
PermissionWatcher: Creating User Awareness of
Application Permissions in Mobile Systems

Eric Struse, Julian Seifert, Sebastian Üllenbeck,
Enrico Rukzio, Christopher Wolf

1 Horst Görtz Institute, Ruhr University Bochum, Germany
{firstname.lastname}@rub.de

2 Media Informatics Group, Ulm University, Germany
{firstname.lastname}@uni-ulm.de

Abstract. Permission systems control access of mobile applications to
other applications, data, and resources on a smartphone. Both from a
technical and a social point of view, they are based on the assumption
that users actually understand these permissions and hence they can
make an informed decision about which permission to grant to which
piece of software. Results of a survey conducted for this article seriously
challenges this assumption. For instance, over a third of participating
Android users were not able to correctly identify the meaning of the per-
mission Full Internet Access. We developed PermissionWatcher, an An-
droid application which provides users with awareness information about
other applications and allows to check on the permission set granted to
individual applications. In a field study with 1000+ Android users, we
collected data that provides evidence that users are willing to follow
security principles if security awareness is created and information is
presented in a clear and comprehensive way. Therefore, we argue that it
is essential for security policies to take the abilities of the target audience
into account.

Keywords: Usable Security, Mobile Phones, Android, Access Rights.

1 Introduction

Modern mobile phones or smartphones have become truly ubiquitous computers.
For instance, they enable users to edit texts, browse the internet, access all kinds
of online services at any place. Also, increasing storage capacities allow users to
keep a multitude of data on their devices. Some of these data and files are
regarded as highly sensitive and private by the users.

To fully exploit the capabilities of smartphones, modern mobile operating
systems allow users to install applications of their choice (also referred to as
app). Obviously, this creates new threat scenarios: in particular, users unwillingly
installing malicious software which steals data or uses the smartphone’s resources
(e.g.making calls, sending text messages). One approach to prevent this is to
totally close the system. Users are only allowed to install reviewed and signed



applications. For instance, Apple’s App Store follows this approach to an extent.
A true security review would lead to high costs.

A different approach is leaving the system completely open and allowing
users to install whichever application they like. However, this requires rules that
regulate what data and which functionalities a certain piece of software may ac-
cess for security reasons. For instance, in the case of Android, a comprehensive
set of permissions for applications exist which can be reviewed by a user before
installing an application and consequently granting access to the smartphone.
However, such a system is entirely based on the assumption that users are fa-
miliar with these access rights and are further able to understand them in order
to make a qualified decision whether to install an application or not. However,
it is not enough that the user understands one isolated access right, but many,
and in particular their dependencies among each other.

Therefore, this work aims to investigate whether users of smartphones with a
permission-based application security model actually do understand these access
rights and the implications they have. Further, this work addresses the question
if increasing the users’ awareness of what a piece of software potentially could
do with a specific set of permissions has an impact on their decision which
application to install.

Android is a good example for the rule-based application security model and
was hence chosen for our investigations. In an initial online study we explored
the understanding of Android users of the permission concept. The results show
that a large amount of users does not understand basic access rights and what
consequences they may result in (cf. sect. 3). Also, a majority of participants
indicated that they are willing to uninstall applications which have permission to
accessing too many resources of their phones if they were aware of them. Thus,
we designed and implemented PermissionWatcher, an application for Android
phones that analyses permissions of other applications installed on the phone.
Based on a custom set of rules, which we developed, PermissionWatcher classi-
fies applications as suspicious if any of the rules apply. Through a home screen
widget PermissionWatcher increases the user’s awareness of potentially harm-
ful applications. In a field trial we collected usage data from 1.000+ different
users. About 9% of them used PermissionWatcher to delete suspicious applica-
tions directly with PermissionWatcher. For comparison: On 98.7 % of all phones
applications with suspicious permissions were found.

The remainder of this article is organized as follows: We discuss related work
and illustrate selected basics about Android. In the following, we report on an
initial survey in which we assessed the users’ understanding of Android permis-
sions. Further, we detail the design and development of PermissionWatcher and
further report on a field trial in which PermissionWatcher was tested. Finally,
this article draws conclusions and outlines possible next steps.



2 Related Work and Android Basics

Research related to this work can be classified into the following categories: user
interaction, smartphone security, application market places, and work concerning
the Android system.

