
Pervasive and Mobile Computing 4 (2008) 161–181
www.elsevier.com/locate/pmc

Automatic form filling on mobile devices

Enrico Rukzioa,∗, Chie Nodab,1, Alexander De Lucac,2,
John Hamardd,3, Fatih Coskunc,2

a Computing Department, Lancaster University, InfoLab21, LA1 4WA Lancaster, UK
b NTT DoCoMo, Inc., 3-5 Hikarinooka, Yokosuka, Kanagawa, 239-8536, Japan

c Media Informatics Group, University of Munich, Amalienstrasse 17, 80333 Munich, Germany
d NTT DoCoMo Euro-Labs, Landsbergerstrasse 312, 80796 Munich, Germany

Received 1 March 2006; received in revised form 4 September 2007; accepted 5 September 2007
Available online 20 September 2007

Abstract

Filling out forms for web based services on mobile devices is a very time consuming and
frustrating task for users because of the limited text input capabilities. This is a critical bottleneck to
obtaining a wide acceptance of such services, especially mobile commerce that often requires filling
user data. We developed an architecture based on a local proxy on a mobile device and a lightweight
algorithm for a comprehensive analysis of forms, which leads to the most probable user data to be
filled in, driven by an initial rule set [Chie Noda, John Hamard, Enrico Rukzio, Alexander De Luca,
Method and Apparatus for Automatic Form Filling on Mobile Devices, Patent. Publication number
EP1777629, Publication date 2007-04-25]. We further discuss our implementation and the evaluation
results for the algorithm as well as the usability of the prototype.
c© 2007 Elsevier B.V. All rights reserved.

Keywords: Automatic form filling; Mobile devices; Context aware; Visualization of uncertainty; Mobile text entry

∗ Corresponding author. Tel.: +44 1524 510358; fax: +44 1524 510492.
E-mail addresses: rukzio@comp.lancs.ac.uk (E. Rukzio), noda@nttdocomo.co.jp (C. Noda),

alexander.de.luca@ifi.lmu.de (A. De Luca), hamard@docomolab-euro.com (J. Hamard),
coskun@informatik.uni-muenchen.de (F. Coskun).

1 Tel.: +81 46 840 3842; fax: +81 46 840 3725.
2 Tel.: +49 89 2180 4688; fax: +49 89 2180 4652.
3 Tel.: +49 89 56824 216; fax: +49 89 56824 300.

1574-1192/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.pmcj.2007.09.001

http://www.elsevier.com/locate/pmc
mailto:rukzio@comp.lancs.ac.uk
mailto:noda@nttdocomo.co.jp
mailto:alexander.de.luca@ifi.lmu.de
mailto:hamard@docomolab-euro.com
mailto:coskun@informatik.uni-muenchen.de
http://dx.doi.org/10.1016/j.pmcj.2007.09.001

162 E. Rukzio et al. / Pervasive and Mobile Computing 4 (2008) 161–181

1. Introduction

The convergence of mobile communications and web-based services has occurred in
the last decade. Most of the current mobile devices support internet browsers (e.g. Opera
mobile [2]), which are often preinstalled. However, mobile commerce services (e.g. hotel
reservation) requiring user data to be filled in are still not as widely used as download
services (e.g. ring tones, games). In fact, the main issues regarding mobile commerce
usage are the complexity of user interactions and mobile payment systems. To solve this
last issue, NTT DoCoMo introduced in 2004 the Mobile Wallet service [3], based on the
Sony’s FeliCa IC chip [4], in order to support electronic payments with mobile phones.

The lack of simplicity is one of the most important issues for users, who face more
and more functionalities, applications, services and networks when using mobile devices.
One approach to overcome this issue is to provide context aware mobile services. This is
achieved by considering user context information (e.g. user location or history of selected
services) to adapt applications and services accordingly.

In this paper, we present an approach to support the automatic form filling on mobile
devices [1]. Indeed, filling forms manually on mobile devices through limited user
interfaces is a time consuming and stressful task. At the beginning of our research, we
analysed which mobile services are currently offered and which are the most popular.
One result was that mobile entertainment applications, which consist in downloading ring
tones, games or logos, are widely used [5]. We found that most of the mobile services
are accessible through simply navigating hyperlinks. However mobile commerce services
(e.g. hotel reservation, auctions), which often require filling personal data, have not been
yet widely used. Hence, by improving the user experience with mobile services, automatic
form filling could then also support the growth of mobile commerce markets.

Our approach is based on knowledge about existing web pages in the form of rules and
user data. We analysed the most required user data when using mobile commerce services.
More precisely, we identified their types, their sequences of appearance on web pages,
as well as the surrounding form elements (e.g. labels or input fields) of the input field in
which they are filled. Based on this analysis, we developed a local proxy architecture and
a lightweight algorithm for dynamic rules generation based on a set of initial rules. The
proxy acts as a mediator between the browser on the mobile phone and the web server
hosting the requested page. It fills input fields with user data stored on the mobile device
by analysing the input fields, the nearby elements and checking initial rules, and generates
dynamic rules, which leads to the most probable user data for pre-filling. The proposed
architecture has the following advantages:

– Support for existing mobile services and devices based on a proxy architecture,
– Optimisation for the memory and processing constraints of mobile devices based on an

initial rules set and dynamic rules generation,
– Privacy protection by only storing user data locally on the mobile device,
– Support for user control by enabling the editing of filled data before sending the form.

The paper is organised as follows. The next section analyses text input capabilities
and presents popular mobile services. Furthermore, we show the results of an initial user
evaluation of the potential and the acceptance of such a form filling functionality on mobile

E. Rukzio et al. / Pervasive and Mobile Computing 4 (2008) 161–181 163

Table 1
Text entry speed on mobile devices

Device type Input technique Input type WPM User skills Ref.

