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Abstract

Even though there is promising technological progress, input is currently still one of virtual reality’s biggest issues.
Off-the-shelf depth cameras have the potential to resolve these tracking problems. These sensors have become
common in several application areas due to their availability and affordability. However, various applications in
industry and research still require large-scale tracking systems e.g. for interaction with virtual environments. As
single depth-cameras have limited performance in this context, we propose a novel set of methods for multiple
depth-camera registration and heuristics-based sensor fusion using skeletal tracking. Based on a distributed,
service-oriented and scalable system architecture, a markerless tracking system consisting of multiple Kinect v2
sensors has been developed for real-time interaction with virtual environments. Evaluation showed that a system
based on the proposed techniques help in increasing tracking areas, resolving occlusions and improving human
posture analysis. This system is used for ergonomic assessments in production planning workshops and it was
shown that performance and applicability of the system is suitable for the use in automotive industry and may
replace conventional high-end marker-based systems partially in this domain.

Categories and Subject Descriptors (according to ACM CCS): H.5.2 [User Interfaces]: Input devices and strategies—
scalable, markerless tracking and full body motion capture

1. Introduction

Interactive virtual and augmented reality assessments rely on
robust, real-time tracking. With the rise of affordable depth
cameras, marker-less body tracking has become a feasible
option for a number of application areas, not only for gam-
ing but also in research and industry. Being an alternative
to more expensive and cumbersome marker-based motion
capture systems, depth cameras are used for gestural inter-
action, natural user interfaces and motion capture for film
making. In industry, where e.g. interaction with virtual prod-
uct models and process simulations have already been com-
mon using conventional motion capture systems, depth cam-
era based systems soon also became an appealing alternative
for marker-based full-body motion capture. However, con-
sidering spatially large use cases like car assembly, the lim-
itations of single depth cameras impede their use. Limited
sensing range, a high susceptibility to self and external oc-
clusions and a greatly varying sensing performance depend-
ing on the user’s posture and position are some of the major

drawbacks that need to be faced in order to use such systems
in the mentioned scenario. One way to overcome these lim-
itations is the use of multiple depth cameras which extend
sensing range and improve tracking performance. But with
this approach, there are also a number of new challenges
which need to be addressed in order to successfully imple-
ment such a system. First of all, it is necessary to establish
a common coordinate frame for the cameras by registering
them to each other. Afterwards, the data coming from dif-
ferent cameras need to be combined in a meaningful way
to actually gain improvements in tracking performance and
range.

In this paper, we propose a novel system consisting of
multiple Kinect v2 cameras for the use in ergonomic assess-
ments. We present a concept of a distributed multi-depth-
camera system, whose improvements were also quantified in
a systematic evaluation. The remainder of the paper is struc-
tured as follows: We start with a review of the current state
of the art on multi-depth-camera systems. Then we propose
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Figure 1: Example setup of full body skeletal tracking in
automotive car assembly

a set of registration and fusion techniques and extend those
to a complete, ready-to-use tracking system. The evaluation
of this system in the last section shows spatial accuracy of
registration performance. Subsequently an evaluation of a
concrete use case is described. The paper concludes with an
overall assessment and outlook on further optimizations.

2. Related Work

Various research has already been carried out in the field
of multi-depth-camera systems, however mostly focusing ei-
ther on certain applications or aspects of such systems, thus
leaving others unspecified to a great amount. As already
lined out, different challenges have to be faced in order to
successfully implement such a system: Architecture, inter-
ference, synchronization, registration and fusion. Depending
on the use case, it is often also necessary to handle additional
application specific issues like user identification or world
coordinates registration, not being further considered within
this work.

2.1. Architecture

Most of the previous work is based on two or more Kinect
cameras (1st gen.) which can be connected to a single com-
puter, thus simplifying the required amount of infrastructure
to a moderate level. However, works presented by Scho-
nauer [SK13] or Martinez-Zarzuela et al. [MZPHDP* 14]
implement distributed systems, in which skeletal and depth
data is gathered on camera nodes and being sent to a cen-
tral fusion unit. This component handles the creation of a
common view of the tracking space. Additionally, solutions
have emerged in early states, which allow to stream Kinect
data via network, e.g. by Wilson [Will5]. In our system, a
different approach has been chosen. All information can be

requested via service-oriented and scalable RESTful track-
ing services as presented by Keppmann et al. [KKS*14].

