
Policy Based Adaptive Services for Mobile Commerce

Enrico Rukzio, Sven Siorpaes, Oliver Falke, Heinrich Hussmann
Media Informatics Group, Institute of Computer Science, University of Munich
{Enrico.Rukzio, Sven.Siorpaes, Oliver.Falke, Heinrich.Hussmann}@ifi.lmu.de

Abstract

In this paper we describe a novel adaptation
architecture as well as a process for the development
of policy based adaptive services for mobile
commerce. Our architecture is based on three basic
requirements and defines the four core elements
context, policies, policy decision point and policy
enforcement point. The proposed approach is based
on the reuse and adaptation of existing and matured
standards, APIs and middleware for representing
context information, usage of policies for reasoning
and for the communication between the involved
parties. Our aim is to present a simple architecture
taking as much as possible available work and
software into account to support the rapid
development of context aware mobile services.
Furthermore we present a novel methodology for the
definition of context information and policies that is
sup-ported by a new UML based diagram and a
module pipeline. We show the feasibility of the
architecture as well as of the process based on a
prototype which implements a typical scenario for an
adaptive mobile service.

1. Introduction

It is commonly agreed that mobile devices like
mobile phones, smart phones or PDAs are already now
ubiquitously available and that their pervasiveness will
rise in the future. In addition to that, the capabilities of
these devices such as processing power, memory size,
display quality and the number of supported networks
are improving rapidly. Also the number of mobile
services that can be used with these devices in-creases
quickly.

But what about the user? A very important key
component for the acceptance of new services for
mobile commerce is their usability and complexity. Is
the user willing to select a supported encoding and an

appropriate resolution before watching a video on a
mobile phone, to configure a huge set of parameters of
his mobile device for accessing mobile services or to
define which network operators he or she wants to use
for which service? Beside these technical aspects
different users have different needs. If these are not
satisfied, the user might well stop using the service
and refrain from using it again.

The field of context-aware mobile services
addresses these issues whereby different types of
context information are acquired and used to adapt to
technical requirements and the user’s needs. So far we
have seen a lot of academic and industrial projects
which focus on the acquisition of context information,
the composition of context to higher level context
information, different levels of context, representation,
structuring and managing of context and reasoning
based on context information for the development of
adaptive and personalized mobile applications.

This paper proposes a simple architecture and a
corresponding process for building and providing
policy-based adaptive services for mobile commerce.
In our opinion in the fields of artificial intelligence,
expert systems, semantic web and agent based mo-bile
middleware a lot of very good work has already been
done. Why not just combine and adapt them?

This paper presents a generic architecture for the
development of policy based context-aware services.
We define three basic requirements for such systems
and present the core elements of our adaptation
architecture. We use the W3C recommendation
Resource Description Framework (RDF) [17] without
any extensions to get an interoperable representation
of context information that could be used by different
systems and which can be directly processed by most
inference systems. We are using policies which can be
seen as sophisticated conditional rules for the
definition of the adaptive behavior of the system. In
this field several projects have developed their own
policy languages and inference engines. We think that
a better strategy is to use corresponding software from

Proceedings of the 2005 Second IEEE International Workshop on Mobile Commerce and Services (WMCS’05)
0-7695-2391-9/05 $20.00 © 2005 IEEE

the field of artificial intelligence. Therefore we use the
fully developed Java Expert System Shell (Jess) [2] as
our policy language as well as our inference engine.
Such context-aware systems require also a
corresponding middleware. We define the
requirements for that and based on them we choose
the Java Agent Development Framework (Jade) [8]. It
is an agent based middleware that sup-ports mobile
devices. We think this combination of RDF, Jess and
Jade according to our architecture can be used for
rapid prototyping and this or similar approaches are
appropriate for powerful, scalable and maintainable
mobile services for the consumer market.

A further problem when developing such systems is
the lack of methodology for the definition of context
information and policies. Therefore we define a
corresponding process based on an extended UML
diagram notation for the development and
documentation of the adaptation process as well as our
concept of a module pipeline for defining and
structuring policies.

The paper is organized as follows. The next section
relates our work to existing approaches. Section 3
describes a typical scenario for a mobile service that
shows which aspects are important to fulfill the
technical requirements as well as the user’s needs.
This is followed by the presentation of our general
architecture for policy based adaptive services for
mobile commerce. In Section 5 we describe a novel
process for defining context information and policies.
Afterwards we depict a prototype which shows the
feasibility of our architecture as well as the profile and
context definition process. The paper is completed by
a discussion and outlines our future work.