User Interaction. Egelman et al.[5] shows the necessity to simplify complex
security decisions into easy to understand yes/no warnings. In particular, they
have investigated phishing sites and used an automated process to rate if a site
is dubious or not. If a certain threshold was reached, the site was marked a
potentially dangerous, and the user was given the chance to abort loading. Also,
there was a potential risk that this engine made mistakes, this was less likely
by at least one order of magnitude than the user surfing on a phishing site and
becoming a target.

Amer et al.[1] consider different ways of displaying warning messages to users.
Their main goal it to maximize the impact of a security warning. At the same
time, they want to avoid that warnings are perceived as “rude” and also being
ignored by users. They show a dramatic difference in user response depending
on the way the warning is displayed.

Smartphone Security. General security considerations, but also specific attack
vectors for smartphones informed the design of our survey. According to the Mi-
crosoft Security Intelligence Report [16] 44.8% of all malware detected, required
user interaction for propagation. Note that [16] deals with computers, not smart-
phones. Still, its information on malware propagation is clearly relevant to this
work.

An extensive overview on attack vectors and differences between normal and
mobile security can be found in Becher et al.[4]. A technology review with a
special focus on threats and attacks concerning smartphones is given by Li and
Im [15]. The importance to “scrutinize permission requests” is highlighted by
Hogben and Dekker [14] who analyze risks particularly for smartphone users
and give practical recommendations to avoid them.

Market Places and Overall Comparison. Anderson et al.[2] examine the appli-
cation markets for ten platforms, including desktop operating systems, mobile
phones, web browsers and social networks. They define incentives, goals and
stakeholders concerning application markets, and analyze case studies on each
platform. Concerning smartphones, they “find that these OSes [Symbian, iOS
and Android] provide significantly more protection to both users and the system
than their desktop counterparts, but that there are very important differences
among them in terms of a user’s control over applications” (p. 19). Android
receives the best protection rating but it is noted that it offers less assurance of
system protection compared to the other smartphone operating systems.

Android. To derive specific rule sets (cf.Table 1), we considered the following
work concerning possible attack vectors in Android.



Shin et al.[18] analyze the Android permission-based security system using
state machines, leading to a formal security model [19].

There is extensive work on Android malware and data leakage detection by
Enck et al.. We quote but a few. Enck et al.[7] introduce Kirin, a framework
to enforce security policies in Android. They give a formal representation of
the Android security model and develop a policy model featuring a subject-
object-rights access matrix.They also present a novel procedure [8] for identifying
requirements and creation of rules relating to the analysis of permission sets,
and develop a set of rules. Enck et al.revise Kirin based on these rules and
use it to analyze 311 applications. They find five applications with dangerous
functionality, and five applications with dangerous but reasonable functionality.
Note that our work takes a similar approach on malware detection, however our
focus is on awareness and usability; our tool is clearly designed for users who
are not knowledgeable in security.

A study on 1,100 applications by Enck et al.[6] also detects common misuse
of personal information. Enck et al.statically analyzed recovered source code of
applications, using data flow analysis, structural analysis and semantic analy-
sis. They observe that the International Mobile Equipment Identity is misused
as a cookie by many applications, and 51% of (free) applications connect to
advertising or analytic networks.

Permissions. The following works focus on the permission system of Android.
This is particularly relevant for our work as we focused on permissions both for
our survey as for PermissionWatcher.

Barrera et al.[3] propose a methodology for empirical analysis of permission-
based security. They analyze 1,100 Android applications using self-organizing
maps. Felt et al.[10] introduce stowaway, a tool for detection of overprivileges
in compiled Android applications. They test 940 applications and argue that
one in three applications is overprivileged. Felt et al.reason that “developers
attempt to obtain least privilege for their applications but fall short due to API
documentation errors and lack of developer understanding” (Page 11). This is
somehow complementary to our approach where we deal with the demand rather
than the supply side of Android applications. Another study of Felt et al.[11]
deals with the effectiveness of permissions. 1,000 chrome extensions (for the
Google Chrome browser) and 956 Android applications are analyzed. Felt et
al.conclude that permissions can be effective, but improvement is possible and
necessary. The fact that 93% of the analyzed Android applications have at least
one dangerous permission is particularly relevant to our work because it implies
that users receive warnings about permissions during the installation of almost
every application and are hence likely to ignore them.