PDA Graffiti Stylus-based 21.5 Average user [7]
QWERTY keyboard Key-based 20.2 Novice user [7]

Mobile phone Multi-press method Key-based 25–27 Expert user [8]
T9 Predictive 41–46 Expert user [8]

devices. In addition to that, an analysis of existing forms is discussed. Section 3 discusses
in detail our architecture and algorithm for the automatic form filling on mobile devices.
Afterwards, an implementation of our system is presented. In Section 5, we present the
performance evaluation of our algorithm and the results of further user studies. Section 6
relates our work to existing approaches. Finally we summarise our research and discuss
further steps.

2. Analysis

In this section, which is based on [5], we analyse first text input capabilities on mobile
devices. Afterwards we present an initial user test, the goal of which was to evaluate the
concept of automatic form filling on mobile devices. Next we present a compact analysis
of existing forms.

2.1. Text inputs capabilities

There are significant differences in the text input speeds on a personal computer and a
mobile device. We can distinguish three different text entry techniques for mobile devices:
key-based, stylus-based and predictive input techniques [6]. The text entry speed is usually
expressed in words per minute (wpm). A skilled touch typist using a conventional keyboard
can enter an average of 72 wpm [7]. As shown in Table 1, text entry speed on mobile
devices is much slower.

Three to four alphabetical letters are assigned to one button on mobile phones. When
using the traditional multi-press method, the user has to select the intended letter through
pressing a key multiple times until reaching the desired one. The T9 system is based on
a predictive algorithm which takes into account the occurrence and frequency of words
stored in a database. Thus once the user selects buttons which represent the intended letters
to write a word, probable words are presented. The T9 system is the fastest input mean for
expert users. However it does not often support data such as the ”first name” etc. required
for form filling.

2.2. Initial user test and definition of user requirements

Furthermore, we studied the experience of users using mobile commerce services on
a PDA. A HTML-based mock-up of a hotel reservation service was built on a Sony

164 E. Rukzio et al. / Pervasive and Mobile Computing 4 (2008) 161–181

Table 2
Average input times over all users

(i) Empty forms (s) (ii) Pre-filled forms (s)

1. run 240 60
2. run 170 37
3. run 115 33

Ericsson P800 Smartphone. The mock-up included a form with 10 input fields,4 while
the Smartphone provided a virtual keyboard, a stylus and integrated the Opera browser.
Two test cases were considered:

– The users fill out forms manually,
– The users need to identify and correct pre-filled forms including two errors.

Table 2 shows the results of the average time comparisons between the two
configurations for three runs.

The most noteworthy result is that it takes four times longer for users to fill empty
forms manually when compared to pre-filled forms. Another interesting point is that users
learn quite fast to use a virtual keyboard or a stylus. Besides these quantitative results,
we recognise that most users are frustrated when using the stylus of the Smartphone for
inserting texts. We conclude that automatic form filling on mobile devices is extremely
usable, since it just requires limited user input.

With regards to privacy issues, we learnt from this user study that many users would not
give their personal information away (e.g. as in the Microsoft .NET Passport). Furthermore,
this study underlined that users need to keep control, e.g. by seeing which data are filled
in and by possibly deleting or modifying automatically inserted data. We thus defined the
requirements to only store user data on the mobile phone and to enable users to edit these
automatically inserted data.

2.3. Analysis of existing forms of web based services

Afterwards, 20 mobile commerce services were analysed in order to find out which
user data are required (e.g. for ordering or reserving a product). Similar data were usually
required for a basic data set to be clarified. Furthermore, we noticed that labels were mostly
fixed groups and that input fields could be named differently in the source code. From
this analysis, we concluded that all these web forms were rather similar and therefore,
an automatic form filling feature could be implemented. Table 3 shows specific sets of
variable names for the input fields. It shows some of the concept names used in our
algorithm (first column) in relation to the variable names used in three arbitrarily selected
web based services. In the context of this paper, a concept name stands for the internal
naming of personal information in our algorithm. Specific naming variations must be
handled since, for example, each variable name on Amazon Anywhere is prefixed with
the word shippingAddress. A system for automatic form filling must therefore also support
the sub-string analysis of variable names.

4 First name, last name, address, city, ZIP, phone number, e-mail address, payment method, credit card number,
and expiration date.

E. Rukzio et al. / Pervasive and Mobile Computing 4 (2008) 161–181 165

Table 3
Variable names in three different forms

Concept names Variable names
mobile.quelle.de Amazon Anywhere Hilton.com

FirstName FirstName shippingAddress.name firstName
LastName LastName shippingAddress.name lastName
AddressStreet1 Street shippingAddress.address1 adress1
AddressStreet2 Street2 shippingAddress.address2 adress2
Email Email
AddressTown City shippingAddress.city City
AddressCode PostalCode shippingAddress.zip postalCode
AddressCountry shippingAddress.countryCode Country
TelephoneHome MobilePhone1 shippingAddress.voice phoneNumber

Furthermore, the form elements (e.g. labels and input fields) before and after an input
field are also important parameters. We noticed many correlations between the requested
concept names and the placement/labelling of input fields in the forms. For example, the
probability is extremely high that an input field labelled First Name should be filled with
the first name of the user.

3. Architecture and algorithm

We developed a local proxy architecture and applied a lightweight algorithm for
dynamic rules generation based on a set of initial rules. This section presents details on
the architecture, the form filling rules, and the algorithm.

3.1. Architecture

Fig. 1 shows the architecture of our approach for automatic form filling on mobile
devices. The proxy of the mobile device acts as a mediator between the web browser and
the web server hosting a requested web page. The form filler in the proxy fills input fields
of forms with user data locally stored by analysing the nearby form elements (e.g. labels
and input fields) of the input fields. Hereby, initial rules (locally stored or downloaded)
are used to generate dynamic rules. This leads to the most probable user data being filled
in a form. The rule server is an external component, which stores and provides the form
filling rules. The rule repository of the rule server enables updating the rules, for example
monitoring users’ behaviours and adding new concept names. The proxy of the mobile
device uses it to keep the local ruleset up-to-date.

