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Fig. 1. We propose the AutoTherm datasets. (I.) We collected human-annotated sensor measurements during two thermal

state studies (indoor and vehicle), enabling the training of neural thermal state classifiers (II.) to identify human thermal

state changes from sequential sensor measurements.

Thermal comfort inside buildings is a well-studied field where human judgment for thermal comfort is collected and may

be used for automatic thermal comfort estimation. However, indoor scenarios are rather static in terms of thermal state

changes and, thus, cannot be applied to dynamic conditions, e.g., inside a vehicle. In this work, we present our findings of a

gap between building and in-vehicle scenarios regarding thermal comfort estimation. We provide evidence by comparing

deep neural classifiers for thermal comfort estimation for indoor and in-vehicle conditions. Further, we introduce a temporal

dataset for indoor predictions incorporating 31 input signals and self-labeled user ratings by 18 subjects in a self-built climatic

chamber. For in-vehicle scenarios, we acquired a second dataset featuring human judgments from 20 subjects in a BMW 3

Series. Our experimental results indicate superior performance for estimations from time series data over single vector input.

Leveraging modern machine learning architectures enables us to recognize human thermal comfort states and estimate future

states automatically. We provide details on training a recurrent network-based classifier and perform an initial performance
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benchmark of the proposed dataset. Ultimately, we compare our collected dataset to publicly available thermal comfort

datasets.

CCS Concepts: • Computing methodologies→ Machine learning; • Human-centered computing→ Ubiquitous and

mobile computing.

Additional Key Words and Phrases: Machine Learning; vehicles; state recognition; dataset.
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1 INTRODUCTION

The inclusion of sensors such as cameras, radars, thermometers, or lidars in today’s manually driven vehicles

and, most likely, in future (automated) vehicles [39] allows for novel insights into users’ states and intentions.

The same can be said of modern smart home systems, which automate indoor climate conditions and optimize

energy efficiency. To improve user experience, there is a need for accurate and reliable recognition, interpretation,

and understanding of current user states [68], as this ensures the execution of adjustments based on user

preferences [85] and alleviates the user of burdensome tasks such as adjusting the temperature. Additionally,

manually adjusting the temperature can lead to an overshoot [72], requiring additional interactions. Using

in-vehicle sensors and machine-learning methods, current vehicles already recognize some driver states, such as

level of drowsiness [58] or fatigue [96]. This is mainly a safety measure to avert potentially dangerous driving

behavior. Yet, seeing as driving-related tasks will increasingly become irrelevant the higher the level of automation,

recognition of other states such as emotional state [8] and intention [66] become increasingly relevant. There are

various methods to determine the passenger’s state, including machine-learning-based methods. Depending on

whether the state recognition task is formulated as a supervised or unsupervised learning problem, labeled data

is required [78]. Learning from human judgments to replicate human behavior or to mirror human preferences

is a common practice [32, 33, 52, 98, 99], also indoors [42]. However, there are only a few labeled and publicly

available datasets for the automotive state recognition use case, such as drive&act by Martin et al. [60] or the

VEmotion dataset by Bethge et al. [8]. While there are existing datasets for indoor thermal comfort, they cannot

be applied to the field of in-vehicle environments.

Already today, one relevant aspect for passengers inside vehicles is the perceived level of thermal comfort [41,

67, 77]. In building ergonomics, thermal comfort, and its influencing factors have been part of numerous research

studies that resulted in different models for thermal comfort estimation, such as the commonly known predicted

mean vote (PMV) index by Fanger et al. [24]. However, while thermal comfort is dependent on the exposure

history [92], these works focus on a single data point while we also incorporate temporal data. Additionally,

there are significant differences between indoor settings and vehicles and the required data. First, indoors, and

especially offices, occupants do not have direct control access to the temperature. Second, this temperature

changes only slowly. Therefore, the available datasets do not include temporal data but only provide singular data

points. Additionally, the data points are intended to assess current comfort without the explicit goal of adapting

the temperature. The automotive use case, on the other hand, is defined by possibly fast-changing temperatures

(e.g., due to opened windows also by other users), limited variety and action performed by the users, and the

current expectation of having the personally optimal temperature due to relatively easy access. Additionally, in

the context of automotive state recognition systems, thermal comfort state estimation (i.e., warm, comfortable,
cold, ...) has thus far not been explored. Consequently, no machine-learning model or dataset exists for in-vehicle

thermal comfort state estimation. The impact of inputs from in-vehicle sensory units on prediction performance

is also unknown. The automotive domain is particularly characterized by providing an environment known by
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manufacturers (regarding size, capabilities, limitations, and heating possibilities), providing (already today) a

plethora of sensor data, and restricting the user’s movements and actions. Therefore, a specialized dataset is

required.

Contribution Statement: In this work, we created a (1) temporal, labeled multi-modal dataset featuring 31

input signals (age, gender, weight, height, body fat, body core temperature, activity level, time since last meal,

tiredness, clothing level, radiation temperature, emotion, RGB frame, ten body pose key points, heart rate, wrist

temperature, galvanic skin response, ambient temperature, relative humidity) relevant for the task of thermal

comfort state estimation, which has not yet been addressed in the context of automotive state recognition. (2) The

implemented and employed logging can be used as a data-gathering blueprint for future state recognition research.

(3) Thirdly, we present a machine-learning-based approach for both indoor and in-vehicle thermal comfort state

recognition that takes advantage of different feature combinations to explore predictive performance and the

impact of individual input modalities. (4) Fourthly, we report a feature combination study with different network

architectures for thermal comfort state estimation and forecasting. (5) Finally, we evaluate our trained classifiers

on existing thermal comfort datasets and report superior performance for models trained on our AutoTherm

dataset.

Within the remainder of this paper, we will first discuss the work related to our approach in Section 2. Second,

we’re providing details on our study setup, where we collect human judgments for thermal comfort in Section 3,

before describing the data we collected for indoor scenarios, in Section 4 and for in-vehicle scenarios in Section 5.

We then compare our dataset to existing thermal comfort datasets, in Section 6 followed by Section 7 where we

conduct and present results of several thermal comfort estimation experiments. Finally, we discuss our findings

and address limitations of our approach in Section 8, share our dataset and code in Section 9 and conclude in

Section 10.

2 RELATED WORK

This work builds on previous work on indoor thermal comfort, factors influencing thermal comfort, and state

recognition in general.

2.1 Thermal Comfort

Various factors influence one’s perceived comfort level in an indoor environment, such as visual, acoustic, and

environmental conditions [28]. Thermal comfort describes the level of satisfaction with one’s surroundings based

on thermal influences [48] and has been extensively researched in the field of building ergonomics. The PMV index

[24] referenced in the ISO 7730:2006-05 and American Society of Heating, Refrigerating and Air-Conditioning

Engineers (ASHRAE) 55-2020 standards [1, 48] estimates the perceived level of thermal comfort for a large

group of people on a thermal sensation scale with the seven items Cold, Cool, Slightly Cool, Comfortable, Slightly
Warm, Warm, and Hot and is based on empirical thermal comfort studies, from which an equation for thermal

comfort calculation based on six main influencing factors was derived: Metabolic Rate, Clothing Insulation, Mean

Radiation Temperature, Ambient Temperature, Relative Humidity, and Air Velocity.

2.2 Influences on Thermal Comfort

Research on building ergonomics indicates that environmental [71] or physiological (human thermoregula-

tion [29]) factors and their interplay should be considered. Thermal sensation is mostly felt due to thermore-

ceptors on one’s skin and muscles [89]. Accordingly, skin temperature has been used as an indicator of thermal

perception changes (e.g., [76, 83]). When used in conjunction with body core temperature, Frank et al. [27] found

that skin and body core temperature contribute similarly to thermal comfort. Sim et al. [83] demonstrate the

estimation of thermal comfort based on measuring different sites around the wrist and fingertips, and Ramanathan
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[76] proposed an approach for the estimation of the mean skin temperature, computed by averaging the skin

temperature of different locations across the body. Another work proposed an estimation of thermal comfort

from multiple physiological input streams, such as heart rate, skin temperature, or electrodermal activity [104].

Additionally, it was established that there is a range in which occupants feel thermally comfortable (thermal

comfort zone) [14, 15], rather than a single temperature. This zone is influenced by the dynamics of temperature

change and the direction of the change [16]. Apart from estimation based on physiological input data, it was

reported that there is an influence of gender [12, 47], age [20, 31], and emotion [95] on thermal comfort perception.

For instance, female occupants seem more sensitive to thermal changes that deviate from their optimal state

and thus feel too cold or too hot more frequently [46]. In the elderly, deterioration of skin receptors is assumed

to cause reduced thermal perception ability, especially in the limbs [31]. As for emotion, Wang and Liu [95]

concluded that negative emotions have an unfavorable effect on thermal comfort. However, overall, emotions

only affect thermal comfort perception during light activities such as sitting or standing.

2.3 Thermal Comfort Label Scale

Fanger’s PMV index [24] is calculated in the interval [-3, 3]. Accordingly, the seven different thermal comfort

states Cold, Cool, Slightly Cool, Comfortable, Slightly Warm, Warm, and Hot represent ranges in the defined

interval rather than integers. For instance, according to the ASHRAE standard [48], the state Comfortable is
established in the interval [-0.5, 0.5]. This more granular approach allows for reducing the initial seven-point

scale to a three-point scale, where the new reduced states can be denoted as Too Cold, Comfortable, Too Warm.

Due to its simplicity and standardized theoretical basis, the seven-point thermal sensation scale was adopted as

the label set.

2.4 State Recognition Systems

Machine-learning-based state recognition was used for cognitive load detection [9, 103], driver stress detec-

tion [64], situation awareness prediction [49], affective computing [65, 107], vehicle assistance systems [58, 63, 87],

and even pain recognition [94]. They mainly differ in terms of chosen input spaces, modalities, and employed

learning methods (supervised or unsupervised learning). Even though systems trained on data from a single input

space or single modality can perform satisfyingly, a closer resemblance to human perception can be achieved by

incorporating additional modalities [5]. Therefore, multi-modal input data for the training of state recognition

systems is beneficial.

Early works in multi-modal in-vehicle state recognition incorporated various vehicle parameters (pedal position,

steering), environmental information (local and global vehicle position), and driving performance attributes

(speed) as input signals [7, 35] to improve intention recognition in safety systems. Likewise, human action

recognition experienced advances by incorporating multi-modal input signals together with feature fusion and

co-learning methods [86]. Zhang et al. [105] demonstrated in-vehicle action recognition with their proposed

interwoven CNN approach and a self-recorded dataset. Additionally, within the field of affective computing, the

recognition of emotional states was explored. This was done as multi-modal interfaces, not just in the automotive

context, could benefit from the ability to recognize and interpret one’s emotions. With VEmotion, Bethge et al. [8]

proposed a novel way of estimating the emotional state of drivers in real-time using driving context information

such as weather, traffic, road, and car trajectory data. They demonstrated that states such as emotions can

be predicted by using mainly contextual information, which is more readily available in vehicles. Generally,

incorporation of insights from areas, such as emotion recognition [65, 107], cognitive load estimation [9] or next

interaction method prediction [97] can contribute to creating a more holistic understanding of users’ needs in

automotive state recognition systems.
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Nevertheless, only a few publicly available datasets can be used for further state recognition research. There-

fore, developing new approaches for recognizing certain states almost always entails the acquisition of a new

dataset, thereby significantly slowing down development speed while increasing task complexity. Additionally,

methods for in-vehicle thermal comfort estimation from multi-modal data have not been explored, although

thermal sensation was, in other settings, reported to be one of the primary influencing factors in overall comfort

perception [28].