Furthermore, Felt et al.[12] conducted two usability studies (an Internet sur-
vey of 308 Android users and a laboratory study of 25 users). They note that
only 17% of the participants (in both surveys) paid attention to permissions
during application installation, and only 3% of the participants (of the Internet
survey) were able to correctly answer all questions on permissions. Again, this



supports our claim that end-users are likely to ignore security warnings if they
are presented in an unintelligible way.

2.1 Android Basics

Android is a mobile operating system for mobile devices such as smartphones and
tablet computers. It is based on the Linux kernel version 2.6 and was developed
by the Open Handset Alliance. Android comprises of an operating system, a
middleware and key applications. Source code, along with any data and resource
files, are compiled by the Android SDK tools into a single Android package. In
this context, all code in a single package is considered to be one application.

2.2 Security

Android’s security architecture relies on two basic security mechanisms [13],
namely sandboxing and permissions. We focus on the latter in this article, but
describe both for completeness.

Sandboxing. Each application is given a distinct, constant identity (Linux user
ID and group ID). Each application runs in a separate process and can only
access files that belong to the same user ID (with an exception concerning data
stored on SD-cards). The kernel isolates applications from each other and from
the system. This process is assisted by the Dalvik virtual machine, which is
specifically designed for Android. Still, as any application can run native (C or
C++) code, the Dalvik virtual machine is no strict security boundary.

Permissions. In Android, a permission mechanism enforces restrictions on the
operations an application can perform. Applications have to statically declare
their required permissions at install time to gain access to certain hardware
features and user data, and to be able to share resources and data. There is no
mechanism to grant or withdraw permissions dynamically. Therefore, it is an
all-or-nothing decision: either, a user grants all required privileges, or cannot
install the application. There is a system of grouping labels into four different
categories (normal, dangerous, signature, signatureOrSystem). For more detailed
discussion on Android permissions, cf. Felt et al.[10] or Enck et al.[9].

All in all, this supports the thesis that any application can circumvent An-
droid’s permission system by tricking the user into accepting dubious (from a
technical point of view) but plausible (from a user’s perspective) permissions.

3 User Understanding of Application Permissions

Departing from the assumption that existing means for regulating application
permissions in Android do not meet user requirements in terms of clarity, we de-
signed and conducted a survey to investigate the following hypothesis: (H1) User
awareness about application access rights in Android is deficient. In particular,



users do not know and understand the Android security concept and correspond-
ing access rights. Further, (H2) awareness concerning potential threats can be
supported by providing users with clear and comprehensible information. To
substantiate this hypothesis, we state two additional sub- hypotheses: (H2.1)
users are willing to restrict access rights of applications and (H2.2) they would
delete potentially harmful applications.

3.1 Setting

In order to investigate these questions we designed a questionnaire targeted
to Android smartphone users. The survey included 15 questions structured in
the sections 1) smartphone usage and experience, 2) Android application access
rights, 3) user attitudes towards privacy, and 4) general understanding of IT
security aspects. In addition, demographic data was collected.

We promoted the online survey via four email lists about IT security (with
≈3,000 receivers) and an email list of the students of the computer science de-
partment at the (blind for review). As an incentive, each participant who com-
pleted the questionnaire automatically took part in a lottery where they could
win one of three gift vouchers (value: 15, 10, and 5 (blind for review)). The survey
is biased in two ways: First, the participants are far more likely college students
than the average population. Second, the number of security professionals is also
clearly too large. Interestingly, we could not find this bias to be reflected in the
results: People with a security background gave similar answers as participants
with other backgrounds. Moreover, even if the survey were biased in terms of
more security awareness and security friendly behavior, this would only make
our findings worse for the general population.

3.2 Survey Results

In total, 113 complete answer-sets were collected from participants (89 male).
Overall, they were aged between 17 to 50 years (Mdn=25), while 87% were aged
between 20 and 30 years. 73 participants (65%) were college students, while
the others had highly diverse backgrounds such as psychologists, social workers,
or engineers. Concerning the usage duration of their smartphones, 73% of the
participants indicated to own and use their devices for at least six months (45%
longer than one year).