2.2. Interference

As time-of flight (ToF) and structured light depth cam-
eras actively illuminate the scene, interferences can occur
as soon as tracking frustums overlap, since any camera
also receives light emitted from other cameras. There are
two main approaches to interference handling which can be
found in literature, (1) optical multiplexing (e.g. presented
by Butler [BIH*12] or Faion et al. [FRZH12]) and (2) post-
processing algorithms e.g. hole-filling as in Maimone and
Fuchs [MF11]. Often it is also possible to simply ignore in-
terferences when using certain camera types and setups, es-
pecially in skeletal tracking applications. As the proposed
system uses ToF depth cameras, which generate negligible
interference noise due to their modulation, no countermea-
sures against interference have been implemented.

2.3. Registration

One of the main challenges in multi-depth-camera systems
lies in establishing a common coordinate frame by determin-
ing rotation and translation of the cameras to each other.
Various approaches have been used for this, ranging from
methods adopted from the 2D computer vision domain,
horn-based methods like presented by Wilson and Benko
in [WB10] or checkerboard-based approaches like those pre-
sented by Berger et al. [BRB*11] or Zhang et al. [ZSCL12],
over iterative closest point (ICP, see [RLO1]) approaches
[PMC™*11] to skeleton based (ICP-like) methods in more re-
cent publications by Faion et al. [FRZH12], Asteriadis et
al. [ACZ*13] and Baek und Kim [BK15]. Most of the meth-
ods yield comparable results, however strongly differing in
the ease-of-use and setup time with different approaches.
The proposed approach focuses on reduced setup times and
an easy setup. Thus, we decided to implement a combination
of skeleton-, regression plane- and ICP-based registration.

2.4. Fusion

After establishing a valid registration, skeletal tracking data
from different cameras exist in a common coordinate space;
nevertheless, body tracking skeletons are still individual and
separate. To gain advantages of such a setup data fusion
methods can be employed to gather an improved view on
the tracking space. The possible methods range from simple
best-skeleton approaches, over joint-counting approaches
(see Caon et al. [CYT*11]), weighted averaging methods
[FRZH12], to dedicated fusion algorithms e.g. by Yeung et
al. [YKW13] or Asteriadis et al. [ACZ"13], which respect
data quality and the specific tracking situation. This helps
in dealing with occlusion and sensing limitations. Combin-
ing the advantages of each mentioned previous works, a set
of novel fusion heuristics will be presented and analytically
evaluated.



OTTO ET AL. / Towards ubiquitous tracking: Presenting a scalable, markerless tracking approach using multiple depth cameras

2.5. Assessment of related work

While covering many of the relevant aspects, most of the pre-
vious works leave out important factors of a multiple depth-
camera system for universal use. Generally, registration and
fusion approaches lack end-user optimization as well as
comprehensive evaluation of underlying assumptions, e.g.
for factors influencing registration and fusion methods and
quality. With this work, some currently missing insights and
concepts will be provided, which have proven to be useful
for implementing a multiple, scalable depth-camera system.
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Figure 2: Hardware setup for the tracking system with
service-oriented, distributed sensor services

3. Hardware setup

The multiple depth-camera system consists of several Kinect
v2 sensors due to affordable ToF hardware costs and im-
proved depth accuracy compared to the first generation
Kinect. The distributed system consists of several comput-
ers accommodating the tracking services using Kinect hard-
ware and one high-performance computer connected by a
1 Gbit/s Ethernet network (see Figure 2). The sensor com-
puters have only low requirements such as USB 3.0 support
for the sensor connection. In this case we used an Intel Core
15-4200U 1.6 GHz with 4 GB DDR3 RAM. The central high-
performance computer is based on an i7-4712HQ CPU with
16 GB DDR3L RAM. This computer is calculating the ex-
trinsics and performs the fusion of the sensors.

4. Software

There are two main software components: The tracking soft-
ware and the fusion software which is described in the fol-
lowing

4.1. Service-oriented tracking software

Implementing a service oriented RESTful tracking service
instead of conventional streaming architecture has several
advantages: Third party integrators have the possibility of
easily reusing the services for implementing clients. Ad-
ditionally, using standardized and publicly available track-
ing vocabulary and Resource Description Framework (RDF)
one can achieve interoperability between tracking devices

which is also the goal of the ARVIDA project. In this con-
text, the presented tracking services are using a RESTful
polling-based approach with linked data which is conform-
ing to the ARVIDA standard. It has been shown by Kepp-
mann et al. [KKS™*14] that RESTful Linked Data resources
can be applied for virtual reality environments.

In the tracking service, information is gathered by the
event-based Kinect SDK. The web service offers all skele-
tal information, the status of each skeleton, the floor plane
estimation and color and depth camera views as RESTful re-
sources. RDF datagrams are serialized using Turtle format.
Each datagram contains time stamps for synchronization af-
terwards.