Fig. 2 shows the internal components of the form filler. The parser parses a received
web page (e.g. HTML, XHTML, cHTML (i-Mode), WML/WAP) and creates an object
structure containing objects for each input field as well as the surrounding form elements.
The rules inspector retrieves rules available locally or from the rule server, which match
to a given object structure, and creates dynamic rules. Finally, the user data filler fills out
input fields with user data corresponding to a concept name with the highest probability.

The proxy can be pre-installed on the mobile device or be downloaded as a 3rd party
application. User data can be specified by the user through the user interface of the mobile

166 E. Rukzio et al. / Pervasive and Mobile Computing 4 (2008) 161–181

Fig. 1. Architecture for automatic form filling on mobile devices.

Fig. 2. Elements of the form filler.

device, retrieved from the user profile on the device or on the SIM/USIM card, or stored
by monitoring and gathering which data are input on forms by the user.

3.2. Form filling rules

3.2.1. Rules format
This subsection describes the syntax of the form filling rules which were developed,

based on the results of the analysis of existing forms as discussed in the Section 2.3.
Rules present which information of the web document (e.g. HTML, XHTML, cHTML
(i-Mode), WML/WAP) is used to find the right input data, and additionally provide a
certain probability. There are 6 different values, or so called positions, that can be used
to assume a required data for the input field in the web document, as shown in Fig. 3.
Not only the current input field, but also the upper and the lower input fields are analysed.
There is, for instance, a specific probability that the last name will be requested after the
first name. The mentioned positions are:

• Upper LABEL: the last text before the upper input field.
• Upper NAME ATTRIBUTE VALUE: the value of the name attribute of the upper input

field.
• Current LABEL: the last text before the current input field.
• Current NAME ATTRIBUTE VALUE: the value of the name attribute of the current

input field.

E. Rukzio et al. / Pervasive and Mobile Computing 4 (2008) 161–181 167

Fig. 3. Example of a user data form and its HTML representation.

• Lower LABEL: the last text before the lower input field.
• Lower NAME ATTRIBUTE VALUE: the value of the name attribute of the lower input

field.

Fig. 3 shows some input fields on a form and presents the corresponding HTML code
(e.g. for reserving a hotel room). The arrows indicate the 6 positions: the label and the
name attribute value (e.g. name= “firstname”) of each field (current, upper, and lower).
The 6 different values and their respective positions in the example shown in Fig. 3 are:

Upper LABEL: First Name
Upper NAME ATTRIBUTE VALUE: firstname
Current LABEL: Last Name
Current NAME ATTRIBUTE VALUE: lastname
Lower LABEL: Address
Lower NAME ATTRIBUTE VALUE: address1

Based on these positions, we defined the following syntax for our form filling rules:
Position | Condition | Value | Concept Name | Probability, whereby

• Position = {UPPER LABEL, UPPER NAME ATTRIBUTE VALUE, CURRENT LABEL,
CURRENT NAME ATTRIBUTE VALUE, LOWER LABEL, LOWER NAME ATTRI-
BUTE VALUE}.

• Condition = {CONTAINS, EQUALS}.
• Value = arbitrary string of labels and name attributes, e.g. a label tag, the string just

before the form, the name attribute of the form.
• Concept Name = element of the user data (i.e. be used to fill in the form),

e.g. FirstName.
• Probability = number between 0 and 100.

Every rule can be interpreted in the following way:
If the position has the condition of the value, then the probability is x% that the concept

name y has to be filled in.

Examples for rules are:

• CURRENT NAME ATTRIBUTE VALUE | CONTAINS | firstname | FirstName | 100. If
the name attribute (CONCEPT VALUE) of the input field CONTAINS firstname, then
the probability is 100% that the input field should be filled out with the first name
(FirstName) of the user.

168 E. Rukzio et al. / Pervasive and Mobile Computing 4 (2008) 161–181

• UPPER NAME ATTRIBUTE VALUE | CONTAINS | firstname | LastName | 81
If the name attribute (UPPER CONCEPT VALUE) of the input field which is above the
current input field CONTAINS firstname, then the probability is 81% that the input field
should be filled out with the last name (LastName) of the user.

• CURRENT LABEL | CONTAINS | address | AddressStreet1 | 46
If the string to the left of the input field (LEFT) CONTAINS address, then the probability
is 46% that the input field should be filled out with the address street 1 (AddressStreet1)
of the user.

3.2.2. Creation of the basic rules set
In the first step of this work, we needed to define a rules set that could be used for the

automatic form filling. We semi-automatically analysed about 200 arbitrary selected web
pages including forms. In a first manual step, the correct concept name was applied to all
the input fields of these websites. The rest could be done almost completely automatically.
Rules are generated and added to a rule repository by applying conditions of labels and
name attributes. That is, if an input field is found, its concept name is used to create
the rules based on all the labels that belong to this field. If the same rule is found, the
number of appearances is increased. Otherwise, a new rule is added in the rule repository.
The resulting rules set contained a huge amount of rules. We set a threshold to eliminate
meaningless rules caused by the following reasons:

• Rules appearing only once are considered meaningless, since the probability of their
appearance is very low.

• Some website authors use meaningless HTML name attributes like “field1”, “field2”
and so on. These names cannot be used to find out the meaning of an input field.

• Due to bad web design, some rules may contain information that is not near the input
field. This may be the case if some table layouts as well as positioning in CSS are used.

At the end, the probability of rules is added by calculating the ratio of the same
labels and name attributes but different concept names. More generally speaking, for the
definition of the probability of a specific rule to be the right choice for the input field, all
occurrences of a specific label (in a unified form as explained below) are compared and
used for the calculation of the probability. For instance, if the label “firstname” appears in
3 different rules, whereas the first rule has 5 occurrences, the second has 3 and the last has
2 occurrences, the probabilities for these three rules are 50%, 30% and 20%. This way, we
were able to define 142 rules as an initial ruleset for our prototype.