Understanding of Android’s Security Concept. Participants rated their knowl-
edge of the Android application security concept on a five point Likert scale
(1=none; 5=very good). On average, participants rated their knowledge to be
mediocre (Mdn=3.0). To assess a general understanding of the Android security
concept, we asked the participants whether applications released in the Android
Market are subject to a security vetting process, which is not the case. 14 par-
ticipants (12%) assumed that all applications would go through such as process,
29 (26%) were not sure, and 70 (62%) choose the correct answer. Accordingly,
more than a third of users are not sure or assume a security mechanism which is



not existing. Further, we asked if users know at which point application access
rights are granted. Three possible answers were provided. Here, a large majority
of 91 participants (81%) chose the correct answer (“At application installation”),
while 12 (11%) picked the neutral answer, and 10 (9%) choose the wrong answer.
63 (56%) participants answered both questions correctly (3 answered both incor-
rect) while the remaining picked only one correct. This result does not allow for
conclusions concerning the overall understanding of the security concept. Yet, it
indicates that fundamental security mechanisms are not fully understood. Con-
cerning the understanding of Android application permissions, we found that
participants understand partially what access rights mean. For instance, 99 par-
ticipants (88%) understood correctly what an application with read contacts is
allowed to do. However, only 71 participants (63%) knew the correct answer to
the question what an application with full internet access is allowed to do. Even
lower was the percentage of correct answers to the question which actions could
be performed by an application with the make phone call permission: here only
19 participants (17%) gave the correct answer.

Benefit of Security Mechanisms. Participants were asked to rate their level of
agreement to the statement “The available information on Android permissions
is sufficient.” on a five point Likert scale. A separate neutral answer was available,
picked by 10 participants. On average participants rated this statement with 2.0
(Mdn). Further, we asked participants to rate their agreement to the statement
“It would be helpful to be able to prohibit access to contacts or sending files to
the Internet” where only 3 participants selected the neutral answer. On average,
they rated their agreement with 5.0 (Mdn).

In response to the question what they would do if they were warned that
an application requires permissions that are potentially harmful, 44% answered
that they would delete the application. 28% stated to delete the application in
case it would be none of their favorites. 77% of the users agreed to that they
would not install the application and search for an alternative. Only 5% stated
that they would take no action at all.

In summary, we can conclude that the existing security model is only par-
tially understood by Android smartphone users. This is surprising, as the survey
was advertised via email lists received by users with an IT security background.
Also, the sample of participants included mainly well educated persons which
indicates that even those have difficulties understanding basic Android secu-
rity mechanism. However, users indicated that warnings concerning security and
privacy threats would result in actions such as uninstalling applications which
implies that providing users with information would result in a higher level of
security.

4 PermissionWatcher Application

In this section, we introduce PermissionWatcher, a mobile application for An-
droid smartphones which increases user awareness about potentially harmful



(a) (b)

Fig. 1. The PermissionWatcher widget: (a) a worried smiley face indicates suspicious
applications. (a) after uninstalling suspicious applications, the smiley appears happy.

applications installed on her phone. The concept is based on the assumption
that users are willing to take security increasing actions (such as uninstalling
a potentially harmful application) once they gain knowledge about a potential
threat. In order to increase the user’s awareness about potential threats, Permis-
sionWatcher provides a widget that can be installed and displayed on the home
screen of the mobile phone. Widgets are a common way to provide users with
small pieces of information such as weather information, news tickers, or upcom-
ing assignments taken from the calendar application. Amongst these widgets,
the PermissionWatcher widget provides the information of how many applica-
tions are installed on the system and how many of these are suspicious. When
PermissionWatcher detects suspicious applications, a smiley face on the widget
emphasizes that the user should take action (see Figure 1). That is, the user
can touch the widget to launch the PermissionWatcher application for reviewing
details and uninstalling other applications. In case, no applications are detected
as suspicious, the smiley face appears as happy.

4.1 Rule Set

PermissionWatcher evaluates the risk of a given application being a potential
threat to the user based on a set of rules. As we focus on raising user awareness
of Android permissions, this leads to the following two limitations:

1. We inspect single applications. Therefore our rules do not cover permission
re-delegation. An application with a certain permission can act as a proxy
and perform a task for another application that does not have the permission.
Moreover, it is possible to divide a dangerous combination of permissions to
separate applications.

2. We do not analyze the code nor the behavior of applications (this would
require root privilege or the modification of the Android system). Conse-
quently, we can not detect conventional malware that bypasses the Android
security system. For example, we can not detect applications that exercise a
root exploit to gain root privileges.

