑎𝑖𝑡𝑖𝑛𝑔_𝑡𝑖𝑚𝑒) =
{
𝑤𝑡_𝑢𝑎𝑣 if𝑤𝑎𝑖𝑡𝑖𝑛𝑔_𝑡𝑖𝑚𝑒 ≤ 𝑤𝑡_𝑎𝑣
1.0 + (𝑤𝑎𝑖𝑡𝑖𝑛𝑔_𝑡𝑖𝑚𝑒 −𝑤𝑡_𝑎𝑣) ·𝑤𝑡_𝑖𝑝𝑠 otherwise

(1)

C.2 get_smombie_defiance_factor

𝑑𝑖𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛_𝑐ℎ𝑎𝑛𝑐𝑒 =

{
𝑠_𝑐𝑠𝑎 + (𝑝𝑒𝑑_𝑎𝑔𝑒 − 𝑠_𝑠𝑎) × 𝑠_𝑐𝑝𝑎−𝑠_𝑐𝑠𝑎

𝑠_𝑝𝑎−𝑠_𝑠𝑎 , if 𝑠_𝑠𝑎 ≤ 𝑝𝑒𝑑_𝑎𝑔𝑒 ≤ 𝑠_𝑝𝑎
𝑠_𝑐𝑝𝑎 − (𝑝𝑒𝑑_𝑎𝑔𝑒 − 𝑠_𝑝𝑎) × 𝑠_𝑐𝑝𝑎−𝑠_𝑐𝑒𝑎

𝑠_𝑒𝑎−𝑠_𝑝𝑎 , if 𝑠_𝑝𝑎 ≤ 𝑝𝑒𝑑_𝑎𝑔𝑒 ≤ 𝑠_𝑒𝑎
(2)

𝑓 (𝑑𝑖𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛_𝑐ℎ𝑎𝑛𝑐𝑒) =
{
𝑠𝑚𝑜𝑚𝑏𝑖𝑒_𝑑 𝑓 𝑣 if 𝑟𝑎𝑛𝑑𝑜𝑚_𝑛𝑢𝑚𝑏𝑒𝑟 ≤ 𝑑𝑖𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛_𝑐ℎ𝑎𝑛𝑐𝑒
1.0 otherwise

(3)

C.3 get_child_present_defiance_factor

𝑓 (𝑝𝑒𝑑) =


𝑏𝑜𝑦_𝑝𝑟𝑒𝑠𝑒𝑛𝑡_𝑑 𝑓 𝑣, if 𝑝𝑒𝑑_𝑎𝑔𝑒 ≤ 𝑐ℎ𝑖𝑙𝑑_𝑎𝑔𝑒 and 𝑝𝑒𝑑_𝑔𝑒𝑛𝑑𝑒𝑟 = ”𝑚𝑎𝑙𝑒”
𝑔𝑖𝑟𝑙_𝑝𝑟𝑒𝑠𝑒𝑛𝑡_𝑑 𝑓 𝑣, if 𝑝𝑒𝑑_𝑎𝑔𝑒 ≤ 𝑐ℎ𝑖𝑙𝑑_𝑎𝑔𝑒 and 𝑝𝑒𝑑_𝑔𝑒𝑛𝑑𝑒𝑟 = ”𝑓 𝑒𝑚𝑎𝑙𝑒”
𝑏𝑜𝑦_𝑝𝑟𝑒𝑠𝑒𝑛𝑡_𝑑𝑓 𝑣+𝑔𝑖𝑟𝑙_𝑝𝑟𝑒𝑠𝑒𝑛𝑡_𝑑𝑓 𝑣

2 , if 𝑝𝑒𝑑_𝑎𝑔𝑒 ≤ 𝑐ℎ𝑖𝑙𝑑_𝑎𝑔𝑒 and 𝑝𝑒𝑑_𝑔𝑒𝑛𝑑𝑒𝑟 ≠ ”𝑚𝑎𝑙𝑒” and 𝑝𝑒𝑑_𝑔𝑒𝑛𝑑𝑒𝑟 ≠ ”𝑓 𝑒𝑚𝑎𝑙𝑒”
1.0, otherwise

(4)

C.4 get_street_width_defiance_factor

𝑓 (𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔_𝑙𝑒𝑛𝑔𝑡ℎ) = 1
𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔_𝑙𝑒𝑛𝑔𝑡ℎ

𝑛𝑒𝑢𝑡𝑟𝑎𝑙_𝑠𝑡𝑟𝑒𝑒𝑡_𝑤𝑖𝑑𝑡ℎ

(5)

C.5 get_ped_speed_defiance_factor

𝑓 (𝑝𝑒𝑑_𝑠𝑝𝑒𝑒𝑑) =
{
walking_pedestrian_dfv if 𝑝𝑒𝑑_𝑠𝑝𝑒𝑒𝑑 > 0.6,
1.0 otherwise.