It is important to mention that the analysis (as well as the automatic form filling
algorithm) contains a step to unify labels. That is, unnecessary information as well as
captions is removed to create more general rules. For example the label “First Name” and
“FirstName” will both be changed to “firstname” (and thus the appearance of that rule will
be two instead of creating two single rules).

3.3. Form filling algorithm

The form filler uses the initial rules set and the locally stored user data to fill in the
requested webpage. The following algorithm is used:

E. Rukzio et al. / Pervasive and Mobile Computing 4 (2008) 161–181 169

Fig. 4. Parsing of a web page.

(1) The user data and the form filling rules are loaded from the storage of the mobile
phone and on demand from the rule server.

(2) The browser requests a web page through the proxy.
(3) The parser of the proxy extracts the downloaded webpage and creates an object

structure while checking each input field. This process is depicted in Fig. 4. The created
object structure contains an object for every form and every input field. For example, if
the following input field is included in a parsed form First Name < input type=“text”
name=“firstname” value=””/ >, the generated object includes the attributes label, type
(the type of the input field), name, and value. It also keeps information on the locations of
input fields.

At the end of the parsing process, there is an object for every form which knows every
input field that belongs to it. The input fields are also objects, which are augmented with,
for example, their name attribute values and their neighbours.

(4) For every input field of a form, the proxy selects rules and generates a dynamic rule
as follows:

The rules inspector retrieves all rules that fit to the field. There is mostly more than one
rule which fits the input field. This means that for one input field, there can be rules for
some or all 6 positions around it. Every rule includes a probability that describes how often
a value for a specific concept name is found in a specific position. An example is that left
contains address fits to different concept names like AddressStreet or EmailAddress but
with different probabilities.

When a rule is found for an input field, this rule’s probability is converted to what we
call concept points. The conversion takes some aspects into account, i.e. the probability
value and the type of the rule such as normal or superior rule.

During the checking of the input field, all concept points found for a specific concept
name, such as ‘this field fits the concept name AddressStreet’, are summed up. At the end

170 E. Rukzio et al. / Pervasive and Mobile Computing 4 (2008) 161–181

Fig. 5. Checking the input fields.

of the checking, our algorithm compares the concept points between the different concept
names found. The concept name with the highest number of concept points is selected.

There are two special cases, so called superior rules, which are used to increase the
speed of the algorithm and to utilise the limited capability of mobile devices, especially
memory space:

1. Rules for CURRENT LABEL or CURRENT NAME ATTRIBUTE that have a
probability of 100% are instantly chosen if they are found for the current input field.

2. Rules for CURRENT LABEL or CURRENT NAME ATTRIBUTE that have a
probability of less than 100% are rated higher than the other rules found. This means,
they rate higher concept points compared to the other rules.

Fig. 5 illustrates that every input field is analysed by the form filling algorithm. For each
input field found, the procedures depicted in Fig. 6 are applied, to check corresponding
rules, and sum up concept points.

Superior rules are used to increase the speed of the process. If a fitting rule for concept
name X has been found, there are two possibilities:

1. If it is a superior rule with a probability of 100%, then the rule for the concept name X
is instantly chosen for the field.

2. Else go on proceeding the rule.

The Administration of Concept Points checks if ‘X’ is an existing or a new concept name:

(i) when the concept name exists, the concept points are summed up, or
(ii) when the concept name is new, the concept points are stored for the new concept

name X.

E. Rukzio et al. / Pervasive and Mobile Computing 4 (2008) 161–181 171

Fig. 6. Checking an input field on rules.

If all rules are checked or no superior rule with a 100% probability has been found, then
the concept name with the highest number of concept points is chosen.

Of course, superior rules are seldom found and may even lead to wrongly filled fields but
their advantage lies in the increased speed, especially for mobile phones. Nevertheless, in
our tests, no wrongly filled fields due to superior rules occurred. Additionally, the automatic
update of rules, as explained in more detail in the rules server section, will remove superior
rules that have proven to be not 100% sure. For example, if a superior rule for the label
“firstname” exists but a user of the system has a wrongly filled form (e.g. for the label
“ChildFirstName”), then the probability of the rule will be decreased, and thus the problem
solves itself.

(5) The user data filler fills user data according to selected concept names with the highest
concept points.

(6) The proxy delivers the filled out web page to the browser.

As mentioned before, one of our goals was to develop an algorithm that can not only
compete with existing commercial products, but also works on resource scarce mobile
devices. When taking a deeper look at the algorithm, it becomes clear that the memory
usage will grow linearly with the number of rules. Fortunately, we managed to create an

172 E. Rukzio et al. / Pervasive and Mobile Computing 4 (2008) 161–181

algorithm that works very well with a small number of rules. In our prototype, just 142
were enough to fill out all required Concept Names. Furthermore, when looking at usage
statistics of the rules, we believe that with an improved rules generation algorithm, we can
reduce this even more. Since the rules format has been chosen to be really small (e.g. no
XML has been used), this is an amount that can be easily handled by most mobile phones.

Regarding the execution speed, we tested our algorithm (with the 142 rules) on standard
mobile phones with web sites including up to 10 forms to see whether the users recognise
a waiting time for the algorithm execution. There was no recognisable delay at all. Even
if the rules set would be increased, the time will only go up slightly, mostly due to the
superior rules that are the most common rules used.

Another important point regarding performance is that the algorithm can be performed
in an automatically distributed manner. Even if the number of web forms on a web page
is increased, the algorithm can perform in the order of the web forms. Fforms fitting the
size of the mobile phone’s display are filled, the rest can be performed in the background.
We may further assume that the algorithm performs and fills user data only when the user
interface focuses on an input field on the display.

3.4. Rules server

The rules server stores a basic set of rules generated by analysing existing web pages.
The proxy of the mobile device downloads rules from it and stores them locally. The rules
server can further support form filling by keeping up-to-date rules, for example adding new
concept names, or keeping track of different users’ actions.