We followed a structured approach to deduce the rule set: First, identifying
relevant targets of possible attacks. Then, deriving attack scenarios. This is fol-
lowed by determining which permission set is required for each scenario which



Table 1. The set of rules applied in PermissionWatcher

Number Title Permission Set

1 Relay Contact Data READ CONTACTS and INTERNET
2 Relay SMS Messages READ SMS and INTERNET
3 Send SMS Messages SEND SMS
4 Make Phone Calls CALL PHONE
5 Make Phone Calls CALL PRIVILEGED
6 Covert Listening Device RECEIVE BOOT COMPLETED,

RECORD AUDIO, and INTERNET
7 Covert Camera Device RECEIVE BOOT COMPLETED, CAMERA,

and INTERNET
8 Movement Profile RECEIVE BOOT COMPLETED,

INTERNET, and ACCESS FINE LOCATION
or ACCESS COARSE LOCATION

9 Eavesdrop on Phone
Calls

RECORD AUDIO, INTERNET, and
READ PHONE STATE or
PROCESS OUTGOING CALLS

10 Relay and Falsify SMS
Messages

RECEIVE SMS, WRITE SMS, and
INTERNET or SEND SMS

11 Falsify SMS Messages RECEIVE SMS and WRITE SMS
12 Activate Debugging SET DEBUG APP
13 Permanently Disable

Device
BRICK

leads to rules based on the permission sets. Finally, similar rules were combined.
We have identified three groups of targets:

1. Stored data (e.g.contact data, text messages).
2. Hardware features (e.g.camera, microphone).
3. Functions (e.g.answering calls, send/receive text messages).

We have derived eight different attack scenarios. Examples are direct mone-
tization, attack mTAN based online banking, or manipulation of text messages.
For a complete list please refer to sect. 4.2. In the last step, we combined three
pairs of rules:

1. Rules that allow creating movement profiles.
2. Rules concerning manipulating text messages.
3. Rules concerning eavesdropping calls.

The resulting rule set includes 13 rules that are used to determine if an
application is to be considered as suspicious because it is potentially harmful for
the user. The list of rules is given in Table 1. Please note that rules 8, 9, 11, and
12 have been previously defined in [7].

4.2 Scenarios

The following set of attack scenarios were derived:



Extracting information Reading data stored on the device and relay it to an
attacker. We focus on attacks that use network connection to relay data.
Using text messages to relay data is possible. However, we neglect text mes-
sages because they are noticeable by the user (since they may cause costs)
and related attacks are complex (data has to be split into separate messages
and infrastructure to receive messages is required). Furthermore, we consider
the unwanted sending of text messages as a separate attack. We disregard
relaying data via Bluetooth connections as it depends on physical proximity
to the target.

Direct monetization Send premium rate text messages or making premium
rate phone calls. Furthermore, it is possible to use text messages to distribute
junk messages.

Compromise emergency call system Makeing emergency calls. Unwanted
emergency calls may cause serious punishment (depending an national laws).
In addition, attackers could use phones of numerous targets to attack the
emergency call system (a critical infrastructure) by constantly making short
emergency calls.

Covert surveillance Employing the microphone or the camera to spy on the
user. Moreover, it is possible to utilize the GPS sensor to create a movement
profile.

Eavesdropping on phone calls Use the microphone and system functions to
eavesdrop on phone calls. In addition to eavesdropping on conversations, it
is possible to extract information from a phone call. For example, Schlegel et
al.demonstrate how to extract a PIN or credit card number using a “sound
trojan” [17].

Attacking mTAN based online banking Relay or falsify text messages that
contain a mTAN (mobile transaction authentication number). An attacker
intercepts a mTAN and uses it to authorize an online banking financial
transaction from the victim’s account.

Manipulating text messages Falsify or forge text messages. In addition to
annoying the victim (for example, by rendering messages useless or display-
ing Spam), the ability to falsify or forge text messages can be a serious se-
curity threat. Although falsifying or forging a text message can not be used
to relay mTAN, it may enable an attacker to intercept important messages.
For example, an online banking system may send alerts or confirmation mes-
sages that can be intercepted. Furthermore, forged messages can be used for
phishing attacks to trick the user into relaying the mTAN.

Dangerous system functions Android offers a function called brick to per-
manently disable the device. According to a related work by Enck et al., it is
possible to gain the permission set debug app by manipulating the Android
API [8].

4.3 Application User Interface

The design and implementation of the PermissionWatcher user interface follows
the basic principle of details on demand, to provide the user with only as much



pieces of information as necessary. Further, we designed the application to inte-
grate seamlessly in the Android system.