2. Related Work

Context aware mobile services are currently one of
the most interesting fields of re-search in the area of
mobile computing. There is also a strong relationship
to ubiquitous or pervasive computing and mobile
communications. In this section we will give a
compact overview of related work and state of the art
in context modeling, context-aware mobile service
platforms and policy-based systems.

There exists a huge set of approaches for gathering,
describing and structuring con-text information, see
[16], [3] and [6] for longer surveys. Not surprisingly,
all these work deals with people, locations, devices,
services, networks and their static and dynamic
relationships. On the one hand, there are approaches
that try to model the whole world which is in our

opinion a wrong way because of the complexity of our
world. On the other hand it is important to have
standards that describe context information in an
abstract manner like RDF or OWL and standards that
define the structure of context information for a
specific application area like the Core Information
Model (CIM) [9] or UAProf [10]. A very important
advantage of semantic knowledge representation is
that existing ontologies can be reused by new
applications.

Policies or rules that define the behavior of
adaptive or context-aware mobile systems are used by
different research projects because of the flexibility of
this approach. The term policy is mostly used by
people that have a background in policy-based
networking [11] and the term rules by people that
have a relationship to artificial intelligence or
intelligent agents [12]. In both cases, ongoing work is
mostly dealing with sophisticated conditional IF –
THEN statements which allow the declarative
description of systems behavior. The advantage of the
usage of policies is that the policy decision point
creates a custom program for each situation that arises
and handles adaptations that the programmer might
not have imagined. The policy decision point is the
program which makes decisions based on context
information and policies.

Schmidt et al present in [20] a WML-based
application Context-Call which offers an interface that
shows in which situation (e.g. meeting, working, busy)
the receiver of the call currently is. Based on this
information the caller can decide if he wants to leave a
message or to continue or cancel the call.

Efstratiou et al [1] used the event calculus for
policy driven adaptation on mobile systems. In their
system they separated policies and adapted
applications. By this, conflicts and suboptimal
performance between multiple adapted applications
could be prevented. Furthermore they developed a new
policy language with explicit expressions of time
dependencies. Chisel [13] is an open framework that
supports unanticipated dynamic policy-driven
adaptation based on contextual information. A policy-
based approach was chosen to drive the adaptation
mechanism by incorporating user and application
specific semantic knowledge and intelligence,
combined with low-level monitoring of the execution
environment. A new human readable declarative
policy language to adapt service objects based on a
meta type based mechanism was developed. Another
policy-based approach that was developed by Lago
[14] supports users in defining their personalized

Proceedings of the 2005 Second IEEE International Workshop on Mobile Commerce and Services (WMCS’05)
0-7695-2391-9/05 $20.00 © 2005 IEEE

perception of services on a high-level basis to define
how, when and where to be contacted. A simple,
flexible, context and application independent policy
language was developed that is evaluated by a novel
inference engine. Suryanarayana and Hjelm discuss in
[15] a profiles view of the situated web architecture
and the technologies useful in that respect. They
describe four different profiles for describing the user,
applications, devices, data transport aspects and how
this information could be used by XSLT style sheets or
rules.

3. Scenario

In this section we define a scenario for a context-
aware mobile cinema information service which we
used to evaluate our concept as well as to illustrate our
architecture and methodology in this paper. The core
concept of the scenario is a user who is standing in
front of the cinema and he or she is not sure which
movie is the most interesting one. In these situations,
the cinema offers a mobile service where the user can
get information about the current program with his or
her own mobile phone, and as a special feature the
user can download movie trailers.

Especially for the download or streaming of the
videos a lot of context information should or must be
taken into account. The most important parties
involved in this process are the user, the device of the
user, the offered videos and the available networks.

For the user we defined three different preferences
which could be of interest and which could be changed
by him or her. For every preference a weighting factor
between 0 (“this is not important for me”) and 1 (“this
is very important for me”) can be defined by the user.
With the first preference quality the user can
indirectly influence the visual quality of the video
which is based on parameters like resolution or
encoding. Via the parameter speed the duration of the
transfer of the video from the server to the mobile
phone can be defined, which is for instance based on
the selected network type or the amount of data of the
video. Adjusting the parameter cost, the user can
define preferences regarding the costs for viewing the
trailer. This aspect can for instance be influenced by
the selection of the network provider.