2.5 Thermal Comfort Estimation

Automated recognition of thermal comfort levels has been a research focus in energy and building ergonomics.

For example, energy efficiency in office buildings or other occupant spaces could be improved through adaptation

to occupants’ current needs [93]. Furthermore, adaptive models for personalized thermal comfort were also

correlated with an increase in occupant productivity [10] as environmental factors are better tailored to occupants’

needs. Previous data-driven approaches for thermal comfort estimation showed differences in the used datasets

(self-recorded or publicly available). With a self-recorded dataset featuring data from 12 participants, Zhang et al.

[106] developed a building context machine-learning model that estimates thermal sensation with an accuracy of

95.4% by identifying frowning facial expressions in recorded RGB data and relating the occurrences to the currently

perceived thermal sensation. Mao et al. [59]concluded that thermal comfort could be predicted using heart rate

and left-arm wrist skin temperature measures by using a self-recorded dataset to train different machine-learning

models. As part of the advances in thermal comfort research, gathering sufficiently large datasets for data-driven

thermal comfort estimation has become a research focus, resulting in the acquisition of the ASHRAE RP-884 [19]

and, more recently, the ASHRAE II [25] datasets. Both datasets accumulate environmental, personal attributes,

and thermal indices, one of which is the PMV index. Moreover, both ASHRAE datasets are publicly available.

Using the ASHRAE RP-884 [19], Scales [79], and US Office Buildings dataset [51] (all public), Somu et al. [84] built

a machine-learning model that employs transfer learning strategies and achieved a prediction accuracy of 55%.

The Scales Project dataset is a cross-national dataset (30 countries) that explores the occupants’ understanding

of common thermal sensation scales, such as the previously described seven-point scale. It includes thermal

comfort labels based on different rating scales for thermal conditions. Additionally, personal, indoor, and outdoor

environmental factors were gathered using a questionnaire. The US Office Buildings dataset is aimed at office

spaces in the US and was recorded to explore human-building interactions driven by factors such as comfort and

behavioral changes over time [51]. It includes data on personal attributes, indoor/outdoor variables, and labels

gathered with various thermal comfort rating scales.

Francis et al. [26] presented OccuTherm, a system to estimate thermal comfort using the body shape. They

conducted a sensing study in which biometrics, physical measurements (height, shoulder circumference), and

subjective comfort responses were recorded. They find that an adapted personalized comfort model can improve

model performance to 60% accuracy.

Quintana et al. [74] collected a longitudinal dataset of 17 participants over four weeks across 17 indoor and

outdoor spaces. The dataset includes physical characteristics, background information, and personality surveys,

which were assessed once. During the four-week trial, thermal preference, clothing level, metabolic rate, perceived

air velocity, and location were assessed. The dataset contribution contains 1.400 unique responses across 17

indoor and outdoor spaces.

Quintana et al. [75] also introduced a cohort comfort model to reduce the necessity for personalized data.

While not achieving the accuracy of personalized models, this approach opens novel ways to estimate thermal

comfort without additional data.

An overview of publicly available datasets is given in Table 3. Given the low number of public datasets (six in

total), most thermal comfort research is still performed on self-recorded datasets that vary in terms of included
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measures and employed sensory devices. Additionally, no thermal comfort dataset for the automotive use case

currently exists.

3 METHOD - THERMAL COMFORT STUDY

This work investigates thermal comfort estimation from temporal data in two scenarios, indoors and in vehicles.

To assess thermal comfort for such scenarios, we conducted two studies enabling us to collect human judgments

for varying thermal conditions in each scenario. For the indoor scenario, we set up a climate chamber, enabling

us to control thermal conditions carefully. However, the study inside a vehicle is conducted with less control,

utilizing a BMW 3 Series to capture the thermal properties of real in-vehicle conditions. In this section, we provide

details on how we collected human feedback during the study using our developed application. For each subject,

we gathered demographics using a self-report integrated into our application.

Self-reports and labels were gathered using a GUI that incorporates various dialogues. A keyboard was used

for interaction because it requires very little space and does not require elaborate hand movements.

During the trials, a feeling of boredom quickly manifested due to the repetitive task of simply labeling one’s

thermal comfort level. Consequently, for the indoor study, the waiting dialogue between labeling prompts was

extended to display a slide show of fractal images changing every 2 seconds. A dialog asking users to provide

a rating on the 7-point thermal comfort scale was displayed with an interval of 20 seconds. While we could

not provide an acclimatization period between the heating and cooling period, we let participants first fill out a

demographic questionnaire and explained the scenario. This took approximately 20 min, providing sufficient time

for initial acclimatization of the climate chamber. Nonetheless, this remains a limitation of our indoor dataset.

The experimental procedure followed the guidelines of the ethics committee of our university and adhered to

regulations regarding the handling of sensitive and private data, anonymization, compensation, and risk aversion.

Compliant with our university’s local regulations, no additional formal ethics approval was required.

4 THERMAL COMFORT INDOOR DATASET

For the exploration of temporal data in conjunction with thermal comfort estimation and to provide a scientific

comparison of human thermal comfort between indoor scenarios and in-vehicle scenarios, within this work, we

collect human judgments for both scenarios. In this section, we provide a detailed description of our indoor

dataset acquisition. The indoor dataset represents scenarios where participants are sitting, which constitutes

almost 70% of a typical work day in the office and 60% at home, thereby showing the relevance and appropriateness

of the scenario [17].

Gathering ratings for thermal comfort states can be done using the thermal sensation scale referenced in the

ASHRAE standard [48], which is defined in the same range as the PMV output scale proposed by Fanger et al. [24].

The thermal sensation scale comprises seven-string encodings Cold, Cool, Slightly Cool, Comfortable, SlightlyWarm,
Warm, Hot but can be represented numerically as [−3,−2,−1, 0, +1, +2, +3]. Additionally, a significant attribute of
the PMV index is its scope, as it was designed to predict thermal comfort in steady-state environments [1, 24],

yet, temperatures inside buildings can vary depending on the context, seasonal climate, geographical climate,

architectural properties, heating/cooling system, etc. To simulate the temperature of buildings, these factors need

to be considered for data acquisition. In particular, the rate of change is important as thermal comfort zones in

cooling and heating phases were found to differ, especially with smaller temperature step changes [16]. A slow

rate of temperature change in previous work was defined as 0.5 °C/min, while a fast change rate was defined as

1.0 °C/min [16]. Temperature ranges used in thermal comfort experiments included ranges such as [18°,35°C] [83]

or even larger ranges with a minimum of 15°C and a maximum of 40°C [16]. Consequently, the temperature
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ranges and step sizes should be selected so that the conditions for all possible thermal comfort states are met at

least once within the heating and cooling phases.

(a) The room as used for the thermal comfort recordings.

The employed A/C unit can be seen on the bottom right.

Temperature sensors were placed above the A/C unit and

on top of the monitor on the left-hand side.

(b) The schematic room plan used for the thermal comfort

recordings. A 3d version with stylized devices can be found

via this link.

Fig. 2. Overview of the climate chamber.

Sensory setup. Ciuha et al. [16] used a climatic chamber and spanned 25°C (range=[15°C, 40°C]) over 150 min.

Due to the unavailability of such a professional chamber, we built a low-fidelity climatic chamber using mobile

A/C devices. The room had a size of 220cm × 220cm with a height of 280cm (see Figure 2b). This results in a

volume of 13550l. While previous scarcely report the room volume (e.g., Battistel et al. [6] do not report this),

this is in the range of available commercial climate chambers (e.g., see Clitec). The room is painted completely

black, from the carpet to the walls and ceiling to the blinds for the 3 small windows. We used the Monzana

MZKA1000 Smart A/C (see Figure 2a) with a power output of 9000 BTUs as it provides cooling and heating modes

and includes a smart home cloud that allows for developer access via APIs. This device enables temperature

changes in the range of [16°C, 32°C]. As the A/C unit’s heating capability is less powerful than its cooling mode,

two additional smart home heating units (Nedis P22-2054875) were added. The smart heating components allow

for temperature changes in the range of [15°C, 35°C] and include two heating modes (1.200W/2.000W). Adding

multiple A/C units for heating also ensures that the area is heated at multiple locations, which allows for a more

uniform temperature change. Other than the mentioned smart A/C and heating units, no other components were

used to manipulate the ambient temperature (i.e., no seat heating). A series of internal tests showed that the

ambient temperature range achieved most reliably within 60 min was [18.4°C, 32.0°C]. The time interval of 60

min was selected to ensure that a mean temperature change rate of 0.45°C/min is achieved for both heating and

cooling. This change rate is favorable compared to a high rate of 1°C/min as large thermal changes over short

periods are perceived more intensely and, therefore, shift the range at which a person feels comfortable at [16].

The PCE-WB 20SD thermometer was selected due to its logging rate of 1Hz and the ability to record ambient

temperature, relative humidity, and radiation temperature with the integrated black globe components [50]. Black

globe temperature is measured with the thermometer being inside a black globe. This means that this indicates

how hot it feels in direct sunlight. A cheaper and easily integrable solution for temperature and humidity data is
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Table 1. List of derived modalities from different input spaces for multi-modal thermal comfort estimation.

Input Space Modalities

Personal Context Age [20, 31], Gender [12, 47], Clothing [1, 48], Tiredness [30], Weight & Height [53], Body Fat [38], Metabolic

Rate & Activity Level [1, 48, 90]

External Context Relative Humidity [1, 44], Ambient Temperature [16, 48], Radiation Temperature [1, 4, 48], Air Velocity [1, 48]

Physiology Heart Rate [57, 59], Wrist Skin and Body Core Temperature [12, 27, 102], Galvanic Skin Response (GSR) [57]

Visual Attributes 3D Body Pose [100, 101], RGB View [106]

Emotion Emotional States (after Ekman [22]) [95] with neutral emotion

Arduino sensory units [2]. However, these kits do not provide the same level of accuracy as specialized measuring

tools do. Nevertheless, ambient temperature and humidity data from an Arduino sensory board were included in

the data logging application to be able to compare prediction performance with different frequencies and levels

of accuracy for temperature and humidity streams. As for physiological signals, we used the Empatica E4 [23].