If users change the values of input fields filled by the automatic form filling function,
these changes can be sent to the server, which creates rules for new concept names or
changes existing rules depending on the submitted data. It enables optimisation of rules by
users’ actual usage. Rules optimisation processes are the following:

1. The proxy of the mobile device monitors if the user changes the user data that are filled
out automatically.

2. It translates every changed field, and extracts a concept name and its location.
3. It sends these data to the rules server.
4. The rule server either changes the probability of existing rules or creates a new rule if it

is for a new concept name.

The advantage of such a server is that all users optimise the rules to achieve higher probable
results of automatic form filling.

4. Implementation

To prove our concept we implemented a prototype, the architecture of which is depicted
by Fig. 7. For that purpose, we used the Java Micro Edition (Java ME), MIDP 2.0 and
CLDC 1.1 all supported by most current mobile phones. Furthermore, we used the “Opera
for Mobiles” Browser, since it could easily be connected to our proxy. We configured
the proxy settings of the browser as depicted by Fig. 8a. Hence, each page request from
the browser is sent via the port 8110 to the proxy, which forwards the request to the

E. Rukzio et al. / Pervasive and Mobile Computing 4 (2008) 161–181 173

Fig. 7. Architecture of the prototype.

Fig. 8. Screenshots of the prototype.

corresponding web server. The proxy is realised as a Java ME Midlet running in parallel
to the web browser. The user data as well as the form filling rules are stored in a Java ME
record store. We found out that our prototype worked successfully on a Nokia 6600, Nokia
6630 and on a Nokia 6680.

For the implementation of the prototype, we used the following user data: FullName,
FirstName, MiddleName, LastName, AddressStreet1, AddressStreet2, AddressTown, Ad-
dressCode, AddressShire, AddressCountry, Email, TelephoneHome, TelephoneFax, Tele-
phoneMobile, TelephoneWork, CardOwner, CardNumber, CardType, CardExpiration-
Month, CardExpirationYear, CardExpirationComplete, Homepage and Email which are
based on the tags defined in [9] and are stored in a Java ME record store. We implemented a
corresponding user interface, which is depicted by Fig. 8b for the management of these data
by the user. As previously mentioned we analysed about 200 web pages and generated 142
rules. Fig. 8c shows the proxy Midlet after loading the user data and the form filling rules.

174 E. Rukzio et al. / Pervasive and Mobile Computing 4 (2008) 161–181

Table 4
Comparison of the algorithms

Presented algorithm Simplified algorithm

Correct filled fields 224 (92.6%) 207 (85.5%)
Wrong filled fields 18 (7.4%) 35 (14.5%)

Table 5
Comparison of the algorithms accuracy

Presented algorithm MSN Search Toolbar Google Toolbar for Firefox 1.0

Right fields 224 (92.6%) 219 (90.5%) 211 (87.2%)
Wrong fields 18 (7.4%) 23 (9.5%) 31 (12.8%)

5. Evaluation

In this section, we discuss several evaluations. The first one is the accuracy evaluation
of the form filling algorithm, and the second one is the usability evaluation of our prototype
through a user test.

5.1. Evaluation of the algorithm accuracy

First we evaluated how important the consideration of the surrounding form elements
(e.g. labels and input fields) of an input field for its correctly being filled out is, and in our
second test we compared our algorithm with existing tools.

In the first test, we evaluated the accuracy of our automatic form filling algorithm and
compared it with a simplified algorithm only considering the name attribute of an input
field without considering the co-located form elements (and without considering rules and
relationships between different rules).

We tested 37 arbitrarily selected web sites which were different from the ones we
used for rules creation. We checked whether the following 7 concept names: FirstName,
LastName, AddressStreet1, TelephoneHome, AddressTown, AddressCode, and Email were
correctly filled in. We counted how many input fields were filled out correctly and how
many were filled out wrong by both algorithms. Some of the forms in the selected
web pages did not include all of these concept names. Therefore, we had to check just
242 fields instead of 259 (37 | 7). Other fields than the above-mentioned 7 concept
names, like organisation or country, which were sometimes filled in, were ignored during
this evaluation. As shown in Table 4, considering the co-located form elements and the
combination of the knowledge represented by several rules increases the recognition rate.

Afterwards, we evaluated the accuracy of our automatic form filling algorithm in
comparison to the AutoFill function of the Google Toolbar [10] for Firefox 1.0 and the
Form Fill function of the MSN Search Toolbar [11]. We used again the 37 arbitrarily
selected web pages as well as the same test protocol. As shown in Table 5, our algorithm
provides similar accuracy as solutions primary designed for Laptops or Desktop PCs.

The following Fig. 9 shows which algorithm filled how many of the 37 forms with a
given number of wrongly filled fields. For instance the presented algorithm filled 27 of the

E. Rukzio et al. / Pervasive and Mobile Computing 4 (2008) 161–181 175

Fig. 9. Comparison of the number of wrongly filled in forms.

Fig. 10. Comparison of the wrongly filled in fields.

37 forms correctly (0 wrongly or not filled fields). The corresponding results show that
most forms are filled in correctly, or with just 1 to 2 errors. Furthermore, as can be seen,
each of the three algorithms had a serious problem with at least one form. The presented
algorithm was, for instance, not able to fill any field of one form at all, because of a conflict
between the rules which occurred when they were applied for this form.

The following Fig. 10 shows how often a given field was wrongly filled in by which
algorithm. For instance FirstName was wrongly filled in or not filled in only two times
by the presented algorithm. The results show that the algorithm of the Google Toolbar
especially had problems with filling in the FirstName, Last Name and AdressCode. The
MSN Search Toolbar algorithm had problems with the filed Last Name and AdressCode.
Furthermore, it can again be seen that the presented algorithm performs better than the
other two.