The mobile device of the user has a specific screen
resolution and we assume that it is possible to play
videos with this resolution and also videos that have a
smaller resolution. Furthermore the mobile device is
characterized by a set of supported network types and
a set of supported video encodings.

The different trailers for the movies that are
currently showing at the cinema are available in
different video encodings (e.g. MPEG-4, Real Media,
H.263), different resolutions and amount of data per
video. The user does not need to pay a fee to the
cinema information service for downloading trailers.
The user has only to pay the fees to the network
provider for the transmission of data.

Furthermore the user in our scenario can easily
switch between different network providers who have
different pricing models and offer different network
types. Every network type (e.g. GPRS, UMTS,
WLAN) is characterized by its transmission speed.
Regarding the price there is no difference for using
e.g. GPRS or WLAN. The user pays only a fixed price
per transmitted amount of data which is defined by the
network provider.

In this scenario for the download of the video the
policy-based decision process must lead to a result that
defines which video (e.g. resolution, encoding, size),
which network provider and network type (e.g. GPRS,
UMTS, WLAN) should be selected based on the
capabilities of the mobile device (e.g. supported
network types, resolution, encoding) and the
preferences (quality, speed, cost) of the user.

4. The Overall Adaptation Architecture

In this section we present an overall architecture
for policy based adaptive mobile services. We specify
three basic requirements for such systems and define
the adaptation architecture which represents the core
elements of our system in a compact way. This is
followed by subsections that describe how context
information is represented and which policy language
and policy decision point we use. Afterwards we
present the physical view of the architecture that
shows which distributed elements have which
functions. This section is completed by a discussion
about the required communication middleware.

4.1. Requirements

For the development of our overall adaptation
architecture we define the following three basic
requirements:

- Uniformity in the different adaptation areas
The elements of this architecture will be distributed

over different servers (e.g. for service provisioning,
billing, network provider) and different mobile
devices. For the flexibility, compatibility, extensibility

Proceedings of the 2005 Second IEEE International Workshop on Mobile Commerce and Services (WMCS’05)
0-7695-2391-9/05 $20.00 © 2005 IEEE

and adaptability it is very important that the
representation of context information, the definition of
policies and the reasoning take place in a uniform
way.

- Separation of context, policies, policy decision point
and policy enforcement point

In some systems the mentioned elements are woven
into a single adaptation application. This could lead to
unintentional adaptations and hysteresis effects if two
applications run in a single system and do not share
common context information or make fully
independent decisions. Through the separation of the
different elements it is possible to build systems that
act consistently in a global way. Furthermore it is
easily possible to change the context information, to
modify policies and to integrate new adaptations.

- Policy language should be generic regarding the
range of adapted services

The policy language should not be specialized for a
specific adaptation area. This allows the integration of
arbitrary adaptations or decisions requested by
different entities. Through this it is also possible to
support a system wide adaptation process.

4.2. Core Elements

The core elements of our basic adaptation
architecture are shown in Figure 1. The architecture is
based on the principles of rule- or policy-driven
systems which are used by a lot of adaptive systems [1,
2]. All of them take context information into account,
have a policy language, a policy decision point and a
policy enforcement point, even if they use another
naming or some elements are combined or split. As
already mentioned the representation of context
information such as user preferences, device
capabilities and available services is one key
component for such systems.

Policy
Enforcement

Point

Context

Policies

Policy Decision Point

Pattern Matcher

Agenda

Figure 1. The core elements of the
adaptation architecture

Policies are rules that can be seen as sophisticated
conditional IF – THEN statements that define how the
system reacts in a specific context. The policy decision
point (PDP) which applies policies to context
information consists of a pattern matcher and an
agenda. The policy decision point works in cycles and
in every cycle a policy can be fired. As the first step in
a cycle the pattern matcher compares all policies with
the context information and generates an unordered
list of policies that should be activated in the current
cycle. These and the policies which have been
activated in a previous cycle form a conflict set. The
agenda is an ordered list of activated policies which is
generated by a conflict resolution algorithm from the
conflict set. As the next step the first policy of the
agenda will be fired and the action part (Policy
Enforcement Point) will be executed which could lead
to a change of the context information or to any other
action that influences the surrounding system.