Modalities like emotion, body pose, and visual features can be captured using appropriate machine-learning

models and RGB frame processing. For emotion estimation, Serengil and Ozpinar presented a deep learning model

that includes multiple face detector backends and allows for analysis of recorded RGB frames [81, 82]. For 2D

pose key point estimation, we employed OpenPose [11]. Seeing as both models can be executed in real-time, they

were integrated for emotion and body pose estimation. RGB frames themselves can easily be captured using a

webcam. However, for the data collection process, Microsoft’s Kinect v2 for Windows [62] was selected as it

provides RGB frames of size 1920× 1080 and depth frames of size 512× 424 [43]. As the selected body pose model

estimates 2D skeleton key points, the depth frame provided by the Kinect sensor is necessary to measure the

respective depth values. This way, 2D key points are extended to 3D key points (see Table 1).

4.1 Participants

We gathered data from N=21 participants. The gender ratio was 12F/9M with a mean age of M=24.64 (SD=3.03,
range=[20, 33] in years). Participants weighed M=69.97 (SD=15.02, range=[53.00, 106.90] in kg) at an average

height of M=174.50 (SD=10.18, range=[155.00, 198.00] in cm) and a body fat percentage of M=22.00% (SD=5.00%,
range=[14.00%, 34.00%]). Body temperature measured at the forehead with an infrared skin thermometer was

mostly similar for all participants (M=36.38, SD=0.31, range=[35.8, 37.2] in °C). Clothing levels varied only slightly,

as most participants wore a short-sleeve T-shirt and trousers (mean insulation based on ASHRAE standard 55

clothing insulation tables [48] M=0.60, SD=0.05, range=[0.45, 0.69] in clo). Only 14% (3Y/18N) of participants

reported having performed physical activities in the hour before the recording session, while the time since

participants’ last meals was M=4.23 hours (SD=4.92, range=[0, 20]) before the recording. Based on the tiredness

ratings in the initial personal context assessment, participants reported having been moderately tired at the start

of their recording (M=4.12, SD=1.73, range=[2, 8]).

4.2 Raw Dataset

The initial raw dataset included recordings from all 21 participants. Due to incorrect use of the numeric keyboard

during labeling, the data of one participant was removed. Also, we removed another 2 participants due to

incomplete radiation temperature readings. Therefore, the final and filtered raw dataset includes 18 participants

and a separate image archive with the RGB frames. We used 16 participants for training and 2 participants to

evaluate our models (see Section 7). The dataset includes corresponding body pose key-point coordinates for each
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Table 2. Comparison of minimal and maximal values, means and standard deviations of the numeric features from the

indoor and vehicle dataset. ibp stands for the (averaged) image brightness per pixel as an approximation for solar radiation.

indoor dataset vehicle dataset

Participants 18 20

Duration of recordings minutes 60 30

[min, max] 𝑚𝑒𝑎𝑛±𝑠𝑡𝑑 [min, max] 𝑚𝑒𝑎𝑛±𝑠𝑡𝑑

Radiation Temperature °C [16.9, 33.6] 25.53±3.92 -

Heart Rate bpm [40.0, 191.99] 82.94±13.46 [37.28, 191.99] 77.70±24.74
Wrist Skin Temperature °C [27.91, 36.95] 33.82±1.75 [25.55, 36.43] 30.89±2.54
Galvanic Skin Response 𝜇S (microsiemens) [0.0, 16.9] 1.42±2.81 [0.01, 9.19] 0.57±1.21
Ambient Temperature PCE-WB 20SD °C [17.1, 33.7] 25.31±3.72 -

Ambient Temperature Arduino °C [17.6, 37.0] 26.82±4.52 [10.0, 35.40] 25.13±4.23
Relative Humidity % [12.0, 55.0] 31.35±8.86 [10.0, 67.0] 29.54±9.20
Solar Radiation ibp [0.16, 0.45] 0.28±0.04 [0.0, 0.88] 0.46±0.06

Fig. 3. Left: Labels given during heating. Right: Labels for the cooling phase. In line with previous research (e.g., [16]),

thermal comfort is established at a lower ambient temperature during heating than during cooling.

recording. Due to movement out of the depth camera’s field of view during the recordings, not all key points

could be estimated reliably at all times, which led to empty vectors in the dataset.

The final dataset includes a total of 1.856.290 data points with extrapolated labels, each with 34 feature columns

(including timestamp and label columns) from which 2927 data points were actually labeled by the user. Table 2

shows for the indoor dataset a descriptive evaluation for the numeric features not gathered using the self-report

GUI. Radiation and ambient temperature are fairly similar and could replace each other during classification.

Concerning the values measured with the Empatica E4 wristband, the most stable measurements were achieved

for the wrist skin temperature. This is indicated by the low standard deviation (SD=1.75) and minimum and

maximum values (min=27.81, max=36.95) close to the mean of 33.82°C. Contrarily, the raw measurements for

the remaining physiological signals, heart rate, and GSR were far less stable. The highest outlier rate out of

the numeric continuous features was found in the GSR measurements (13.7% outliers). Therefore, a data pre-

processing scheme that includes outlier removal methods is required when using the dataset for classifier training.
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The PMV calculation also requires the air velocity caused by body movement and not the air velocity measured

by a given air velocity sensor. Thus, an approximation was used. Air velocity was not measured but deduced

from the capabilities of the A/C unit as listed in the manual. The manual states that a max air volume flow of 360

m/h is possible (page 37). Therefore, we set the air velocity to static 0.1 m/s.

The raw dataset further includes two emotion feature columns, as participants were able to report their

current emotions (after Ekman [22] with the additional neutral emotion; exclusive choice: “Which item describes

your current emotion best?” with the options: Anger, Fear, Sadness, Disgust, Happiness, Neutral, Surprise,

and Contempt; see Appendix H) using the logging GUI while also having their emotions estimated using the

RGB capture and the DeepFace model. Emotions were estimated at the same frequency as emotion self-report

dialogues were displayed. Most participants rated their emotions as neutral. This resulted in different rating

distributions across emotion feature columns. Self-reported emotions were distributed as follows: Anger 0.83%,
Contempt 0.00%, Disgust 3.14%, Fear 0.00%, Happiness 8.35%, Neutral 86.38%, Sadness 0.73% and Surprise 0.49%.
The model-based emotion predictions also tended towards neutrality but less strongly: Anger 10.99%, Disgust
0.08%, Fear 13.48%, Happiness 8.98%, Neutral 41.14%, Sadness 20.87%, and Surprise 4.46%. This indicates a mismatch

between felt emotions and detected facial expressions by DeepFace. Therefore, we refrained from using the data

from the DeepFace model. We also did not use the self-report emotion data due to the very low variance. The

dataset also includes two different ambient temperature features. As described at the beginning of this section, an

external thermometer was used during the recordings to measure radiation temperature changes. However, when

comparing the ambient temperature measures of the external thermometer and the Arduino sensory kit measures,

it could be observed that the Arduino kit tends to react more intensely when ambient temperature changes occur.

Moreover, the temperature sensor used in the sensory kit is labeled to have an accuracy of 2°C [3], whereas

the external thermometer (PCE-WB 20SD) is labeled with an accuracy of 0.8°C [40]. For this reason, further

analysis and visualizations of ambient temperatures are based on the values measured with the more accurate

PCE thermometer. The label distribution throughout the dataset suggests that the minimum temperature during

the trials was insufficient for inducing cold and cool thermal sensations. The answers given during participants’

debriefing further support this assumption, as it was mentioned that "the temperature, in the beginning, felt
somewhat cool, but you get used to it quickly" [P16] and "it didn’t get very cold, but it did get quite hot." [P7]. The
collected labels are distributed as follows: Cold 4.49%, Cool 9.53%, Slightly Cool 22.27%, Comfortable 22.71% (this
would represent the accuracy of a null model predicting only “comfortable”), Slightly Warm 13.30%, Warm 15.83%,
Hot 11.88%. A difference in thermal comfort ratings could be found between the heating and cooling phases, as

illustrated in Figure 3. This is in line with previous findings that reported a thermal comfort zone shift based

on previous exposure to different thermal environments [16]. Moreover, a thermal comfort zone can be seen

between the labels Slightly Cool and Slightly Warm, as the temperature ranges for slightly cool, comfortable, and

slightly warm states are the largest among all reported states. From a classification perspective, this indicates

that classifications of states in the thermal comfort zone may be more difficult to predict based on ambient

temperature alone, while colder states may be more difficult to predict due to the imbalance in frequency of

occurrence in the dataset.

While some of these features might not encode much information due to inherent limitations (e.g.,

3D pose limited by the available space), we emphasize that additional data might facilitate novel

approaches. Therefore, we strived to collect a rich and large-scale dataset.

5 THERMAL COMFORT VEHICLE DATASET

To collect data for a real vehicle scenario, we used a BMW 3 F31 for conducting a second study and data acquisition

(see Figure 4). We refer to this dataset as vehicle dataset. During the study, we utilized the application described

in Section 3. To manipulate temperature, we used the built-in A/C and adjusted the temperature manually. The
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Temperature +
Humidity Sensor

Arduino

Camera

Fig. 4. Sensory setup inside the BMW 3 F31. The Arduino board was mounted on top of the middle A/C vents. The displays

were covered to hide temperature information from participants. In-vehicle setup did not include a Kinect camera.

Am
bi
en
tT
em
pe
ra
tu
re
(°
C
)

Cold Cool Slightly Cool Comfortable Slightly Warm Warm Hot

10

15

20

25

30

35

Fig. 5. Labels given during in-vehicle study.

temperature range was narrower compared to the indoor study due to the lower power of the built-in A/C.

Participants provided data annotations in a time frame of 30 min. 14 participants provided data while the vehicle

was parked, 6 while the experimenters drove the vehicle in a small town and highways in the region of Bad

Waldsee, Germany. The participants remained in the passenger seat. The possible inputs were shown on a printout

(see Figure 4). During the in-vehicle study, users were notified by a beep sound to provide a rating of their current

thermal comfort state. We determined the input spaces and modalities shown in Table 1 such that the PMV

variables (ambient temperature, relative humidity, metabolic rate, clothing insulation, radiation temperature, air

velocity) [24] along with modalities for the identified physiological, visual, emotional, and personal input spaces

are included. Additionally, we approximate solar radiation by computing the average brightness of an image

frame extracted from the RGB video that was captured during the study.
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5.1 Participants

We gathered data from N=20 participants, two of whom had participated in the indoor study. The gender ratio

was 7F/13M with a mean age of M=33.41 (SD=12.67, range=[25, 66] in years). Participants weighed M=73.52
(SD=23.47, range=[53.00, 119.0] in kg) at an average height of M=179.89 (SD=10.85, range=[161.00, 198.00] in
cm). Body temperature measured at the forehead with an infrared skin thermometer was mostly similar for all

participants (M=36.14, SD=0.15, range=[35.8, 36.4] in °C). Clothing levels varied only slightly, as most participants

wore a long-sleeve shirt and trousers (mean insulation based on ASHRAE standard 55 clothing insulation tables

[48] M=0.67, SD=0.06, range=[0.57, 0.81]). None of the participants reported having performed physical activities

in the hour before the recording session, while the time since participants’ last meals was M=3.75 hours (SD=3.83,
range=[0, 14]) before the recording. Based on the tiredness ratings in the initial personal context assessment,

participants reported having been moderately tired at the start of their recording (M=2.75, SD=1.13, range=[1, 5]).