After launching PermissionWatcher (either using the home screen widget or
the default launcher), the main screen is presented (see Figure 2(a)). Here the
user can select three different options: 1) reviewing which applications are de-
tected as suspicious, 2) reviewing all non- system applications, and 3) reviewing
a list of all permissions and which applications are using them.

Figure 2(b)) shows the list with the suspicious applications (in this case
only one application is contained) while details regarding rules for responsible
marking the application as suspicious are expanded. When a user performs a
long touch, the application details view is started (see Figure 2(c)). Here the user
can uninstall the application by pressing the corresponding button. Further, all
details about the permissions are provided.

(a) The main view of Per-
missionWatcher providing
three options: suspicious
apps, all apps, and all per-
missions.

(b) The suspicious applica-
tions list shows apps and
corresponding permissions.

(c) Application details are
summarized in application
detail view. Users can unin-
stall an suspicious apps
from here.

Fig. 2. Screen shots of the PermissionWatcher graphical user interface.

5 Empirical Usage Evaluation

To gain in depth insights how users make use of the presented PermissionWatcher
application, we conducted a field trial in which we collected rich data about us-
age patterns. To do so, we published the PermissionWatcher application with a
built in user data aggregator and advertised the application via different (inter-



national) email lists. These list have ≈ 3, 000 subscribers and a partial focus on
Germany.

5.1 Data Collection

Data collected by the aggregator included phone status information, e.g.how
many and which suspicious applications were installed. Moreover, data about
the PermissionWatcher usage were recorded. For instance, how often Permis-
sionWatcher was launched, which view (UI/screen) was used, which applications
were marked as trusted and which were uninstalled. In addition, the aggregator
recorded how often context menus were opened.

Users were informed about the data logging process before installation. In
order to ensure that data could not be used for privacy violations all data was
fully anonymized and encrypted before sending them to the collection server.

5.2 Results

Within 6 weeks after release, PermissionWatcher was downloaded and installed
by over 1,000 users. Most users were from Germany (72%), followed by Aus-
tria (8%), USA (7%), Switzerland (3%), and the UK (2%). Other countries
(e.g.Brasil, China, Japan, US) had a share of less than 1%. In the Android Mar-
ket users rated the application 40 times with an average rating of 4.7 (1=poor,
5=best).

After removing data logs which were not readable, data logs of 1.036 distinct
users remained containing usage data of 3,669 usage sessions. That is, the ap-
plication was used in 3.54 sessions (Mdn=2) on average per installation. About
400 users used the PermissionWatcher at least three times within the period of
data collection. The duration of the sessions was in 60% of the cases less than
60 s (Mdn=33.5 s).

Users of PermissionWatcher had on average 53.6 applications installed on
their Android phones (Mdn=43; SD=45.6). Among these, 10.31 (Mdn=8; SD=9.6)
were identified as suspicious by PermissionWatcher which corresponds to 20%
of all applications installed on the users’ phones. The top five list of suspicious
apps installed (number of installations) is shown in following table 2.

Table 2. The top five of most frequently installed applications that were identified as
suspicious.

Application Name # Installations

Whatsapp 476
Google translate 328
Barcode scanner 309

Facebook 292
Skype 239



The 25 most frequently installed apps that were identified as suspicious were
each installed on at least 10% of the users. The most frequent reason for tagging
an application as suspicious was permission to read and relay the address book
information (READ CONTACTS and INTERNET).

We found that 94 (9.1%) of the users uninstalled at least one application us-
ing PermissionWatcher. On average 3.1 applications were uninstalled (Mdn=2).
Three users uninstalled more than 10 applications. In total 247 different appli-
cations were deleted, whereas only 26 were deleted by multiple users. The top
five list is shown in table 3. Note that each application was uninstalled in four
cases.

Note: In our initial survey, 44% of all users indicated that they would deinstall
applications if they were warned. However, it is well known that people tend to
give “socially expected” answers. In addition, our initial survey was even more
biased towards security professionals then the field trial; this could also explain
a part of the gap.

Table 3. The top five list of most frequently uninstalled applications using Permis-
sionWatcher.

Application Name # Uninstallation

Compass 4
Ebay 4

Barcode scanner 4
HRS hotel search 4

Skype 4

In more than half of the cases, users were reviewing the list of suspicious
apps before uninstalling applications (55%). In 29% of the cases the list all apps
preceded the uninstallation and in 16% the list of all permissions was reviewed.