4.3. Context

As already mentioned in the section about related
work, different approaches for acquiring, describing,
representing, structuring and querying context are
currently discussed in research. Some projects try to
establish generic ontologies for the description of
context information in a homogenous way. This
approach is not feasible because it is not possible to
describe all aspects of the whole world and often
adaptations are interested in different aspects of an
entity. Furthermore some people think that structuring
context information, e.g., into high-, middle- and low-
level is a suitable solution for managing complex
context information.

We believe that a concentration on the basic results
that the fields of artificial intelligence and semantic
web have produced in the last decades is the most
suitable solution for describing context information.
Here context is always a triple consisting of a
resource, a property and a literal. We use the
terminology of the Resource Description Framework
(RDF) because we use this standard to describe
context information in a way that is understandable by
policy decision points which again are often based on
rule engines. We think that the functionalities that are
given by RDF are sufficient for the development of
policy-based adaptive mobile services and that high-
level concepts might be useful but most of them are
complicate, too specialized for a specific application
area and often not compact and understandable and
thus their acceptance gets questionable.

Proceedings of the 2005 Second IEEE International Workshop on Mobile Commerce and Services (WMCS’05)
0-7695-2391-9/05 $20.00 © 2005 IEEE

4.4. Policies and Policy Decision Point

The development of a new policy language or of a
policy decision point which is practically useful needs
several years of development effort because of the high
complexity of such systems. Therefore we think that
reuse and adaptation of an existing language and
inference engine is the best solution for the
development of prototypes as well as sophisticated
products.

As already mentioned in related work different
approaches exist which can be reused and adapted.
There are some candidates in the field of semantic web
research for a policy language and inference engine
such as DAML Rules [4] or the generic rule reasoner
of Jena [5]. But all of them are not yet in a mature
state und therefore not yet useable for our purposes. In
the field of artificial intelligence, however, much
effort has been put into the development of fully-
fledged languages. In our architecture we use a LISP-
based rule language and the rule engine Java Expert
System Shell (Jess) [2] because of their function range,
development status, extensibility, availability and
excellent documentation. Jess is also the basis for the
Java Specification Request (JSR) 94, the Java Rule
Engine API [18].

The Jess language consists of three basic elements:
templates for the definition of the type of a fact, fact
which is a piece of information and rule for the
definition of IF – THEN statements, i.e., policies.

1 (deftemplate mobilePhone
2 (slot encoding))
3
4 (deffacts example
5 (mobilePhone
6 (encoding mpeg)))
7
8 (defrule supports
9 (mobilePhone
10 (encoding mpeg))
11 =>
12 (printout t "Phone supports mpeg
 encoding." crlf))

Figure 2. Example of the definition of
templates, facts and rules

Figure 2 includes a small example of a Jess
program. First a template describing the encoding is
defined (lines 1-2), then a fact which represents a
concrete mobile phone with a specific encoding is
defined (lines 4-6) and then the rule supports (line 8-
12) is defined that will be fired if there is a
mobilePhone with the encoding mpeg. The => sign

could be interpreted as a logical implication;
operationally it is equivalent to a THEN statement.

In our architecture facts are represented by RDF,
templates are represented by RDF Schema and Jess
rules are called policies. Because of the similarity of
facts and RDF as well as templates and RDF schema it
is easily possible to transform them with XSL
transformations (XSLT).

4.5. Physical View

The physical view addresses the distribution of the
core elements of our basic adaptation architecture to
different entities in the network such as sensors,
services that are provided by servers, or mobile
devices.

Services Mobile Devices

Sensor

Context

Server/Service

Context

Policies

Policy Decision
Point

Policy
Enforcement Point

Mobile Device

Context

Policies

Policy Decision
Point

Policy
Enforcement Point

Sensors

Figure 3. Entities in the physical view

Figure 3 shows the three different kinds of entities
in our physical architecture: services, mobile devices
and sensors whereby every entity could exists 0..n
times. Every entity is connected with the network so
that each entity could talk with every other entity. A
sensor could be used to acquire context information
such as weather, noise, social contexts or proximity of
augmented objects or people. A server provides
services that could be directly or indirectly used by the
user. A mobile device is for instance a mobile phone,
Smartphone or PDA. Services and mobile devices
could include a policy decision point and a policy
enforcement point. Furthermore they can provide and
manage context information and policies. Every
service or mobile device could integrate all of the
mentioned core elements or just three, two or one of
them.