5.2. User test

The goal of this user study, based on the prototype described in Section 4, was to figure
out whether the automatic form filling feature would be usable for end users [12].

We had 18 volunteers that participated in our study, 9 women and 9 men, aged from
20 to 26. They were all students in computer science, communication science, politics,
ethnology, linguistics or literature.

At the beginning, we explained to each participant the concept of automatic form filling
on mobile devices. We discussed that filling out forms, e.g. for ordering a product or

176 E. Rukzio et al. / Pervasive and Mobile Computing 4 (2008) 161–181

Fig. 11. Method used to measure the time.

Table 6
Needed time and frequency of errors related to the included errors.

Errors 0 1 2

Runs 90 108 162
Average time needed in seconds 5.34 5.75 6.55
Frequency of errors and false positives: percent (sum of all errors) 0% 2% (2) 12% (19)

making a reservation, takes a long time when using a mobile device such as a mobile
phone. Then we briefly explained how such a feature as auto form filling could support the
mobile user. We said that the forms were automatically filled and the user could check and
reedit them before submiting the form. Furthermore, we insisted on the fact that personal
data are only stored on the mobile device and thus, are not transmitted to any other party.

As the next step, users were asked to provide their first name, last name, address, postal
code, city, phone number and email-address. Later on, this information was used by the
form filling feature as content for the form filling. Each test user was asked to check 20
forms with 0, 1 or 2 wrongly automatically filled fields.

Each test run was executed according to the following scheme: After selecting the
current setting, we waited until the form was completely loaded and put the mobile phone
onto the table in front of the user with its display face down. As shown in Fig. 11, the
user’s task was to turn the mobile phone around, check the pre-filled form, find any errors
and turn the mobile phone around again when ready. Please note there was no need for
scrolling, since the whole form fitted on the screen.

We used these gestures to exactly measure the time between the first look on the display
and the moment when the user turned the display up. Afterwards, each test user was asked
to tell if the form was correctly filled out or if there were any errors. Throughout this
experiment, we tried to prevent measuring the time the users needed for explaining errors.
In fact, we measured the time the user needed only to recognise the errors. In the cases
where the user found errors, we asked in which field the wrong content was filled in.

As already mentioned, each of the 18 participants was asked to do 20 test runs. Thus
we measured 360 runs altogether. The results of the user study are depicted in Table 6. In
general, there were no significant differences in the times the participants needed for the
different combinations. One result that was obvious was that the more the errors that were
included, the more time the participants needed for completing a run. One reason for that is
that the participants had to mention after every run how many errors they found and where
the errors were. The participants needed 23% more time when 2 errors were included when
compared to the test cases without any errors. Furthermore, not surprisingly, the frequency
of non unrecognised errors and false positives was higher than 0% when 1 or 2 errors were

E. Rukzio et al. / Pervasive and Mobile Computing 4 (2008) 161–181 177

included in the pre-filled form. A false positive is when the user wrongly mentioned that a
field was filled with the incorrect content.

After the runs, we asked the participants their opinions about the prototype. 83%
(15 of 18) of the testers would use such an automatic form filling function if available.
More detailed information about this study, the test setting and the results can be found
in [12].

6. Related work

This section relates our work to existing solutions. Chusho et al. [13] presented a
system where an agent supports the automatic filling of forms in web applications. For
this, a corresponding architecture – similar to modern architectures in the field of artificial
intelligence – was developed. This architecture includes an inference engine, a learning
facility and a knowledge-base. Barton et al. presented their XForms approach [14] that
supports adaptive services through clients that fill forms with sensor data. Furthermore,
existing commercial applications like Google Toolbar [10], MSN Search Toolbar [11],
RoboForm [15] or iOpus Internet Macros [16] also provide automatic form filling. In
contrast to these solutions, we decided to focus on mobile phones and mobile services.
This is a challenge due to the very limited working memory and processing speed of mobile
phones. All these publications and products address the same problem, namely that each
programmer can define her or his own forms using arbitrary labels, different data types
and variable names. Theoretically, it would be better if each form would follow a standard
ontology that would make automatic form filling a much easier task. The W3C working
draft Client Side Automated Form Entry [9] is an example of this and includes an ontology
for the description of identity, contact, postal, billing and organisational information. But
this is not a practical approach, because it assumes that everybody has to use a standardised
and well-accepted ontology. Another, and certainly more practical solution, is the usage of
semantic web technology to describe ontologies and the relationships between them [17].
Through this it would be possible that an ontology A is used to describe the elements in a
form, that an ontology B is used to describe the user data, and that the form filling would
be a straightforward reasoning task.

The investigation and development of context-aware services is currently considered by
many researchers and within several scientific projects. This context information5 is used
to initiate services and contents adaptation. In the application area of this paper, particularly
in personalised web applications for mobile devices, have to be concerned that adapt web
applications according the user and according to the used device [18–21].

The usage of rule- or policy-based systems based on artificial intelligence concepts are
one standard approach when designing systems for context-aware services. Suryanarayana
and Hjelm presented an architecture [22] that takes different profiles such as the user
profile, application profile and transport profile into account. Regarding the processing of
this data, they discuss possibilities that are based on rules languages such as RuleML and
policies. They also consider the usage of XSL Transformations (XSLT) to adapt services
according to context information. Platforms supporting coordinated adaptation in mobile

5 User data, device, location, surrounding devices, profiles, time, activity etc.

178 E. Rukzio et al. / Pervasive and Mobile Computing 4 (2008) 161–181

systems that are based on policies are presented in [23] and [24]. They strictly distinguish
monitored context information, policies and adaptation mechanisms. It is possible to use
policies for different adaptations and the adaptation mechanisms are independent from
the policies. Through this, the mobile services can be adapted in a system-wide manner.
Rei, a policy language for pervasive computing application was presented by Kagal
et al. [25]. This language enables expressing rules for rights, obligations, dispensations,
and prohibitions. We restrict our approach to the domain of form filling for mobile devices.