5.2 Raw Dataset

To investigate the thermal comfort of humans under real conditions, we collected a data set using a real car

(i.e., a BMW 3). The study was carried out from the end of March until the end of April 2023, with varying

outdoor temperatures ranging from 6 to 14°C. During the study, sensory data of the Empatica E4 for wrist skin

temperature, GSR, and heart rate were recorded. Additionally, we recorded ambient relative humidity and ambient

temperature using an Arduino board. We did not measure air velocity in the vehicle due to the necessity to report

the velocity in relation to the participants’ movement. We report the mean, standard deviation, and minimal and

maximal value for the corresponding sensory readings in Table 2. For the study, we randomized the following

conditions, which were each conducted one or multiple times in random order: switching off the A/C, switching

to maximum heating (28 °C), switching to maximum cooling (16 °C), opening the window for at least 1 min.

Additionally, we randomized driving the car and standstill of the car per participant for the study. The collected

data set consists of 1.069.374 labels, which we extrapolate from 1597 collected labels from the user.

6 COMPARISON TO PUBLICLY AVAILABLE DATASETS

We compare our indoor and vehicle dataset to related available datasets. Table 3 shows that our AutoTherm

indoor dataset has over 17 times the number of entries compared to the next largest dataset from prior work. All

datasets include measures from the personal and environmental input space. The environmental variables for

the indoor dataset, ASHRAE RP-884, ASHRAE II, and US Office Buildings datasets include the environmental

measures necessary for PMV calculation. The Scales Project dataset includes weather station and indoor environ-

ment data; however, no specialized tools (e.g., black globe thermometers for radiation temperature measures or

anemometers for air velocity) were used. Thus, PMV estimations cannot be computed using the Scales Project

dataset. The UCLIC-Bentley Comfort (UBComfort) dataset is the closest dataset to the AutoTherm dataset but

contains fewer data points with fewer features. However, it does include additional features such as mental

relaxation level and sitting discomfort. The listed publicly available datasets include ratings that were gathered

with different rating scales (TS=thermal sensation, TP=thermal preference, and TA=thermal acceptability). The
AutoTherm dataset differs from the publicly available datasets by including physiology, emotion, visual signals,

and participants’ RGB recordings. Additionally, the AutoTherm dataset includes temporal data compared to

the singular data of the other datasets. In Appendix C, Figure 8 shows an example image (blurred) for the indoor

and vehicle dataset.

7 VALIDATION

We conducted several experiments on the AutoTherm indoor dataset acquired (see Section 4). First, we per-

formed feature importance ranking using an impurity-based method. Based on the found feature importance, we
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Table 3. Comparison to publicly available datasets with our AutoTherm dataset. 7P=seven-point thermal sensation (Cold,
Cool, Slightly Cool, Comfortable, Slightly Warm, Warm, Hot), 3P=three-point thermal preference (Want Warmer, No Change,
Want Cooler), and 2P=two-point thermal comfort (Acceptable, Unacceptable). Measurements coded as P=Personal Context,

EX=External Factors, PH=Physiological Factors, E=Emotions, and V=Visual Attributes. The ASHRAE datasets also include

different environmental indices (e.g., PMV index).

Dataset Participants Entries Temporal Data

Included Measurements Rating Scales

P EX PH E V 7P 3P 2P

ASHRAE RP-884 [19] 25.288 25.288 ✗ ✔ ✔ ✗ ✗ ✗ ✔ ✔ ✔

ASHRAE II [70] 109.033 109.033 ✗ ✔ ✔ ✗ ✗ ✗ ✔ ✔ ✔

Scales Project [79] 8.225 8.225 ✗ ✔ ✔ ✗ ✗ ✗ ✔ ✔ ✔

US Office Buildings [51] 24 2.503 ✗ ✔ ✔ ✗ ✗ ✗ ✔ ✔ ✔

OccuTherm [26] 77 2.067 ✔ ✔ ✔ ✔ ✗ ✗ ✗ ✗ ✗

LPTC [74] 17 1.403 ✔ ✔ ✔ ✔ ✔ ✗ ✗ ✔ ✗

UBComfort [68] 28 587 ✔ ✔ ✔ ✔ ✗ ✔ ✔ deducible deducible

AutoTherm indoor 18 1.856.290(2.927∗ ) ✔ ✔ ✔ ✔ ✔ ✔ ✔ deducible deducible

AutoTherm vehicle 20 1.069.374(1.597∗ ) ✔ ✔ ✔ ✔ ✔ ✔ ✔ deducible deducible

*Number of original labels provided by the participants.

conducted a feature combination study in Section 7.7 to find the best combination of features. In Appendix E,

we investigate feature importance of physical, psychological, and physiological features by performing feature

permutation based on RF and LSTM model estimations. Having these insights, we considered an input vector of

four features for all experiments and implemented three types of classification models. As our baseline, we use

an RF classifier (Section 7.1). We also measure the performance of the PMV index on our dataset in Section 7.2.

In Section 7.3, after the evaluation of the best classifier, we continue with a comparison of our dataset to the

ASHRAE II [70] dataset. We compare these against deep learning models based on recurrent networks (RNN)

(Section 7.4), and a combination of RNN and convolutional neural networks (CNN), in Section 7.5. Additionally,

we investigate the forecasting of time series data to predict thermal comfort for a future state in Section 7.6. Next,

we provide a short description of the used metrics to quantify estimation accuracy.

Thermal Comfort Metric. To measure a classifier’s performance, we use three metrics of accuracy with

varying scales of precision: 𝜅𝑛 , where 𝑛 is the number of classes used to compute accuracy. First, the seven-point

thermal sensation scale (Cold, Cool, Slightly Cool, Comfortable, Slightly Warm, Warm, Hot), which is denoted as 𝜅7.

Second, the three-point thermal preference scale (Cold, Comfortable, Warm), denoted as 𝜅3. For computing 𝜅3, we

reduce seven classes by mapping the classes (Cold, Cool, Slightly Cool) to Cold, (Slightly Warm, Warm, Hot) to
Warm, and Comfortable remains. And third, the two-point thermal comfort scale (Comfortable, Uncomfortable),
which we denote as 𝜅2. Note that for computing 𝜅2, we reduce seven classes to binary classes by mapping the

classes (Slightly Cool, Comfortable, Slightly Warm) to Comfortable and the remaining classes to Uncomfortable.

For all experiments, our training dataset consists of data from 16 participants, while our test data consists of

the two remaining participants. For the LSTM approach (the best-performing approach, see Section 7.4), we

additionally conducted a 20-fold cross-validation (see Appendix A), showing robust performance.

AutoTherm represents the only approach to have acquired both in a field and an in-lab study and to focus on

buildings and vehicles. Other work only focused on field studies with a focus on buildings.
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Fig. 6. Feature importance ranking based on mean accuracy impurity decrease of an RF classifier. According to this metric,

the five most important features were ambient temperature, relative humidity, radiation temperature, skin temperature, and

galvanic skin response, marked in green.

7.1 Random Forest Classifier

In a first step, we leverage an RF classifier to perform an impurity-based importance ranking of all available

features, see Figure 6. For this task, we use the RF implementation from the sklearn library [80], which provides

functions for dataset sampling, pre-processing, and training pipeline definition. While RF models provided by

sklearn allow for tuning of different parameters such as the number of estimators, maximum tree depth, and

maximum number of features to consider per node, the standard configuration is used at first and then later

optimized using a grid search approach. For our experiments, we used 400 estimators and a maximum tree depth

of 8 adopting the Gini impurity cost function [45]. We used every 100th data point to downsample the dataset.

Results. In Table 4, we report the classification accuracy of 𝜅7 = 47.1%, 𝜅3 = 73.8%, and 𝜅2 = 67.9%, for the RF

classifier, indicating a mediocre performance.

7.2 PMV and Scale Reduction Performance

To compare the performance of our proposed models to the PMV index, we pre-computed the PMV values for all

participants in the evaluation split of our dataset using the clothing level, radiation temperature, ambient temper-

ature, and relative humidity features. For computation of PMV measures, the PyThermalComfort package [88]
was used, which enables PMV computation based on the definitions in ISO7730 [1] and ASHRAE standards [48].

Results. A comparison with the participants’ subjective thermal sensation ratings showed that the PMV index

fails to accurately predict thermal comfort. The achieved prediction accuracies are 𝜅7 = 35.9%, 𝜅3 = 63.7%, and 𝜅2
= 65.2%, suggesting that the PMV index values were mostly off by one class.
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Table 4. Evaluation results of a performance comparison between different classifiers on the indoor dataset. In the last row,

we report the performance of the PMV index computed for the corresponding PMV values.

Classifier 𝜅7 𝜅3 𝜅2

LSTM 59.3% 83.5% 71.9%

Forecast 10 sec 56.6% 80.4% 74.4%

Forecast 5 min 55.5% 77.7% 74.6%

Forecast 10 min 50.9% 77.1% 73.3%

CNN-LSTM 48.5% 69.4% 76.0%

Random Forest 47.1% 73.8% 67.9%

PMV 35.9% 63.7% 65.2%

7.3 ASHRAE Thermal Comfort Field Measurements

In this experiment, we focus on a comparison of our indoor dataset to existing thermal comfort datasets. After a

close inspection of publicly available datasets, the ASHRAE II [70] dataset features comparable aspects to our

collected dataset, as it provides measurements for Radiation Temperature, Ambient Temperature, and Relative
Humidity, which are also measured in our dataset. While our dataset provides sequences over time, ASHRAE II

recorded single data points, which makes it unfeasible to compare against our recurrent-based methods. Instead,

we optimize an RF classifier, described in Section 7.1, using the ASHRAE II dataset. After filtering out data points

with incomplete measurements, a total of 31.500 data points remain. We use 80% of the ASHRAE II data for

training, resulting in 25.204 data points and the remaining 6.301 data points for evaluation. Further, we use the

trained classifier from Section 7.1, which is trained on our dataset, and evaluate it on ASHRAE II. Finally, we use

the classifier trained on ASHRAE II and evaluate it on our dataset. We report evaluation results in Table 5.

Results. The evaluation split of our dataset seems to be more difficult than ASHRAE II. This is indicated by a

worse performance of the classifier trained and evaluated on our dataset than the classifier trained and evaluated

on ASHRAE II. Also, the performance of the classifier trained on ASHRAE II and evaluated on our dataset

performs worse than the classifier trained on our data and evaluated on ASHRAE II, which further supports our

observation. This comparison shows a big gap between both thermal comfort datasets while underlining the

missing feature information when only three sensor measurements are used. Further, this experiment shows a

drastic performance drop when only single thermal state values are used for state recognition. Looking at the

2-point performance measure, the classifier trained on our dataset generalizes to the ASHRAE II dataset.