Proceedings of the 2005 Second IEEE International Workshop on Mobile Commerce and Services (WMCS’05)
0-7695-2391-9/05 $20.00 © 2005 IEEE

4.6. Communication Middleware

The context information is based on sensors,
databases or files which can be distributed over the
whole system. It is not feasible to have one central
physical database for storing, accessing and retrieving
context information. The reason is that such an
approach would lead to a huge communication effort
which is particularly not feasible for addressing
mobile devices because of the high transmission cost.
Therefore a scalable decentral solution is needed
which can address local context information and
provide this to incoming requests.

This can be achieved through a distributed peer-to-
peer based architecture that does not include central
servers and clients that send requests to these servers.
As already mentioned the entities service and mobile
device could initiate communication as well as be
subject of a request. A Policy Decision Point, e.g., can
request context and policies that are locally as well as
remotely (sensor, other mobile device or other service)
available. Therefore all entities of our architecture can
be seen as peers in a peer-to-peer – based middleware
with a distributed system topology. Furthermore a
powerful, distributed and scalable directory service
must be available trough which every peer could
address all other peers and their interfaces.

One next step when talking about peer-to-peer
systems is the usage of the agent paradigm on the top
of such a peer-to-peer architecture. An agent is
characterized by three attributes autonomous,
proactive and social [7]. Services and mobile devices
that have a policy decision point are autonomous
because they have control of their own actions. They
make independent decisions based on context
information and policies that are executed by policy
decision points. Policy decision points are also
proactive because they initiate the acquisition of
context and policies as well as trigger actions in policy
enforcement points. Furthermore the entities of our
architecture must be social because they offer
information to other entities and accept defined
commands from other entities. Therefore the different
entities service, mobile device and sensors are agents
whereas sensors are limited agents.

The development of such a peer-to-peer
middleware is a very time consuming part. Therefore
we use in our architecture the Java Agent
Development Framework (Jade) [8] which fulfills all
the mentioned aspects. It also supports wireless and
wired connections and it runs on mobile devices. The
interoperability is assured through the usage of the

FIPA (Foundation for Intelligent Physical Agents) –
standard and the communication between the agents is
defined by the FIPA Agent Communication Language.

5. Defining Context and Policies

After the design of the architecture one further
important part is the definition of context information
and the policies needed for the policy-based adaptation
process. For this complicated and time-consuming
part there is so far no easy and practical methodology
or visualization available. In this section we describe a
process which supports the developer during this
process.

Like other software development processes, this
methodology is iterative because not all requirements,
the desired result and the intermediate steps can not be
recognized at the beginning. We define five different
steps which are needed for the definition of context
and policies that are explained afterwards. Their
processing sequence is visualized in Figure 4.

2) Available
context information

3) Final result

4) Policies and
intermediate

context information

1) Analysis
Start

End

Figure 4. Different steps for the definition of
context and polices

Different steps for the definition of context and
policies:

1. Analysis of the requirements of the specific
adaptation like in any other software development
project.
2. Definition of the available context information
(knowledge engineering)

The developer should collect all available context
information that might be useful for the desired
decision process und he or she should also define the
corresponding data structure. At the end of this step it
is already possible to define the data structure of the
available context information and concrete example
data as RDF Schema and RDF documents.
3. Definition of the desired final result

Proceedings of the 2005 Second IEEE International Workshop on Mobile Commerce and Services (WMCS’05)
0-7695-2391-9/05 $20.00 © 2005 IEEE

In this step the developer should specify the desired
result which is also a piece of new context information
generated by policies. As in step 2 it is possible to
define the context information in RDF and RDF
Schema.
4. Definition of the policies and intermediate context
information

a. Gradual development of policies based on
existing context information until the definition
of the desired final result has been reached.
b. Iterative development of new preliminary
context and rules on the basis of available context
information and preliminary results
c. Separating of context information and policies
into modules which leads to a module pipeline
In this step Jess policies as well as RDF and RDF
Schema for the description of the intermediate
context information can already be defined.

5. If all context information, the final result as well as
the intermediate context information have been
defined, this process is either finished or the next
iteration is started.

5.1. A Diagram for the Visualization of Context
and Policies

To support the proposed process of the definition of
context information and policies we have developed a
specialized diagram which helps the developer in the
different steps and is also very suitable for
documentation proposes. The diagram is based on the
UML class diagram and integrates static (structure of
the context information) as well as dynamic
information (execution of policies). It shows the
available and intermediate context information, the
final result, the modules, the processing order of the
modules (module pipeline) and indirectly the
execution of policies.