(6)

C.6 get_vehicle_size_defiance_factor

𝑓 (𝑣𝑒ℎ𝑖𝑐𝑙𝑒) =



𝑠𝑚𝑎𝑙𝑙_𝑣𝑒ℎ𝑖𝑐𝑙𝑒_𝑠𝑖𝑧𝑒_𝑑 𝑓 𝑣, if 𝑣𝑒ℎ𝑖𝑐𝑙𝑒_𝑓 𝑟𝑜𝑛𝑡_𝑎𝑟𝑒𝑎 ≤ 𝑠𝑚𝑎𝑙𝑙_𝑣𝑒ℎ𝑖𝑐𝑙𝑒_𝑠𝑖𝑧𝑒
𝑛𝑣𝑠_𝑑 𝑓 𝑣 + 𝑎𝑟𝑒𝑎_𝑑𝑖 𝑓 𝑓 × 𝑠𝑣𝑠_𝑑𝑓 𝑣−𝑛𝑣𝑠_𝑑𝑓 𝑣

𝑎𝑏𝑠 (𝑛𝑣𝑠−𝑠𝑣𝑠 ) , if 𝑠𝑚𝑎𝑙𝑙_𝑣𝑒ℎ𝑖𝑐𝑙𝑒_𝑠𝑖𝑧𝑒 < 𝑣𝑒ℎ𝑖𝑐𝑙𝑒_𝑓 𝑟𝑜𝑛𝑡_𝑎𝑟𝑒𝑎 < 𝑛𝑒𝑢𝑡𝑟𝑎𝑙_𝑣𝑒ℎ𝑖𝑐𝑙𝑒_𝑠𝑖𝑧𝑒
𝑛𝑒𝑢𝑡𝑟𝑎𝑙_𝑣𝑒ℎ𝑖𝑐𝑙𝑒_𝑠𝑖𝑧𝑒_𝑑 𝑓 𝑣, if 𝑣𝑒ℎ𝑖𝑐𝑙𝑒_𝑓 𝑟𝑜𝑛𝑡_𝑎𝑟𝑒𝑎 = 𝑛𝑒𝑢𝑡𝑟𝑎𝑙_𝑣𝑒ℎ𝑖𝑐𝑙𝑒_𝑠𝑖𝑧𝑒
𝑛𝑣𝑠_𝑑 𝑓 𝑣 − 𝑎𝑟𝑒𝑎_𝑑𝑖 𝑓 𝑓 × 𝑙𝑣𝑠_𝑑𝑓 𝑣−𝑛𝑣𝑠_𝑑𝑓 𝑣

𝑎𝑏𝑠 (𝑛𝑣𝑠−𝑙𝑣𝑠 ) , if 𝑛𝑒𝑢𝑡𝑟𝑎𝑙_𝑣𝑒ℎ𝑖𝑐𝑙𝑒_𝑠𝑖𝑧𝑒 < 𝑣𝑒ℎ𝑖𝑐𝑙𝑒_𝑓 𝑟𝑜𝑛𝑡_𝑎𝑟𝑒𝑎 < 𝑙𝑎𝑟𝑔𝑒_𝑣𝑒ℎ𝑖𝑐𝑙𝑒_𝑠𝑖𝑧𝑒
𝑙𝑎𝑟𝑔𝑒_𝑣𝑒ℎ𝑖𝑐𝑙𝑒_𝑠𝑖𝑧𝑒_𝑑 𝑓 𝑣, if 𝑣𝑒ℎ𝑖𝑐𝑙𝑒_𝑓 𝑟𝑜𝑛𝑡_𝑎𝑟𝑒𝑎 ≥ 𝑙𝑎𝑟𝑔𝑒_𝑣𝑒ℎ𝑖𝑐𝑙𝑒_𝑠𝑖𝑧𝑒

(7)

where 𝑎𝑟𝑒𝑎_𝑑𝑖 𝑓 𝑓 = |𝑛𝑒𝑢𝑡𝑟𝑎𝑙_𝑣𝑒ℎ𝑖𝑐𝑙𝑒_𝑠𝑖𝑧𝑒 − 𝑣𝑒ℎ𝑖𝑐𝑙𝑒_𝑓 𝑟𝑜𝑛𝑡_𝑎𝑟𝑒𝑎 | (8)

C.7 get_road_occupancy_rate_defiance_factor

𝑓 (𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦_𝑟𝑎𝑡𝑒) =


𝑙𝑜𝑤_𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦_𝑟𝑎𝑡𝑒_𝑑 𝑓 𝑣, if 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦_𝑟𝑎𝑡𝑒 ≤ 𝑙𝑜𝑟

ℎ𝑜𝑟_𝑑 𝑓 𝑣 + (𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦_𝑟𝑎𝑡𝑒 − 𝑙𝑜𝑟 ) × 𝑙𝑜𝑟_𝑑𝑓 𝑣−ℎ𝑜𝑟_𝑑𝑓 𝑣
ℎ𝑜𝑟−𝑙𝑜𝑟 , if 𝑙𝑜𝑟 < 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦_𝑟𝑎𝑡𝑒 < ℎ𝑜𝑟