Table 5. Comparison results of an RF classifier that was optimized on our indoor dataset (AutoTherm) from the climatic

chamber and evaluated on the ASHRAE II dataset and vice versa. We report evaluation performance for three metrics: 𝜅7, 𝜅3,

𝜅2. Each classifier was trained using Radiation Temperature, Ambient Temperature, and Relative Humidity as input vectors.

Train Evaluate 𝜅7 𝜅3 𝜅2

AutoTherm AutoTherm 40.6% 76.1% 69.1%

ASHRAE II ASHRAE II 45.8% 45.8% 82.7%

AutoTherm ASHRAE II 16.2% 22.3% 82.8%

ASHRAE II AutoTherm 2.7% 39.7% 37.5%
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7.4 Classification Using Time-Dependent Information

We investigated representing our time-dependent data as a time series of feature vectors and leveraging a

recurrent neural network to process sequences of features. Thus, we implement our model in a standard encoder-

decoder structure. Our feature encoder network consists of two long short-therm memory layers (LSTM) [37],

followed by a decoder network, which outputs a probability distribution of classes. We use the deep learning

framework PyTorch for implementing the LSTM layers, along with PyTorch-Lightning for module and training

cycle management. We formulate the classification task as a regression problem by using ordinal labels [13]. For

further details, we refer the reader to Appendix C. We use the mean-squared error (MSE) as a loss function to

regress ordinal labels. We use the following hyperparameters: learning rate=0.00001, learning rate decay=0.99,

batch size=16, and dropout=0.5. For the two LSTM layers, we use a hidden state size of 64 and a sequence length of

30. Also, we use every 10th data point, corresponding to a sequence length of 10 seconds. In our hyperparameter

search (see Appendix D), we found the selection of these two hyperparameters to be the best tradeoff between

the length of the input sequence and the oversampling of the same values.

Results. The training of our network resulted in an accuracy of 𝜅7 = 59.3%, 𝜅3 = 83.5%, and 𝜅2 = 71.9%,

outperforming the RF classifier, see Table 4, which is an expected result regarding the increased number of

parameters of our recurrent classifier and the ability to extract neural representations of sequence data.

7.5 Vision-based Thermal Comfort Estimation

In this experiment, we evaluated estimating thermal comfort with additional visual data. Hence, an additional

model was implemented to also incorporate RGB and body pose key points. While training an LSTM with

normalized RGB tensors is possible, it introduces high redundancy and complexity as individual pixel values are

processed for a sequence of images. In past works, architectures for tasks such as action recognition have been

proposed, which include a feature extraction step before the LSTM component [91]. For image feature extraction,

architectures that employ CNNs are often used [69]. To obtain image features from each participant’s RGB frames,

ResNet [34] was selected due to its ability to filter deep features in images while also introducing mechanisms

to avoid the vanishing gradient problem. The PyTorch framework provides pre-trained ResNet versions [73]

that can be incorporated directly into existing models. We train our network with a batch size of 4 and alter

the skip rate from 10 to 3 to achieve sufficient training speed for the image-based RNN model. Image feature

vector extracted by the ResNet with size 512 and the ten body pose key points (given by OpenPose [11]) are

concatenated to the feature vector. We stick to the best-performing feature combination, described in Section 7.4.

Results. The classifier reached accuracies of 𝜅3 = 48.5%, 𝜅3 = 69.4%, 𝜅2 = 76.0%, falling behind our classifier

trained without image features. A quantitative comparison between all models is reported in Table 4.

7.6 Forecasting using Recurrent Classifier

In our experiments, we apply recurrent neural networks (RNNs) to sequential data to predict the state of a future

point in time for a given sequence of the current time step. As RNNs are also successfully used for time series

forecasting [18, 21], we investigate different forecasting ranges to explore the accuracy of predictions using

various forecasting windows. We adopt the classifier presented in Section 7.4 and train it using labels from time

steps later in the future. The forecasting gaps used in our experiments range from 10 seconds, 5 min, and 10 min

into the future. We train our classifier using the identical training protocol as it is described in Section 7.4.

Results. In Table 4, performance results for our forecasting experiments are reported in row two until row four.

The prediction performance between the 10-second window and the 5-min window differed only slightly: 𝜅7
= 56.6%,𝜅3 = 80.4%,𝜅2 = 74.4% for the 10-second window,𝜅7 = 55.5%,𝜅3 = 77.7%,𝜅2 = 74.6% for the 5-min window.

And the 10-min shows lower accuracies, 𝜅7 = 50.9%, 𝜅3 = 77.1%, 𝜅2 = 73.3%, than both previous forecasting
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performances. Experimental runs with forecasting windows exceeding 10 min showed further decreases in

prediction performance.

7.7 Feature Combination Study

To assess the combination of input features to our networks, we conducted a feature combination study based on

the top-k ranked features by the feature importance method (see Figure 6). We selected 𝑘 = 5, covering the most

important features while also yielding a manageable number of combinations. For the experiment, we selected 𝑛

features out of 𝑘 , where 𝑛 ∈ [3, 4, 5]. In total, this results in 16 combinations of input features. For each training

run, we use the LSTM model with identical hyperparameters, as described in Section 7.4.

Results. In Table 6, we report performance results of all training runs. These results indicate that the best

prediction results can be achieved using the following input features: Galvanic Skin Response, Relative Humidity,
Ambient Temperature, and Wrist Skin Temperature, as demonstrated in Section 7.4. Using the five most important

features reduces 𝜅7 of the classifier to 55.9%, 𝜅3 to 79.8%, and 𝜅2 to 72.1%. For detailed analysis results of the

feature combination study, incorporating up to 8 features, as well as an investigation of SHAP values [56], we

refer the reader to Appendix F.

Table 6. In this experiment, we report the accuracy of our classification model, ablating different combinations of input

features. We highlight the feature combination performing best. During the feature combination study, we investigate the

top 5 ranked features by our feature importance analysis, Figure 6: Radiation temperature (RT), wrist skin temperature (WS),

galvanic skin response (GL), ambient temperature (AT), relative humidity (HU). In the last row, we include baseline results of

a null model outputting the most frequent label only.

Features Classification

GL AT HU RT WS 𝜅7 𝜅3 𝜅2

X X X X 59.3% 83.5% 71.9%

X X X X 59.1% 78.4% 73.5%

X X X 57.7% 79.1% 73.8%

X X X 57.1% 79.6% 72.7%

X X X X 56.2% 79.2% 72.8%

X X X X X 55.9% 79.8% 72.1%

X X X 55.8% 79.4% 72.8%

X X X 55.4% 79.2% 72.3%

X X X X 55.0% 78.0% 72.7%

X X X 52.5% 78.6% 69.6%

X X X 50.5% 73.9% 73.1%

X X X 47.7% 70.8% 74.6%

X X X 45.6% 70.5% 70.8%

X X X 42.0% 64.9% 69.0%

X X X X 41.5% 67.5% 70.5%

X X X 41.1% 67.3% 68.1%

Null Model 24.8% 24.8% 63.2%

7.8 Experiments On In-Vehicle and Combined Dataset

Having collected a real scenario dataset, as described in Section 5, enables us to investigate thermal comfort

estimation under real conditions and examine the gap to indoor conditions. To do so, we train two additional

classifiers using the same LSTM model architecture and the same hyperparameters as described in Section 7.7

with the best feature combination. We use data from 16 participants during training and the remaining data for
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Table 7. Comparing experimental results of five models trained on different datasets. The upper table shows performance

results for the in-vehicle test dataset. The models in the bottom rows are tested using the in-lab test dataset. In this experiment,

all models were trained using five input features: galvanic skin response, heart rate, relative humidity, ambient temperature,

and skin temperature. Note that the evaluation reported in Table 6 used a different combination of features (radiation

temperature used instead of heart rate, as radiation temperature was not available in-vehicle). Additionally, we include

baseline results of a null model outputting the most frequent label only.

Train Evaluate 𝜅7 𝜅3 𝜅2

indoor vehicle 39.2% 55.0% 67.5%

vehicle vehicle 45.2% 63.8% 67.7%

Combined vehicle 48.1% 61.4% 69.3%

Null Model vehicle 29.6% 42.4% 64.0%

indoor indoor 52.0% 76.4% 71.3%

Combined indoor 56.9% 79.7% 72.6%

Null Model indoor 24.8% 24.8% 63.2%

evaluation. In exception, during the in-vehicle study, five sensory measurements are recorded: galvanic skin

response, heart rate, relative humidity, ambient temperature, and skin temperature, which are used as input to

our classifier. In this experiment, we compared and combined the scenarios in-vehicle and buildings. Therefore,

we evaluate all classifiers on our indoor dataset originating from the in-vehicle study, as described in Section 5,

and on our indoor dataset, see Section 4.

Results. First, we trained one classifier solely on the vehicle dataset, leading to a performance of 𝜅7 = 45.2%, 𝜅3
= 63.8%, and 𝜅2 = 67.7%. When combining both datasets (indoor and vehicle dataset), we achieved an accuracy

of 𝜅7 = 48.1%, 𝜅3 = 61.5%, and 𝜅2 = 69.3% (see third row in Table 7). Additionally, we evaluate the classifier,

which was trained on the indoor dataset, using the vehicle dataset to compare the difference between building

and vehicle scenario, and we report the results in the first row of Table 7 (i.e., 𝜅7 = 39.2%, 𝜅3 = 55.0%, and 𝜅2
= 67.7%). Looking at the evaluation results of the two models, one trained and tested on the indoor dataset,

and the other trained and tested on the vehicle dataset, there is a performance difference. We attribute the

lower accuracy for the vehicle dataset compared to the indoor dataset (second vs. fourth row in Table 7) to

the less controlled environment and fewer data entries. Further, looking at the classifier that was trained on

indoor dataset, its performance for the vehicle scenario lags behind the performance of the classifier that was

trained using the vehicle dataset. This shows a gap between building and in-vehicle data. Ultimately, when

combining both data sets (third and last row in Table 7), it shows that both classifiers benefit from additional data

and the test performance for indoor dataset and vehicle dataset increases. We draw the conclusion from these

experiments that there is a gap between both datasets and that it can be narrowed by increasing training data,

yet a gap between both scenarios remains.

8 DISCUSSION

In the following, we discuss the results of the dataset acquisition, model training, and feature importance analysis,

as well as similarities and differences to previous approaches in the field of state recognition.

8.1 Temporal Data for Thermal Comfort Estimation

For our RF classifier, an evaluation accuracy of 47.1% was reached on the seven-point thermal sensation scale.