Users had the opportunity to mark suspicious applications as trusted, which
removed them from the corresponding list. Only 47 users marked applications as
trustworthy (137 in total) which were previously detected through the system.
Each of these users marked 5.7 (Mdn=3; SD=6.3) applications as trusted. The
top five list applications that were marked as trusted (# cases) using Permis-
sionWatcher is listed in table 4.

Turning towards which features of the application were chosen, the overview
list suspicious apps was used by 92% of the users. That is, each user opened
this list on average 3.2 times (Mdn=2). On average, the usage duration was
60 s (Mdn=19 s; SD=34.4). The overview list all apps was used by 45% of
the user and was opened 1,077 times. That is, on average each user used this
list for 1.9 times (Mdn=1, SD=2.4). In this case, users spend on average 54 s
(Mdn=13.1 s; SD=436.9). The list giving an overview of all permissions was
used by 70% of the users. In total 1,171 times, which is on average 1.6 times per
user (Mdn=1; SD=1.5). Users spend on average 83 s using this list (Mdn=32 s;



Table 4. The top five list of applications that were marked as trusted.

Application Name # Trusted

Whatsapp 11
Skype 10

DB Navigator 9
Google+ 8

AVG Antivir 7

SD=274.7). Surprisingly, only 16% of the users viewed the application details
overview. In total 513 times were application details reviewed which corresponds
to 3.1 times on average (Mdn=2) per user. On average, when reviewing the
application details, users spend 16.8 s (Mdn=9.3). Figure 3 gives an overview of
how many percent of the users applied which data view of PermissionWatcher.
This correlates to our finding that users prefer easy to understand presentation
rather than the full information. On the other hand, we think that this feature
gave credibility to PermissionWatcher.

92	  

45	  

70	  

16	  

0	   20	   40	   60	   80	   100	  

Suspicious apps!
All apps!

All permissions!
Application details!

Applied by % of users!

D
at

a 
Vi

ew
!

Fig. 3. Usage of different features of PermissionWatcher

In summary, we observed over 2,200 installations within a time period of six
weeks. We collected data from over 1,000 users. It appeared that only free appli-
cations were considered as suspicious. Many of them were listed in the Android
Market top application lists. The main reasons for identifying applications as
suspicious are access to the address book or access to GPS sensor data. Interest-
ingly, lists of deleted and trusted applications are overlapping. It is noteworthy
that 18 applications that were uninstalled by users were removed later on from
the Android Market due to unknown reasons.

6 Conclusions & Future Work

Our user study has indicated clearly that users are actually willing to use secure
applications as long as the information is presented in an easy understandably
way. The most prominent example is the right full internet access, which only



63% of all participants in our initial survey could give (cf.sect. 3). This points
to a serious security problem: if users cannot understand the permissions they
grant they are likely to allow Trojan software directly through their front door
by clicking at dangerous permission sets. On the other hand, our initial survey
also indicated that users wanted security on their phones—as long as it was
presented in a clear and understandable way.

Therefore, we have developed PermissionWatcher especially for users with-
out a technical and security background. Our aim was to put permission based
systems on a stable footing by informing users about dubious permission sets.
Results of a field study with 1000+ users indicate that a considerable amount of
users carefully examined suspicious apps and even uninstalled them. Due to the
field study design, it was not possible to contact users and interview them which
were reasons for uninstalling applications. Even more interesting, what were rea-
sons for keeping applications that are clearly requiring too many permissions.
This needs to be investigated in followup users studies.

There are several ways to extend the concept of creating awareness after ap-
plications are installed. First, it would be beneficial if the user would be informed
before installation about suspicious applications. Preferably, the user should be
given alternatives, such as “This torch light app needs 124 permissions, including
15 dangerous ones. Alternatively, we have found a torch light application, that
only needs 2 permissions, none of them being dangerous. Which one would you
like?”

PermissionWatcher does not use the “wisdom of the crowd” yet. In particular,
when choosing alternative applications or identifying dangerous permission sets,
users could rely on (indirect) input from others. Judging from our previous expe-
rience, this needs to be done in a transparent, and in particular none-interrupting
way.