Figure 5 shows the core elements of our diagram
and the depicted example is afterwards used for the
explanation of this visualization. A module is
represented by the space between vertical dashed lines
and its name is depicted like a state in an UML state
diagram inside a rounded rectangle on the top. The
context information is visualized like classes in a
UML class diagram. This should look familiar for
people who are already used to this type of diagram.
Figure 5 shows the different resources (Resource A -
D) and their properties (property).

The arrows between two modules go from left to
right and show the processing order of the modules. In
Figure 5 first Module I, then Module II and at the end

Module III is processed. Module I shows the
information that is available at the beginning of the
decision process and is therefore the result of step 2 of
the definition process introduced before. Module II is a
result of step 4 and represents the preliminary
information resulting from the combination of the
information in Module I. Module III shows the final
result which was defined in step 3 and which is used
for the concrete adaptation done by the policy
enforcement point.

 property a1
 property a2
 property a3

Ressource A

 property b1
 property b2
 property b3

Ressource B
 property d1
 property d2

Ressource D

Module I Module II

 property c1
 property c2

Ressource C

 property e1
 property e2

Ressource E

Module III

Figure 5. Core elements of the diagram

Policies calculate new context information based on
existing information. This is indirectly visualized by
the lines which connect resources of different
modules. Hereby all lines that connect resources in a
left module to a resource in a right module visualize
policies that use the resources in the left module to
calculate the information that is represented in the
right module.

5.2. Module Pipeline

Common problems of policy based adaptive
systems are computability, conflict detection and
resolution, complexity and performance. We address
some of these issues through the usage of our module
concept. Basically it is a possibility for the developer
to structure a potentially big set of policies into
modules. Through this divide and conquer strategy it
is possible to concentrate on only few policies during a
specific time.

One other very important problem is cycles during
the execution of policies. If for instance the policies A
and B react on a change of the resource c and both

Proceedings of the 2005 Second IEEE International Workshop on Mobile Commerce and Services (WMCS’05)
0-7695-2391-9/05 $20.00 © 2005 IEEE

policies change this resource then A and B run
infinitely. This effect is usually undesired and needs a
lot of processing power. This problem can be solved
using modules that define an execution order. If for
instance the two modules I and II are defined then first
all policies in module I must be fired before a policy in
module II can be fired. The disadvantage of this is that
the parallelism of the execution of policies is
restricted. But it is still possible that all policies in one
module can be executed in parallel.

Often a policy should only be fired if a specific set
of information is available. If, for instance, a policy
has to select the minimal duration for a data
transmission then all possibilities for the data
transmission and their duration have to be calculated
first.

6. Prototype

To prove our concept we developed a prototype
based on the presented architecture, the process for
defining context and policies and the scenario which
was explained in Section 3. The following Figure 6
depicts the architecture of our prototype taking the
elements introduced in Section 4 into account.

Decision Agent

Policies

Policy Decision
Point

Mobile Device Agent

Context

Policy
Enforcement Point

Video Agent

Context

Video Agent

Context

Video Agent

Context

Network Agent

Context

Network Agent

Context

Network Agent

Context

Network User

Figure 6. Architecture of the prototype

The architecture is divided into the network side
and the user side. The network side includes the video
provider agents, the network provider agents and a
decision agent. The user side includes the mobile
phone agent which represents the device as well as the
preferences of the user. As already mentioned not
every entity of the architecture must include all
possible core elements. So the video and network
provider agents provide only context information. The
decision agent consists of a policy decision point and
provides policies. The mobile device provides context
information and acts as a policy enforcement point.

All the context information are described in RDF
and are translated in the policy decision point by XSL
transformations into the Jess syntax for describing
knowledge because the Jess library is not capable of
processing RDF content directly. All entities of our
prototype are realized as Jade – Leap agents. The
Lightweight Extensible Agent Platform (Leap) [8] is
an extension of the Jade platform which allows
developing applications for mobile devices that
support the Java 2 Micro Edition (J2ME). As the
mobile device we used a Siemens S65 as well as a
Nokia 6600 that support CLDC 1.1 and 1.0,
respectively, MIDP 2.0 and the Mobile Media API
(MMAPI). In our current configuration all agents in
the network run on a single PC. Because of the Jade
middleware it is no problem to distribute the different
agents to different servers or different mobile devices.