RF models were previously used to predict thermal preference (three-point scale) and thermal state (two-point

scale), where accuracies between 76% (three-point) [54] - 94% (two-point) [12] were achieved using physiological

signals. The performance of the RF model employed in this work was similar, with a prediction accuracy of
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73.8% for the three-point scale and 67.9% for the two-point scale. However, the LSTM-based classifier achieved

a prediction accuracy > 59% on the seven-point scale (see Table 4). We attribute the difference to the inherent

mechanism, as the RF models were not processed in sequences but on an individual line-by-line basis. Therefore,

changes over time could not be incorporated into the model’s estimation. This is supported by the improved

accuracy when employing data-downsampling. Previous RF models for thermal comfort estimation [12, 54] did

not employ data-downsampling, as data was already labeled more sparsely in comparison to the thermal comfort

dataset that was recorded at 30Hz.

8.2 Visual Features for Thermal Comfort Estimation

Comparing LSTM and CNN-LSTM, the LSTM model was optimized using ambient temperature, humidity, skin

temperature, and galvanic skin response as input features, which were identified as the four most relevant

features for thermal sensation prediction, while CNN-LSTM model features were selected based on real-world

applicability. The LSTM architecture achieved a higher evaluation accuracy score than the CNN-LSTM. However,

radiation temperature and even physiological features such as heart rate or GSR may not be readily available in

future buildings. Furthermore, the meaningfulness of the raw extracted visual features via the ResNet block could

be increased by, for instance, applying facial expression or motion detection [106], before concatenation with the

remaining features, as this allows the model to predict thermal comfort on more filtered feature representations.

Consequently, the LSTM model would not be guaranteed to outperform the CNN-LSTM architecture in a real-

world scenario. The achieved accuracy on the dataset (59.3%) should thus be seen as an initial dataset benchmark.

8.3 Data Acquisition for State Recognition Datasets

The data acquisition in this work differed from previous approaches. Firstly, a controlled (low fidelity) climate

chamber was employed over 60 min. Additionally, instead of questionnaire-based data collection, data were

recorded using a data logging application that enabled direct labeling by the participants. The logging differed

from previous approaches (e.g., [54, 55, 59]) as the synchronization of the various sensory inputs, as well as the

labeling interface, were centralized in a single application that allows for dense sampling without post-labeling.
Therefore, we assume that the labeling accuracy and log timing were greatly increased, as participants could

report their current state by performing a minimal number of interactions with a numeric keypad. Due to the

personal thermal comfort zone [14, 15], which is person-dependent, a calibration of the model during usage

seems appropriate. This could be done, for example, by directly asking users (e.g., “Are you currently feeling cold,

comfortable, or hot?”) or by treating the manual adjustment of the A/C as input (“want warmer”, “want cooler”,

with the amplitude of change being an indicator of the strength of this desire). However, Quintana et al. [75],

with their cohort comfort model approach, showed a potential avenue to reduce required personal data.

8.4 State Recognition For Interaction Design

In line with work by Stampf et al. [85], our work helps determine the current user’s state in an AV. Our dataset

has relevance both for manual and especially for automated driving, which is one of the raised points by Stampf

et al. [85]. With this dataset, we contribute one aspect to enable developers to create a “digital twin” that could

enable novel interaction design. We envision numerous interaction possibilities here, as the uncertainty of the

prediction and severity of the deducted action have to be considered. Additionally, there are multiple ways to use

these states, for example, by directly adjusting values or asking the user whether they want a value adjusted.

These interactions and effects will become highly relevant with ever-better recognition.
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8.5 Limitations and Future Work

A low-fidelity climatic chamber was built using three (two heaters and one cooler) commercial smart-home A/C

units. As the minimum temperature during the recordings was 17.1°C, cold sensations could not successfully be

induced for all participants, which led to an unbalanced label distribution in the dataset. Additionally, radiation

types alter comfort modeling, therefore, the heater types most likely had an impact on the reported thermal

comfort [36]. Moreover, physiological signals measured using the Empatica E4 wristband were found to have a

high outlier rate (up to 13.7%) for heart rate and GSR measurements. Additionally, while methods for boredom

aversion during the recordings were implemented, we assume that the overall level of boredom in participants

remained high due to the length of the recordings. This potential boredom, in turn, may have led to unwanted

influences on emotion ratings. Furthermore, the measurements for body fat and body temperature were taken

using commercial-grade measuring tools, likely affecting the accuracy of the recorded values. The recorded

dataset also contains a bias due to the repeated heating pattern in all data recordings. Future work should address

the dataset bias by adding further data recorded using different heating patterns and a more diverse participant

population to provide more balanced data for state recognition. Regarding thermal comfort classification, future

architectures should focus on processing visual and environmental features that can be collected reliably in

future real-world scenarios. The comparability to other datasets is also limited because the ASHRAE II [25]

dataset contains international data from singular observations, and our dataset is limited to one country Germany.

Also, the variance in clothing for the participants was low, given the short timeframe we used to gather data (3

weeks in total). Also, while there is an influence of age on thermal comfort perception [20, 31], our dataset is

limited to data from mostly younger participants (M=24.64, SD=3.03). To overcome such limitations observed

in the current study on indoor thermal comfort and vehicle experiments, several improvements are proposed:

First, diversifying the participant pool is crucial. Expanding the participant count will enhance the statistical

significance of the findings, while including individuals from various demographics will provide insights into

diverse thermal comfort perceptions. Secondly, the experimental conditions should be broadened. This can be

achieved by implementing different rates of thermal changes, for example, by abruptly or very subtly increasing

or decreasing the temperature to further study how this influences individual thermal comfort state. At the same

time, future studies should focus on exposing participants to an equally distributed temperature spectrum to

study a wide variety of thermal comfort scenarios and conduct longitudinal studies to observe the effects of

transient thermal phenomena over time. Thirdly, conducting comparative studies across different environments

and internationally could illuminate specific thermal comfort challenges and strategies, highlighting the influence

of various external factors on thermal perceptions. Fourthly, to mitigate subjective differences in the raters’

individual temperature range in which they feel comfortable [61], relative thermal comfort changes should be

investigated. To do so, the minimal and maximal temperature values representing the minimum and maximum

of the comfort scale need to be retrieved per participant and used to normalize temperature measurements.

Lastly, addressing behavioral and psychological factors through targeted studies would illuminate how individual

actions and mental states impact thermal comfort, further enriching our understanding of this multifaceted topic.

Implementing these suggestions could significantly refine the study’s approach, leading to a more comprehensive

understanding of thermal comfort dynamics in both indoor and vehicular environments.

9 DATASET AND CODE AVAILABILITY

The code is available at https://github.com/az16/thermal-comfort-classification. The data is available online at

HuggingFace (https://huggingface.co/datasets/kopetri/AutoTherm).

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 3, Article 96. Publication date: September 2024.

https://github.com/az16/thermal-comfort-classification
https://huggingface.co/datasets/kopetri/AutoTherm


AutoTherm: A Dataset and Benchmark for Thermal Comfort Estimation Indoors and in Vehicles • 96:21

10 CONCLUSION

This work explored machine-learning-based thermal comfort recognition as a relevant target state space for

future AV interaction concepts. First, relevant influencing factors on thermal comfort and the affiliated sensory

devices were reviewed and filtered based on their level of obtrusiveness and their prevalence in previous thermal

comfort studies used in the field of building ergonomics (e.g., [24, 27, 59]). Then, a thermal comfort experiment

and a data logging application were designed to record a dataset. This dataset was collected in two scenarios:

buildings and in-vehicle. This dataset includes a total of 31 different features (age, gender, weight, height, body

fat, body temperature, clothing, sport, meal timing, tiredness, radiation temperature, ambient temperature,

wrist skin temperature, GSR, heart rate, relative humidity, RGB frames, ten pose key points, metabolic rate, air

velocity, and two emotion features). A thermal comfort study with 𝑁 = 18 participants in a self-built climatic

chamber and 𝑁 = 20 participants in a BMW 3 Series was conducted. The datasets were then analyzed regarding

feature importance based on correlation coefficients, model-estimated data impurity scores, and model-estimated

permutation scores. The four most relevant features for thermal comfort estimation with the recorded data were

ambient temperature, galvanic skin response, skin temperature, and relative humidity. Three different classifiers

(RF, LSTM, and CNN-LSTM) were implemented and trained using the recorded dataset to assess the feasibility of

thermal comfort recognition. A thermal comfort estimation accuracy of 59.3% in the climatic chamber and 45.2%

in the vehicle was achieved using the implemented LSTM model and the dataset labels given on a seven-point

scale (combined: 48.1%). The resulting classifier configuration was used for further experiments employing state

forecasting and different label ranges (three-point and two-point scales). The reduction of labeling scales increased

prediction performance in all implemented classifiers. The recorded dataset and the data logging application

will be made available publicly to encourage further data recording projects for state recognition by providing a

template for user-labeled data acquisition. This work provides the first dataset and reference implementation for

state-of-the-art thermal comfort estimation. It helps developers and designers to gain a better understanding of

their users, as well as helps introduce novel automated responses to detected states.
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A CROSS-VALIDATION OF THE RECURRENT NETWORK CLASSIFIER

In our experiment from Section 7.4, we used data from 16 participants during the training of our models. Then,

we evaluate performance on the data from the remaining 2 participants. Now, we investigate the ability of our

network to generalize to unseen data. Therefore, we adopt 9 fold cross-validation, repeating the optimization of

our classifier. To do so, we create 9 folds with two participants each for evaluation. The remaining participants are

used for training. Then, we train 9 classifiers, using the same hyperparameters overall training runs. In Table 8,

we report individual performance measures, as well as the mean and standard deviation for all runs. The mean

accuracy of our classifier is 𝜅7 = 54.8% ± 1.7%, 𝜅3 = 78.2% ± 1.7% and 𝜅2 72.3% ± 0.7%.

Table 8. Cross-validation results over 9 folds with 16 participants in the training split and remaining 2 participants for testing.

In the last two rows, we report the mean and std for all metrics.

Classification

Run 7-point Acc 3-point Acc 2-point Acc

0 54.4% 79.4% 70.9%

1 52.3% 76.0% 72.8%

2 57.0% 79.8% 72.8%

3 54.3% 77.7% 72.1%

4 57.8% 81.1% 72.9%

5 55.6% 79.0% 71.9%

6 54.7% 77.9% 72.5%

7 53.8% 77.9% 71.4%

8 52.9% 75.2% 73.2%

Mean 54.8% 78.2% 72.3%

Std 1.7% 1.7% 0.7%
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Fig. 7. Ambient temperature conditions for the full recording duration during the indoor study, grouped by trial ID. The

mean heating profile is included (red).

B AMBIENT TEMPERATURE

Figure 7 illustrates the ambient temperature profile that each participant was exposed to. It can be observed that

the defined temperature ranges were met in each trial during the recording sessions.