ℎ𝑖𝑔ℎ_𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦_𝑟𝑎𝑡𝑒_𝑑 𝑓 𝑣, if 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦_𝑟𝑎𝑡𝑒 ≥ ℎ𝑜𝑟

(9)

C.8 get_group_size_defiance_factor

𝑓 (𝑔𝑟𝑜𝑢𝑝_𝑠𝑖𝑧𝑒) =


1.0, if 𝑔𝑟𝑜𝑢𝑝_𝑠𝑖𝑧𝑒 = 1
𝑔𝑟𝑜𝑢𝑝_𝑠𝑖𝑧𝑒_𝑑 𝑓 𝑣_𝑡𝑤𝑜_𝑡𝑜_𝑡ℎ𝑟𝑒𝑒, if 2 ≤ 𝑔𝑟𝑜𝑢𝑝_𝑠𝑖𝑧𝑒 ≤ 3
𝑔𝑟𝑜𝑢𝑝_𝑠𝑖𝑧𝑒_𝑑 𝑓 𝑣_𝑜𝑣𝑒𝑟_𝑡ℎ𝑟𝑒𝑒, if 𝑔𝑟𝑜𝑢𝑝_𝑠𝑖𝑧𝑒 > 3

(10)

C.9 get_time_to_collision_defiance_factor

𝑓 (𝑡𝑡𝑐) =


𝑡𝑡𝑐_𝑑 𝑓 𝑣_𝑢𝑛𝑑𝑒𝑟_𝑙𝑜𝑤𝑒𝑟_𝑒𝑥𝑡𝑟𝑒𝑚𝑒, if 𝑡𝑡𝑐 ≤ 𝑡𝑡𝑐_𝑙𝑜𝑤𝑒𝑟_𝑒𝑥𝑡𝑟𝑒𝑚𝑒_𝑡𝑖𝑚𝑒

𝑡𝑡𝑐_𝑑 𝑓 𝑣_𝑢𝑛𝑑𝑒𝑟_𝑙𝑜𝑤𝑒𝑟_𝑏𝑜𝑢𝑛𝑑, if 𝑡𝑡𝑐_𝑙𝑜𝑤𝑒𝑟_𝑒𝑥𝑡𝑟𝑒𝑚𝑒_𝑡𝑖𝑚𝑒 < 𝑡𝑡𝑐 ≤ 𝑡𝑡𝑐_𝑙𝑜𝑤𝑒𝑟_𝑏𝑜𝑢𝑛𝑑_𝑡𝑖𝑚𝑒

𝑡𝑡𝑐_𝑏𝑙𝑏 + (𝑡𝑡𝑐 − 𝑡𝑡𝑐_𝑙𝑏𝑡) × 𝑡𝑡𝑐_𝑏𝑢𝑏−𝑡𝑡𝑐_𝑏𝑙𝑏
𝑡𝑡𝑐_𝑢𝑏𝑡−𝑡𝑡𝑐_𝑙𝑏𝑡 , if 𝑡𝑡𝑐_𝑙𝑜𝑤𝑒𝑟_𝑏𝑜𝑢𝑛𝑑_𝑡𝑖𝑚𝑒 < 𝑡𝑡𝑐 < 𝑡𝑡𝑐_𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑_𝑡𝑖𝑚𝑒

𝑡𝑡𝑐_𝑑 𝑓 𝑣_𝑜𝑣𝑒𝑟_𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑, if 𝑡𝑡𝑐 ≥ 𝑡𝑡𝑐_𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑_𝑡𝑖𝑚𝑒

(11)
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Table 2: Custom data generated and accessible after a simulation.

Information Data Type Description
timestamp Date & Time The real-world time at which the event occurred.
step Integer [1;∞[ The simulation time step at which the event occurred.
scenario String The scenario in which the event occurred.
pedestrianID String ID of the pedestrian that had to choose whether to ignore AV priority.
crossingID String ID of the crossing where the event occurred.
final crossing probability Float [0;∞[ Final crossing probability calculated using all factors.
effective final crossing probability Float [0; 1] Adjusted probability to be between 0 and 1.
crossing decision ["cross", "not cross"] Decision of pedestrian to respect AV priority at crossing.
dangerous situation Boolean Calculated estimation if the situation was dangerous.
waiting time Integer [0;∞[ Time in seconds that the pedestrian waited at the crossing.
pedestrian location x Integer ] − ∞;∞[ Pedestrian location x at time of decision taking.
pedestrian location y Integer ] − ∞;∞[ Pedestrian location y at time of decision taking.
closest vehicle location x Integer ] − ∞;∞[ Closest vehicle location x to pedestrian at time of decision making.
closest vehicle location y Integer ] − ∞;∞[ Closest vehicle location y to pedestrian at time of decision making.
gender ["male", "female", "other"] Gender of pedestrian
vision ["healthy", "impaired"] Vision health of pedestrian.
age Integer [6; 99] Age of pedestrian.
probability estimation method ["normal", "llm"] Whether the LLM was used for this crossing decision.
defiance values Integer/Float [0;∞[ All defiance values described in 4.2.
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