As depicted by the screenshots of our prototype in
the following Figure 7, the user can do four different
tasks (three of them are shown in Figure 7a). First it is
possible to change the settings of the device to
simulate different mobile devices (Figure 7b). Here it
is possible to define the screen resolution as well as
the supported video encodings and network interfaces.
Furthermore the user can define his or her preferences
(Figure 7c) regarding quality, speed and cost on a
scale between 1 (unimportant) to 10 (important).

After the user selects the option Get Videos (Figure
7a) he or she sees a list of available videos each
represented by a title, image and description. This
information was requested by the mobile device agent
from the video agents that represent the different
videos. After the user selects a specific video by
clicking on it, the decision agent calculates, based on
the policies and different context information, the best
combination of video (resolution, encoding, size),
network (e.g. UMTS, WLAN or Bluetooth) and
network provider based on the user preferences and
device capabilities. This information is shown to the
user of the prototype (Figure 7e). Afterwards the
mobile device agent requests the video and the user
can watch the trailer of the movie with the built-in
browser of the mobile phone (Figure 7f).

This sequence can be repeated several times
whereby the user can change the device capabilities
and preferences which lead to other decisions by the
decision agent.

Proceedings of the 2005 Second IEEE International Workshop on Mobile Commerce and Services (WMCS’05)
0-7695-2391-9/05 $20.00 © 2005 IEEE

7a 7a

7c 7d

7e 7f

Figure 7. Screenshots of the interface of the
mobile device agent

Because of the complexity of our prototype it is not
possible to discuss all aspects regarding the definition
of context information and policies. Therefore we
focus in Figure 8 only on the available context
information and the desired result.

The context information that is already available at
the beginning can be grouped in offered services,
available networks, mobile device, user and general
properties. The module pipeline consists of four
different steps.

First step: This module calculates which videos
with which encodings (offered services) could be

played by the device that supports a specific set of
video encodings (mobile device). So if the device
supports only MPEG-4 and Real Video only these
videos should be considered for further calculations.
Similar policies estimate which videos with which
resolutions can be played by the device and which
networks could be used by the device. Furthermore the
time is calculated that is needed for the transmission
of the video to the mobile devices. Another policy
calculates the costs for the user when a specific video
is transmitted by a network of a specific network
provider.

Mobile Device

User

Available
Networks

General
Properties

Offered
Services

serviceOffer_id
video_id_ref
resolution_id_ref
encoding_id_ref
size
url_video
url_pic
url_txt

serviceOffer

video_id
name

video

resolution_id
width
height

resolution

encoding_id
name
quality

encoding

device_id
resolution_id_ref
encoding_id_ref
networkType_id_ref

device

networkOperator_id
name
prizePerMByte

networkOperator

networkOperator_id
name
speed

networkType

networkOperator_id_ref
networkType_id_ref

availableNetworks

quality
speed
cost

userPreferences

-videoName

userSelection
-serviceOffer_id_ref
-video_id_ref
-networkOperator_id_ref
-networkType_id_ref
-costs
-time
-encoding
-resolution_width
-resolution_height
-weight
-url_video
-url_pic
-url_txt

Final Result

Available context information Final result

Figure 8. Available context in formation and
final result

Second step: All possible combinations of videos,
networks, network providers and their cost and
transmission time are calculated. Other policies
calculate the minimal transmission time and cost of a
video.

Third step: The different possible combinations
are assessed regarding their correlation to the user
preferences time, quality and cost.

Fourth step: The final or best result is estimated
which is the combination which conforms best to the
user preferences. This final result is also shown to the
user (Figure 7e) and defines which video is played
(Figure 7f) and which network provider is selected.

7. Conclusion and Future Work

In this paper we presented an architecture as well
as a methodology for the development of policy based
adapted services for mobile commerce. We developed
our architecture and their core elements based on three
basic requirements. Furthermore we discussed the
usage of RDF to represent context information as well
as the usage of Jess as the policy language. Afterwards
we depicted the physical architecture and the Jade

Proceedings of the 2005 Second IEEE International Workshop on Mobile Commerce and Services (WMCS’05)
0-7695-2391-9/05 $20.00 © 2005 IEEE

middleware we use. We propose the combination and
adaptation of these matured standards, APIs and
middleware from the fields of artificial intelligence,
expert systems, semantic web and agent based mobile
middleware for further developments of systems for
context aware mobile services. We also addressed the
issue of the definition of context and policies by
introducing a corresponding methodology and
diagram as well as the module pipeline concept. We
show the feasibility of the proposed architecture and
methodology based on a prototype that implements a
typical scenario illustrating the advantages and
problems of these services.