Finally, it would be highly beneficial for the security of the Android Market-
place if alternative suggestions and highlighting problematic permissions were
directly integrated into the Marketplace itself: instead of pretending to offer the
user security by showing a mostly unintelligible heap of permissions, it needs to
be far more user friendly. Otherwise, large portions of Android users will easily
fall prey to attacks by seemingly innocent permissions. On the up-side: The pre-
sentation of all permissions needed for one app made it possible for us to identify
dangerous permission sets quickly. So the Android market place is certainly on
the right track—but would need to take this little extra step to be beneficial to
all users.

References

1. T. S. Amer and J. B. Maris. Signal words and signal icons in application control
and information technology exception messages – hazard matching and habituation
effects. Working Paper Series 06-05, Norther Arizona University, 2006.

2. Jonathan Anderson, Joseph Bonneau, and Frank Stajano. Inglorious installers:
Security in the application marketplace, 2010.



3. David Barrera, H. Güneş Kayacik, Paul C. van Oorschot, and Anil Somayaji. A
methodology for empirical analysis of permission-based security models and its
application to android. In CCS ’10, pages 73–84, New York, NY, USA, 2010.
ACM.

4. Michael Becher, Felix C. Freiling, Johannes Hoffmann, Thorsten Holz, Sebastian
Uellenbeck, and Christopher Wolf. Mobile security catching up? revealing the nuts
and bolts of the security of mobile devices. In SP ’11, pages 96–111, Washington,
DC, USA, 2011. IEEE.

5. Serge Egelman, Lorrie Faith Cranor, and Jason I. Hong. You’ve been warned: an
empirical study of the effectiveness of web browser phishing warnings. In CHI ’08,
pages 1065–1074. ACM, 2008.

6. William Enck, Damien Octeau, Patrick McDaniel, and Swarat Chaudhuri. A study
of android application security. In Proc. of the 20th USENIX Security Symposium,
2011.

7. William Enck, Machigar Ongtang, and Patrick McDaniel. Mitigating android soft-
ware misuse before it happens. Technical report, Network and Security Research
Center, Department of Computer Science and Engineering, Pennsylvania State
University, 2008.

8. William Enck, Machigar Ongtang, and Patrick McDaniel. On lightweight mobile
phone application certification. In CCS ’09, pages 235–245, New York, NY, USA,
2009. ACM.

9. William Enck, Machigar Ongtang, and Patrick McDaniel. Understanding android
security. IEEE Security and Privacy, 7:50–57, January 2009.

10. Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner.
Android permissions demystified. In CCS ’11, pages 627–638, New York, NY, USA,
2011. ACM.

11. Adrienne Porter Felt, Kate Greenwood, and David Wagner. The effectiveness of
application permissions. In WebApps’11, pages 7–7, Berkeley, CA, USA, 2011.
USENIX Association.

12. Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel Haney, Erika Chin, and
David Wagner. Android permissions: User attention, comprehension, and behavior.
Technical Report UCB/EECS-2012-26, University of California at Berkeley, 2012.

13. Google Inc. Security and permissions. http://developer.android.com/guide/

topics/security/security.html, 2011. (Last access: 2012/06/20).
14. Giles Hogben and Marnix Dekker. Smartphones: Information security risks, op-

portunities and recommendations for users. Technical report, ENISA, 2010.
15. Bo Li and Eul Gyu Im. smartphone, promising battlefield for hackers. Journal of

Security Engineering, South Korea, ISSN : 1738-7531, 8:89–110, February 2011.
16. Microsoft Corporation. Microsoft security intelligence report, volume 11.

http://www.microsoft.com/security/sir/default.aspx, 2011. (Last access:
2012/06/20).

17. R. Schlegel, K. Zhang, X. Zhou, M. Intwala, A. Kapadia, and X. Wang. Sound-
comber: A stealthy and context-aware sound trojan for smartphones. In NDSS
’11, pages 17–33, San Diego, CA, 02/2011 2011.

18. Wook Shin, Shinsaku Kiyomoto, Kazuhide Fukushima, and Toshiaki Tanaka. To-
wards formal analysis of the permission-based security model for android. In
ICWMC ’09, pages 87–92, Washington, DC, USA, 2009. IEEE.

19. Wook Shin, Shinsaku Kiyomoto, Kazuhide Fukushima, and Toshiaki Tanaka. A
formal model to analyze the permission authorization and enforcement in the an-
droid framework. In SOCIALCOM ’10, pages 944–951, Washington, DC, USA,
2010. IEEE.