One other problem when using services on mobile phones is that the most web based
services are developed for desktop PCs or laptops. A popular solution for that is the usage
of proxies, which are located either on the mobile phone or on a server to adapt existing
services. Examples for this is are the Opera Mini and the Opera Mobile Accelerator, which
use a remote proxy that eliminates unnecessary content and compresses web pages for
sending them to the mobile phone. Our system can be seen as a proxy as well, because our
form filling application is located between the web browser and the web server.

7. Conclusion and future work

We discussed that form filling on mobile devices is a time consuming and error prone
task because of the limited input capabilities of mobile devices. We underlined, through our
initial user test, that filling in forms automatically reduces the input time by the factor 3.

In this paper, we presented a solution for automatic form filling on mobile devices. The
basic idea is that a proxy running on the mobile phone uses the locally available user data to
fill out forms on mobile services. This proxy acts as a mediator between the browser on the
mobile phone and the mobile service on the network. Through this approach our solution
can be used with already existing mobile phones, mobile browsers and mobile services.
Another advantage is the optimisation of the algorithm memory and processing constraints
of mobile devices based on an initial rules set and dynamic rules generation. Furthermore,
we showed through our prototype that it is feasible to implement and use such a feature
with currently available mobile phones.

From the results of our initial user study, we intensively considered privacy aspects
during the development of our architecture. Therefore, the user data is just stored on the
mobile device and is not distributed to any server. Furthermore, the user can keep control
over the automatically filled data by viewing and reediting them before submitting the
form. In addition to that, we showed through the accurate evaluation of the algorithm that
considering the co-location of form elements (e.g. labels and input fields) is necessary for
improving the correctness of the automatic form filling. In addition, we noticed that the
accuracy of our form filling algorithm was similar to corresponding solutions such like the
Google Toolbar and the MSN Search Toolbar which are not primarily designed for use on
mobile devices. Through a user test, we found out that people understood and perceived
well the concept of automatic form filling on mobile devices. Furthermore, we presented
in our related work section similar approaches, but also underlined that no comparable
concept or tools for automatic form filling on mobile devices was available.

To show the efficiency of our system from a different perspective, we plan to compare it
with some input prediction engines such as T9 that have been implemented on mobile
devices. In a further user study, we will count the time and the number of keystrokes

E. Rukzio et al. / Pervasive and Mobile Computing 4 (2008) 161–181 179

which are needed to delete or reedit user data filled by the automatic form filling tool.
Furthermore, we will analyse how more complex forms, which require some scrolling
interactions, might influence our current results. Furthermore, we plan to introduce and
evaluate a technique to delete all data filled in a form field at once.

The present research focuses on user data that are usually managed by typical personal
information management applications, in particular the address book. But novel and future
mobile services may provide form elements that ask for location or activity information.
The previously discussed algorithm can probably be used for filling in trivial location infor-
mation (e.g. current location) but is certainly not the ideal solution for more sophisticated
services. As discussed in the related work section, the usage of semantic web technologies
would be the most obvious solution for this problem. The question here is whether and
when this will be used by most of the developers when creating new forms.

Acknowledgements

This work was performed in the context of the framework of IST Projects Simplicity
and Simple Mobile Services (SMS) funded by the EU. The authors wish to express their
gratitude to the other members of the SMS Consortium [26] for valuable discussions.

References

[1] Chie Noda, John Hamard, Enrico Rukzio, Alexander De Luca, Method and Apparatus for Automatic Form
Filling on Mobile Devices, Patent. Publication number EP1777629, Publication date 2007-04-25.

[2] Opera Mobile, http://www.opera.com/products/mobile/.
[3] NTT DoCoMo Osaifu-Keitai, http://www.nttdocomo.co.jp/english/service/osaifu/.
[4] FeliCa, Sony, http://www.sony.net/Products/felica/.
[5] E. Rukzio, A. Schmidt, H. Hussmann, Privacy-enhanced intelligent automatic form filling for context-aware

services on mobile devices, in: Workshop Artificial Intelligence in Mobile Systems 2004 (AIMS 2004) in
conjunction with UbiComp 2004, Nottingham, UK, 7 September 2004.

[6] I. MacKenzie, R. Soukoreff, Text entry for mobile computing: Models and methods, theory and practice,
Human-Computer Interaction 17 (2002) 147–198.

[7] J. Pierce, H. Mahaney, Opportunistic annexing for handheld devices: opportunities and challenges, in:
Human-Computer Interface Consortium, 2004.

[8] M. Silfverberg, I. MacKenzie, P. Korhonen, Predicting text entry speed on mobile phones, in: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, The Hague, The Netherlands, ISBN
1-58113-216-6, 2000, pp. 9–16.

[9] P. Hallam-Baker, Client Side Automated Form Entry, W3C Working Draft WD-form-filling-960416,
http://www.w3.org/TR/WD-form-filling.html.

[10] Google Toolbar, http://toolbar.google.com.
[11] MSN Search Toolbar, http://toolbar.msn.com/.
[12] Enrico Rukzio, John Hamard, Chie Noda, Alexander De Luca, Visualization of uncertainty in context aware

mobile applications, in: 8th International Conference on Human Computer Interaction with Mobile Devices
and Services, MobileHCI 2006. Espoo, Finland, 12–15 September 2006.

[13] T. Chusho, K. Fujiwara, K. Minamitani, Automatic filling in a form by an agent for web applications,
in: Asia-Pacific Software Engineering Conference 2002, IEEE Computer Society, 2002, pp. 239–247.

[14] J. Barton, T. Kindberg, H. Dai, N. Priyantha, F. Al-bin-ali, Sensor-enhanced Mobile Web Clients: An
XForms Approach, in: Proceedings of the Twelfth International Conference on World Wide Web, Budapest,
Hungary, ISBN 1-58113-680-3, 2003, pp. 80–89.