In the future we will consider the use of Web
Ontology Language (OWL) instead of RDF for the
representation of context information. We will also
work on a user study based on the proposed prototype
to find out what people think about it and in particular
if people understand the meaning and usefulness of
user preferences. Furthermore we plan to use the
proposed methodology in several prototypes which
will be developed in the Simplicity project [19].

8. Acknowledgement

This work was partially supported by the project
IST-2004-507558 Simplicity funded by the EU. The
authors wish to express their gratitude to the other
members of the Simplicity Consortium [19], to
Siemens and Nokia for lending us mobile phones and
Paul Holleis, Albrecht Schmidt and Rainer Fink for
their kind support.

References

[1] Efstratiou, C.; Friday, A.; Davis, N.; Cheverst, K.
Utilising the Event Calculus for Policy Driven Adaptation
on Mobile Systems. In 3rd International Workshop on
Policies for Dis-tributed Systems and Networks
(POLICY'02). Monterey, California, USA. 2002.

[2] Friedman-Hill, E., Jess in Action: Java Rule-based
Systems. Manning Publications. ISBN 1930110898, 2003.

[3] Chen, G.; Kotz, D. A Survey of Context-Aware Mobile
Computing Research. Technical Report: TR2000-381
Dartmouth College, 2000.

[4] DAML Rules, http://daml.semanticweb.org/rules/

[5] Jena 2 Inference support,
http://jena.sourceforge.net/inference/index.html
[6] Abowd, G.; Dey, A.; Brown, P.; Davies, N.; Smith, M.;
Steggles, P. Towards a Better Un-derstanding of Context

and Context-Awareness. In Proceedings of the 1st
International Symposium on Handheld and Ubiquitous
Computing, pp. 304-307, 1999.

[7] Jennings, R.; Wooldridge, M. Applying Agent
Technology. In Journal of Applied Artificial Intelligence
Special Issue on Intelligent Agents and Multi-Agent
Systems, 1995.

[8] Bellifemine, F.; Caire, G.; Poggi, A.; Rimassa, G. JADE
- A White Paper. In Journal TILAB "EXP in search of
innovation", September 2003.

[9] Core Information Model, a DMTF (Distributed
Management Task Force) Standard, 2004.

[10] Wireless Application Group. User Agent Profile
Specification. Open Mobile Alliance WAP Forum, 2001.

[11] Verma, D. Policy-Based Networking: Architecture and
Algorithms. New Riders Publishing, ISBN 1-57870-226-7,
2001.

[12] Russell, S.; Norvig, P. Artificial Intelligence: A Modern
Approach., Prentice Hall, ISBN: 0-13-790395-2, 2003.

[13] Keeney, J.; Cahill, V. Chisel: A Policy-Driven,
Context-Aware, Dynamic Adaptation Framework. In
Proceedings of the Fourth IEEE International Workshop on
Policies for Dis-tributed Systems and Networks (POLICY
2003), pp. 3-14, 2003.

[14] Lago, P. A Policy-based Approach to Personalization of
Communication over Converged Networks. 3rd International
Workshop on Policies for Distributed Systems and Networks
(POLICY'02), 2002.

[15] Suryanarayana, L.; Hjelm, J. Profiles for the situated
web. In Proceedings of the Eleventh International
Conference on World Wide Web, ISBN 1-58113-449-5, pp.
200-209, Hono-lulu, Hawaii, USA, 2002.

[16] Henricksen, K.; Indulska, J.; Rakotonirainy, A.
Modeling Context Information in Pervasive Computing
Systems. First International Conference on Pervasive
Computing. Zurich, 2002.

[17] W3C Recommendation Resource Description
Framework (RDF), http://www.w3.org/RDF/

[18] Java Rule Engine API (JSR 94),
http://www.jcp.org/en/jsr/detail?id=94

[19] Simplicity Project, http://www.ist-simplicity.org

[20] Schmidt, A.; Takaluoma, A.; Mäntyjärvi, J. Context-
Aware Telephony Over WAP. In journal Personal
Ubiquitous Computing. 4(4), pp. 225-229, 2000.

Proceedings of the 2005 Second IEEE International Workshop on Mobile Commerce and Services (WMCS’05)
0-7695-2391-9/05 $20.00 © 2005 IEEE