C DATA PREPARATION AND AUGMENTATION

Firstly, outliers were defined as outside of the mean with three times the standard deviation. This was also done

per label group for the ambient temperature. That means that for a given label, data points with an ambient

temperature of +/−3 ∗ 𝑠𝑡𝑑 of the mean were excluded. This was done to filter falsely attributed labels. Then, we

used one-hot encoding for categorical features and overall data down-sampling for the RF classifier.

For the LSTM and CNN-LSTM models, the same outlier filtering, one-hot-encoding, and down-sampling steps

were employed. However, as sequences are expected as input to the LSTM models, a sliding window approach

was implemented, where, for every index in the created data frame, a sequence of length 𝑛 is created, such that,

for instance, a window size of𝑤 = 30 would result in the following data frame scheme.

Simple data augmentation for continuous features was also implemented. Gaussian noise sampled from a

Gaussian distribution with the parameters 𝜇 = 0.00 and 𝛿 = 0.30 was added to the continuous variables through

element-wise addition. For image data, a more extensive data augmentation scheme was applied, as RGB frames

were recorded at a size of 1920x1080, which is too large for efficient training. Thus, first, a central 1000x1000 crop

was extracted and resized to 224x224. The resized image is then randomly rotated up to 5°, randomly flipped

horizontally, and then normalized so that all three RGB channels are given as values between 0 and 1

Finally, as the thermal sensation scale has an ordinal scaling level, providing simple integer targets as prevalent

in the raw dataset ignores the rank information. Therefore, the labels were changed according to a scheme

proposed by Cheng et al. [13]. Ordinal labels are transformed into binary vectors of size 𝑘 (here 7), where 𝑘 is the

number of ranks given on the ordinal scale. The binary vectors are instantiated as zero-vectors and then filled

with ones from left to right, depending on the rank of the ordinal label. The resulting label transformations for

the thermal sensation scale (seven-point scale) were:

• −3 −→ [1, 0, 0, 0, 0, 0, 0]
• −2 −→ [1, 1, 0, 0, 0, 0, 0]
• −1 −→ [1, 1, 1, 0, 0, 0, 0]
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• 0 −→ [1, 1, 1, 1, 0, 0, 0]
• 1 −→ [1, 1, 1, 1, 1, 0, 0]
• 2 −→ [1, 1, 1, 1, 1, 1, 0]
• 3 −→ [1, 1, 1, 1, 1, 1, 1]

The resulting binary vectors were used as labels for the LSTM and CNN-LSTM models. Split sizes were

predefined, so data from 16 participants were used for training, and the remaining data files for validation/testing.

In-Lab study In-Vehicle study

Fig. 8. Left: Image taken from the setup during the in-lab study. Right: Image taken from inside the BMW 3 during the

in-vehicle study.

D LSTM HYPERPARAMETER SEARCH

For the LSTM model (without visual features), initial trial runs on the data showed severe over-fitting symptoms

(i.e., training loss steadily declined while validation loss increased continuously). The model was then modified

such that the hidden state size of the LSTM cells and the input sequence length could be included in the

hyperparameter search. The optimization parameters for the initial LSTM model, therefore, included batch size,

learning rate, sequence length, down-sampling rate, drop-out, number of LSTM layers, and the hidden state size.

A training script using the parameter ranges shown in Table 9 was employed, and each configuration was run

initially run for 20 epochs. The mean-squared error (MSE) was used as a loss function. The highest validation

accuracy using the fore-named parameters was achieved at 0.62 with the configuration: learning rate=0.00001,

hidden states=64, sequence length=300 (i.e., 10 seconds), batch size=16, layers=2, and drop-out=0.5. The same

feature combination was used for all the runs. After analyzing the loss graphs for the training and validation

data, it became notable that improvement of the model decreases quickly after the learning rate decreases far

below 0.00001. Moreover, over-fitting was less severe with smaller hidden state sizes ([32-64]). One reason for the

quick drop in model improvement was assumed to be the learning rate decay, which was thus far implemented

as a reduction by 𝑥0.99999. To explore the learning rate decay’s influence on the model improvement, it was also

added to the optimization parameters.

Keeping the previously optimized parameters the same while varying only learning rate decay and down-

sampling rate, additional training runs were started and trained for up to a maximum of 100 epochs or until

over-fitting was detected. The number of training epochs was increased as a response to the low learning rate

and decreased learning rate decay. Optimization of the remaining parameters resulted in a validation accuracy
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Parameter Range

batch size {4, 8, 16}

learning rate {0.001, 0.0001, 0.00005, 0.00001}

learning rate decay {0.99999, 0.999999, 0.9999999}

hidden states {10, 16, 32, 64, 96, 128, 256}

lstm layers {1, 2, 3}

sequence length {10, 50, 100, 150, 300, 600}

drop-out {0.2, 0.5}

features {clothing, radiation temperature, ambient temperature, ambient humidity, GSR,

heart rate, skin temperature}

Table 9. The parameter space used for grid search optimization of the LSTM and CNN-LSTM models.

of 0.71 with the configuration learning rate=0.00001, hidden states=64, layers=2, down-sampling=10, sequence

length=30 (i.e., 10 seconds), batch size=16, and drop-out=0.5, and learning rate decay=0.9999999.

E FEATURE PERMUTATION IMPORTANCE
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Fig. 9. Feature permutation importance is computed for both models, (top) Random Classifier and (bottom) LSTM-base

model. We group by physical, psychological, physiological and OpenPose [11] features. While the results for the random

forest indicate more importance to the physical and some physiological features, for the LSTM-based, a similar conclusion

can be drawn. However, the differences are only marginal. However, features derived from RGB Frames using OpenPose [11]

seem to matter only in some cases (left ear for random forest and left ear and elbows for the LSTM model). We attribute this

inconsistency to occluded body parts in the recordings due to sitting posture.

F EXTENDED FEATURE COMBINATION STUDY

In this experiment, we investigate the importance of different features. We train 255 classifiers using all possible

feature combinations using the following 8 features: Body temperature (BT), PCE ambient temperature (PCE),

heart rate (HR), galvanic skin response (GL), ambient temperature from Arduino sensor (AT), relative humidity

from Arduino sensor (HU), radiation temperature (RT), wrist skin temperature (WS). We report performance

results for classification and regression measures in Table 10, Table 11, Table 12, Table 13, Table 14 and Table 15.

Additionally, we compute the absolute SHAP values [56], averaged for the indoor dataset, see Figure 10.
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Table 10. Top 50 runs of feature combination study.

Features Classification

BT PCE HR GL AT HU RT WS 7-point Acc 3-point Acc 2-point Acc

X X X X 59.3% 83.5% 71.9%

X X X X 59.1% 78.4% 73.5%

X X X 57.7% 79.1% 73.8%

X X X X 57.5% 78.4% 74.4%

X X X 57.1% 79.6% 72.7%

X X X X X 57.2% 80.3% 72.4%

X X X X X X 56.5% 80.3% 72.0%

X X X 56.5% 79.4% 73.3%

X X X X X 56.4% 81.5% 72.4%

X X X X 56.2% 79.2% 72.8%

X X X X 56.1% 79.2% 72.9%

X X X X X X 56.0% 79.5% 73.2%

X X X X X 55.9% 79.8% 72.1%

X X X 55.8% 79.4% 72.8%

X X X X 55.5% 78.8% 72.7%

X X X X 55.5% 78.1% 73.3%

X X 55.5% 79.1% 70.9%

X X X 55.4% 79.2% 72.3%

X X X X X 55.3% 77.9% 73.4%

X X X X 55.2% 78.3% 72.6%

X X X X X 54.8% 78.5% 72.4%

X X 54.5% 78.8% 72.1%

X X X X X 54.4% 77.5% 72.9%

X X X X X 54.4% 78.9% 71.0%

X X X 54.3% 77.6% 72.0%

X X 54.3% 78.8% 69.9%

X X X 54.1% 78.5% 71.6%

X X X X X 54.1% 78.9% 71.7%

X X X X 53.9% 77.5% 71.7%

X X X X 53.8% 76.9% 72.3%

X X X X 53.8% 77.7% 71.2%

X X X X X X 53.6% 77.0% 72.6%

X X X X 53.3% 76.9% 72.5%

X X X 53.3% 76.9% 71.7%

X X X X 52.9% 77.3% 70.7%

X X X X X X 52.8% 76.4% 72.2%

X X X X 52.6% 75.6% 72.3%

X X X 52.6% 76.6% 73.5%

X X 52.4% 75.4% 71.3%

X X X X X 52.3% 76.8% 70.9%

X X 52.1% 74.4% 73.5%

X X X X 52.1% 80.5% 68.3%

X X X X 52.1% 76.5% 70.6%

X 52.1% 74.7% 72.6%

X X X X X 52.0% 76.4% 71.3%

X X X X X X 51.9% 75.9% 72.4%

X X X X 51.7% 76.3% 71.3%

X X X X X 51.3% 77.2% 68.9%

X X X 51.3% 74.1% 72.6%

X X X 51.3% 78.2% 68.3%
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Table 11. Top 51 - 100 runs of feature combination study.

Features Classification

BT PCE HR GL AT HU RT WS 7-point Acc 3-point Acc 2-point Acc

X X 51.3% 74.0% 72.7%

X X X X X X 51.2% 78.1% 69.5%

X X X 51.2% 74.6% 72.3%

X X X 51.2% 75.2% 71.6%

X X X X X X 51.0% 74.3% 71.4%

X X X X X X 50.9% 77.2% 69.9%

X X X X X X 50.8% 76.8% 70.6%

X X X 50.8% 75.3% 72.1%

X X X X X 50.7% 76.4% 69.8%

X X X X X X X 50.7% 77.4% 69.9%

X X X X X 50.6% 73.7% 73.0%

X X X X 50.6% 73.9% 72.3%

X X X X 50.6% 75.2% 70.9%

X X X 50.5% 76.2% 71.8%

X X X X X X X 50.4% 74.7% 71.5%

X X X X 50.3% 72.8% 73.1%

X X X X X X 50.3% 75.0% 71.3%

X X X X X X 50.2% 75.0% 71.1%

X X X X 55.0% 78.0% 72.7%

X X X X X X 50.0% 75.6% 70.8%

X X X X X 49.8% 72.8% 73.2%

X X X X X X 49.8% 73.9% 70.7%

X X X X X 49.8% 73.2% 71.7%

X X X X X X X 49.8% 74.9% 70.2%

X X X X X 49.6% 72.2% 73.1%

X X X X 49.5% 72.1% 71.7%

X X X X 49.4% 73.5% 70.8%

X X X 49.3% 72.8% 73.7%

X X X X 49.0% 71.6% 73.6%

X X X 48.7% 71.5% 72.9%

X X X X 48.7% 78.5% 69.5%

X X X 48.5% 70.8% 70.2%

X X X 48.5% 71.5% 72.5%

X X X X X 48.2% 70.5% 73.8%

X X X X X X X X 48.2% 73.4% 69.2%

X X X X 48.2% 70.8% 72.2%

X X X X X 48.2% 71.7% 71.4%

X X X 48.1% 72.0% 73.3%

X X X X X 48.0% 73.7% 70.8%

X X X X X 48.0% 71.7% 72.4%

X X X X X 48.0% 75.1% 68.6%

X X X X 47.9% 73.8% 69.0%

X X X 47.9% 74.7% 68.5%

X X 47.7% 70.6% 73.1%

X X X X X X X 47.7% 73.3% 68.9%

X X X X X X 47.7% 71.9% 71.2%

X X X X 47.6% 74.7% 72.2%

X X X X X 47.6% 72.6% 66.9%

X X X X 47.5% 71.6% 71.7%

X X X X X 47.4% 72.5% 70.7%
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Table 12. Top 101 - 150 runs of feature combination study.