[15] RoboForm, http://www.roboform.com/.

http://www.opera.com/products/mobile/
http://www.nttdocomo.co.jp/english/service/osaifu/
http://www.sony.net/Products/felica/
http://www.w3.org/TR/WD-form-filling.html
http://toolbar.google.com
http://toolbar.msn.com/
http://www.roboform.com/

180 E. Rukzio et al. / Pervasive and Mobile Computing 4 (2008) 161–181

[16] iOpus Internet Macros, http://www.iopus.com.
[17] S. McIlraith, T. Son, H. Zeng, Semantic web services, IEEE Intelligent Systems 16 (2) (2001) 46–53.
[18] G. Abowd, A. Dey, Towards a better understanding of context and context-awareness, Technical Report

GIT-GVU-99-22, College of Computing, Georgia Institute of Technology, 1999, pp. 12.
[19] P. Korpipää, J. Mäntyjärvi, J. Kela, H. Keränen, E.-J. Malm, Managing context information in mobile

devices, IEEE Pervasive Computing 2 (3) (2003) 42–51.
[20] G. Rossi, D. Schwabe, R. Guimar, Designing personalized web applications, in: Proceedings of the Tenth

International Conference on World Wide Web, Hong Kong, ISBN 1-58113-348-0, 2001, pp. 275–284.
[21] D. Billsus, C. Brunk, C. Evans, B. Gladish, M. Pazzani, Adaptive interfaces for ubiquitous web access,

Communications of the ACM 45/5 (2002) 34–38.
[22] L. Suryanarayana, J. Hjelm, Profiles for the situated web, in: Proceedings of the Eleventh International

Conference on World Wide Web, Honolulu, Hawaii, USA, ISBN 1-58113-449-5, 2002, pp. 200–209.
[23] C. Efstratiou, A. Friday, N. Davies, K. Cheverst, A platform supporting coordinated adaptation in mobile

systems, in: Proceedings of the 4th {IEEE} Workshop on Mobile Computing Systems and Applications,
WMCSA, 2002, pp. 128–137.

[24] C. Efstratiou, A. Friday, N. Davies, K. Cheverst, Utilising the event calculus for policy driven adaptation in
mobile systems, in: Proceedings of the 3rd International Workshop on Policies for Distributed Systems and
Networks, POLICY, 2002.

[25] L. Kagal, T. Finin, A. Joshi, A policy language for a pervasive computing environment, in: IEEE 4th
International Workshop on Policies for Distributed Systems and Networks, Lake Como, Italy, 2003, p. 63.

[26] Simple Mobile Services (SMS) project, http://www.ist-sms.org/.

Dr. Enrico Rukzio has been an Academic Fellow and Lecturer in Mobile Human
Computer Interaction in the Computing Department at Lancaster University since 2006.
His research focuses on the intersection between mobile and pervasive computing,
human-computer interaction and software engineering. In the last years he worked
primary on mobile interactions in which the user interacts with the real world trough
a mobile device which interacts with smart objects. He founded the Pervasive Mobile
Interaction Device (PERMID) workshop series in 2005 and is co-author of about
40 international publications. In 2007, Enrico Rukzio received his doctorate at the
University of Munich, Germany. He received his diploma degree in Computer science
at the Technical University of Dresden, Germany, in 2002. Contact him at Computing

Department, InfoLab21, Lancaster University, Lancaster, LA1 4WA / UK; rukzio@comp.lancs.ac.uk.

Chie Noda is a senior researcher at NTT DoCoMo, Inc. She was involved in the
European Project Simplicity. Her main research interests are context-aware services and
a service platform for sensor internet. She graduated from Tokyo Women’s Christian
University with a Master’s Degree in Science and Mathematics in 1995. Contact her at
3-5 Hikarinooka, Yokosuka, Kanagawa, 239-8536, Japan; noda@nttdocomo.co.jp.

Alexander De Luca is a research associate in the Media Informatics group of the
University of Munich and is currently working with the European project DISCREET
(Discreet Service Provision in Smart Environments). He received his diploma degree in
Media Informatics at the University of Munich, Germany, in 2006. Contact him at Media
Informatics Group, University of Munich, Amalienstrasse 17, 80333 Munich, Germany;
alexander.de.luca@ifi.lmu.de.

http://www.iopus.com
http://www.ist-sms.org/
mailto:rukzio@comp.lancs.ac.uk
mailto:noda@nttdocomo.co.jp
mailto:alexander.de.luca@ifi.lmu.de

E. Rukzio et al. / Pervasive and Mobile Computing 4 (2008) 161–181 181

John Hamard graduated in 2000 from the Paris V University with a Master Degree in
Ergonomics. Since 2001, he is a researcher on Man-Machine Interaction at DoCoMo
Euro-Labs and has been involved in several European projects such as IST-SCOUT, IST-
WITNESS, IST- MOBILIFE and IST-SIMPLICITY. John Hamard also worked at ETH-
Zurich, INRIA and France Telecom R&D as a usability expert in order to conceive and
evaluate Graphical User Interfaces for various services and applications (e.g. drawing
software program, professional web portal, interactive television services).

Fatih Coskun is studying computer science at the University of Munich and was working
for DoCoMo Communications Laboratories Europe in the context of the European
Project Simplicity. Contact him at Media Informatics Group, University of Munich,
Amalienstrasse 17, 80333 Munich, Germany; coskun@informatik.uni-muenchen.de.

mailto:coskun@informatik.uni-muenchen.de

	Automatic form filling on mobile devices
	Introduction
	Analysis
	Text inputs capabilities
	Initial user test and definition of user requirements
	Analysis of existing forms of web based services

	Architecture and algorithm
	Architecture
	Form filling rules
	Rules format
	Creation of the basic rules set

	Form filling algorithm
	Rules server

	Implementation
	Evaluation
	Evaluation of the algorithm accuracy
	User test

	Related work
	Conclusion and future work
	Acknowledgements
	References