Features Classification

BT PCE HR GL AT HU RT WS 7-point Acc 3-point Acc 2-point Acc

X X X X X 47.3% 73.0% 70.4%

X X X X 47.1% 71.2% 69.4%

X X X X X 47.1% 78.1% 68.7%

X X X X X 47.1% 72.1% 68.9%

X X X X X 46.7% 71.0% 69.9%

X X X X 46.6% 69.2% 73.0%

X X X X X 46.6% 70.1% 69.9%

X X X X 46.5% 67.4% 70.1%

X X X X X 46.4% 73.9% 68.1%

X X X X X 46.3% 67.3% 71.0%

X X 46.3% 68.8% 73.8%

X X X X X 46.3% 69.4% 71.1%

X X X X 45.9% 67.3% 70.0%

X X 45.7% 69.5% 74.9%

X X X X 45.7% 69.0% 73.0%

X X X X X X 45.7% 77.0% 67.9%

X X X X 45.7% 68.5% 72.9%

X X X 45.7% 69.0% 73.6%

X X X X X 45.4% 70.8% 69.7%

X X X X 45.3% 69.7% 69.1%

X X X 45.3% 66.0% 72.1%

X X X X X 45.2% 69.4% 69.0%

X X X X X 45.2% 71.4% 68.4%

X X X X X 45.0% 69.4% 71.2%

X X X X X 44.9% 69.8% 70.8%

X X X X X X X 44.7% 71.1% 68.8%

X X X X 44.4% 68.3% 71.8%

X X X 44.3% 71.2% 68.9%

X X X X X X 44.2% 69.5% 68.8%

X X X X 44.2% 73.6% 68.1%

X X X X X X 44.2% 69.6% 70.7%

X X X 44.2% 70.1% 71.9%

X X X X 44.1% 70.3% 66.1%

X X X X X 44.1% 62.1% 69.0%

X X X X X X X 43.6% 68.7% 68.7%

X X X 43.6% 69.8% 69.5%

X X X X X 43.5% 66.8% 69.9%

X X X X X X 43.3% 67.8% 70.5%

X X X X X X 42.8% 66.8% 71.0%

X X X X X 42.3% 67.2% 71.6%

X X X X 42.1% 68.5% 70.4%

X X X X X X 42.0% 75.6% 62.9%

X X X X 42.0% 70.7% 66.9%

X X X X X 41.9% 66.6% 70.3%

X X X X 41.9% 65.7% 69.5%

X X X 41.9% 66.1% 71.5%

X X X 41.7% 65.8% 62.8%

X X 41.6% 63.2% 71.1%

X X X X 41.6% 66.6% 71.5%

X X X X 41.5% 70.0% 68.8%
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Table 13. Top 151 - 200 runs of feature combination study.

Features Classification

BT PCE HR GL AT HU RT WS 7-point Acc 3-point Acc 2-point Acc

X X X 41.4% 67.3% 70.1%

X X X 41.4% 65.6% 66.8%

X X X X X 41.3% 69.3% 69.1%

X X X X X X 41.3% 72.6% 62.4%

X X X X 41.3% 64.9% 61.0%

X X 41.2% 64.1% 72.2%

X X X X X X 40.9% 65.0% 65.7%

X X X X X X X 40.8% 65.8% 71.2%

X X X X 40.8% 68.1% 70.5%

X X X X 40.7% 67.2% 69.5%

X X X X X 40.7% 65.9% 70.8%

X X X X X 40.6% 66.1% 70.8%

X X X X 40.4% 67.6% 69.2%

X X X X 40.4% 68.0% 68.1%

X X X 40.4% 67.6% 64.7%

X X X X 40.3% 64.0% 61.2%

X X X X 40.2% 61.7% 61.2%

X X X X X X 40.1% 63.7% 71.1%

X X X X X 40.1% 62.9% 68.6%

X X X X X 40.1% 63.5% 68.6%

X X X 40.0% 65.0% 69.2%

X X X 39.8% 63.0% 71.9%

X X X X 39.7% 64.7% 69.5%

X X X X X X 39.7% 64.6% 68.5%

X X X 39.5% 64.7% 66.0%

X X 39.4% 64.7% 63.4%

X X X X X 39.4% 64.6% 68.8%

X X X X 39.3% 74.1% 63.2%

X X X X 39.3% 66.4% 64.5%

X X X X X 39.3% 65.0% 63.7%

X X X X X 39.3% 64.3% 69.5%

X X X X 39.0% 63.5% 70.4%

X X X 39.0% 65.0% 60.3%

X X X X 39.0% 65.6% 69.7%

X X X 38.7% 67.9% 72.3%

X X X 38.6% 63.1% 69.3%

X X X 38.6% 67.9% 67.4%

X X 38.5% 56.4% 73.3%

X X X 38.5% 63.8% 69.0%

X X X 38.5% 62.2% 71.8%

X X 38.5% 62.5% 69.1%

X X X X X 38.4% 65.5% 68.9%

X X X 38.2% 58.2% 72.9%

X X X X X 38.1% 63.2% 63.6%

X X X X 38.1% 60.8% 64.9%

X X X X X 38.0% 62.7% 67.8%

X X X X 38.0% 60.7% 70.3%

X X X 37.8% 59.6% 68.5%

X X X X 37.8% 58.9% 70.5%

X X X X 37.8% 55.7% 66.5%
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Table 14. Top 201 - 250 runs of feature combination study.

Features Classification

BT PCE HR GL AT HU RT WS 7-point Acc 3-point Acc 2-point Acc

X X X X 37.7% 61.2% 69.7%

X X 37.6% 65.7% 67.5%

X X X 37.5% 58.9% 70.1%

X X X X X X 37.4% 61.6% 64.0%

X X X X X X X 37.4% 61.5% 67.4%

X X X X X 37.3% 56.2% 71.0%

X X X 37.3% 59.4% 68.4%

X 37.1% 56.4% 74.6%

X X X X 37.1% 56.1% 60.2%

X 37.1% 58.7% 73.1%

X X X X X 37.0% 60.2% 70.7%

X X 36.7% 55.9% 73.5%

X X X X X 36.6% 62.6% 68.5%

X X 36.4% 58.5% 73.7%

X X X X X X 36.2% 55.4% 58.5%

X X 36.0% 58.5% 68.1%

X X X X X 36.0% 61.1% 69.4%

X 36.0% 59.8% 63.3%

X X X X 35.9% 60.7% 70.3%

X X X 35.6% 55.9% 72.6%

X X 35.5% 56.6% 74.4%

X X X X 35.4% 62.8% 73.3%

X X X X 35.3% 56.5% 69.2%

X X X X 34.8% 62.2% 62.3%

X X X X 34.6% 55.6% 61.5%

X X X 34.5% 57.2% 71.5%

X X X X X 34.3% 61.2% 67.5%

X X X X X X 34.2% 58.6% 64.2%

X X X X 34.2% 55.3% 65.3%

X X X 33.6% 55.3% 73.1%

X X 33.3% 55.2% 72.1%

X X X 33.2% 56.5% 64.4%

X X 32.6% 60.6% 65.3%

X X X X 32.5% 54.9% 67.9%

X X X 32.3% 62.9% 64.4%

X X X 32.3% 50.9% 63.4%

X X X 31.6% 54.8% 62.5%

X X X X X X 31.3% 57.0% 56.8%

X X 30.6% 46.9% 60.2%

X X X 30.1% 43.1% 66.3%

X 26.6% 29.5% 64.8%

X X X X 26.1% 41.7% 60.8%

X X 25.7% 32.7% 63.2%

X X X 25.0% 40.1% 58.8%

X X X 24.7% 24.7% 63.5%

X X 24.7% 24.7% 63.5%

X X 24.6% 24.6% 63.4%

X X 24.6% 24.6% 63.4%

X 24.6% 24.6% 63.4%

X X X 24.6% 24.6% 63.4%

Table 15. Top 251 - 255 runs of feature combination study.

Features Classification

BT PCE HR GL AT HU RT WS 7-point Acc 3-point Acc 2-point Acc

X 24.6% 27.8% 63.1%

X X 24.5% 24.5% 63.2%

X X X 24.5% 24.5% 63.2%

X X 24.5% 24.5% 63.1%

X 24.5% 24.5% 63.1%
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Fig. 10. SHAP values for sixteen features computed for the test split of the indoor dataset using the trained RF. For each

feature and class, we report the mean absolute SHAP value.
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G CONFUSION MATRICES
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Fig. 11. Random Forest confusion matrix. Cold classes are misclassified entirely, and Comfortable classes are rarely classified
correctly. Warmer labels are predicted with higher accuracy.
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Fig. 12. LSTM confusion matrix. Comfortable and Cold states are mostly wrongly classified. Warmer labels were classified

more reliably.
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Fig. 13. The CNN-LSTM confusion matrix. Most classes apart from Hot states are wrongly classified.
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(b) Recurrent Network Classifier
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(c) CNN + RNN Classifier

Fig. 14. Confusion matrices for three-point and two-point classification.
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Fig. 15. The confusion matrix resulting from PMV index calculated labels. It can be seen that all classes were mostly wrongly

classified using the PMV index.
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H THERMAL COMFORT STUDY INTRODUCTORY SLIDES

We provide the slides used to explain the procedure and the data logging interface to participants. Most slides

included screenshots from the actual data logger GUI to ensure that explanations given during the introduction

were supported by visualizations of the actual logging application.
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Thermal Comfort Study
Introductory Slides

Navigation

Once the logging 
application was started, 
use only the marked keys 
on the provided numeric 
pad to your right.

Follow the supervisor’s 
instructions and feel free 
to ask questions if 
anything is unclear.



Questions with an * are 
mandatory and cannot be skipped.



Optional questions can be skipped by 
pressing + on the numeric pad









Once you’ve arrived at this page, do not 
press submit until the supervisor tells you 
to.



Labeling

While in labeling mode 
you’ll notice that there are 
no next/back buttons. This 
is intended.

In this mode, only use the 
numeric input keys to 
label, the page will change 
itself.



Other Important Hints

• If you feel unwell during the recording session, let the supervisor
know.

• The interface can be displayed in german.
•

•

•
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