4.2. Fusion and multi sensor tracking service

The fusion and multi-sensor service is running as a cen-
tral component on a high performance computer and han-
dles registration, fusion and data input/output in the tracking
environment. Figure 3 depicts the architecture of the regis-
tration and fusion service.

Sensors Data Input

Data acquisition

Regression Plane
optional)

ICP Extension
Cross Validation
(Error Metrics)
Extrinsic Transformation

/Rear View Heuristic

Filtering
(validity, front/rear)

Floor Plane Estimation

- Lateral Frustum Heuristic

Tracking Data Output

Figure 3: System architecture of fusion service

The fusion service polls the data of the tracking services.
This data is used for calculating extrinsic transformations
between the cameras for the subsequent fusion process. Sev-
eral pre-processing steps have to take place in advance (see
Figrure 3) which are described in detail in the following
paragraphs. Whereas the fusion component processes all
joints of the skeletal data, the registration process only uses
the neck joint information. This joint was chosen, due to its
advantages compared to the remaining joints: front/rear in-
variance, orientation-independent position and low overall
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jitter. During registration, neck joint data is being captured
over time from each camera and is used as an input point
cloud for the ICP algorithm. The algorithm then iteratively
minimizes the difference between two point clouds gathered
by the sensors. The result of the algorithm is the refined ex-
trinsic transformation between a pair of cameras.

After the registration, the heuristics-based fusion com-
ponent is able to combine skeletal data from all registered
cameras and provides them as an output to possible domain-
specific application components.

4.2.1. ICP extension

Gathering only the neck joint information has an drawback
which has to be compensated: Since the user’s movement
takes place on the flat floor plane and the height of the user’s
neck joint does not vary a lot, the gathered point cloud data
lie almost on a single plane. To compensate this lack of vari-
ance, additional information is used. The floor plane estima-
tion compensates the missing information. The floor plane is
arough approximation of the distance to the floor and the an-
gle of the sensor. Fusing this information with the ICP data
offers an improved transformation for extrinsic registration
between one sensor relative to the master sensor. In addi-
tion to that, we propose to use a regression plane to further
precise the ICP results, if enough feature points have been
gathered during the user’s movement.

4.2.2. Front/rear detection

In order to achieve maximum flexibility for the hardware
sensor setup, the fusion service has to recognize, whether the
user is facing the Kinect or if he is turning his back on the
corresponding sensor. The SDK always presents the skeleton
data as if the user were facing the camera directly. Even in a
rear view, the skeleton is recognized robustly but data being
presented laterally reversed. Additionally, a robust indicator
if the user is turning his back towards the camera, is to eval-
uate the angle between the shoulder joints. Evaluating the
discrete skeletal states of the collar joints, one can determine
the user’s orientation to the camera in each frame.

4.2.3. Scalability

To achieve a fully scalable system with a common coordi-
nate frame, extrinsic transformation chains have to be built
(see Figure 4). The above described method is used to cal-
culate the transformation matrix for each camera pair with
an overlapping tracking frustum. For N sensors sharing an
overlapping tracking area there are (N — 1)! transformation
matrices. Having more than two sensors sharing the same
tracking area, the system is over-determined and a cross-
validation of transformation chains has to be carried out with
regards to the absolute transformation precision. Therefore
an error metric is introduced which consists of the summed
up and normalized Euclidean distances of the reprojection

error. Based on this error value, the best interlinked transfor-
mation chain between master and each client can be deter-
mined.
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Figure 4: Registration result for three sensor system in the
arrangement for a tracking area range extension

4.2.4. Time Alignment and Interpolation

The time synchronization algorithm is crucial for interpo-
lating the asynchronously captured body tracking informa-
tion generated by the depth camera sensors. Since the user
has to move during registration process a worst case offset
of several centimeters is induced just by event-based, non-
synchronized image acquisition. To generate synchronized
timestamps within the whole sensor network NTP protocol
is utilized. Based on these precise timestamps, skeletal body
tracking frames are virtually synchronized within the fusion
software through interpolation. The depth camera’s skeleton
acquisition time is assumed to be constant over all sensors.
Since the user’s body has a certain inertia and the refresh rate
is approximately 30Hz, the inter-frame trajectory between
two skeleton datagrams can be assumed as linear movement.

4.2.5. Fusion Process with quality heuristics

Having registered all cameras via extrinsic transformation
chains, the tracked skeletons generated from different views
are in the same coordinate frame and need to be fused. For
large-scale human tracking and posture analysis we propose
a set of quality heuristics for the skeletal fusion process.
Each skeleton within each sensor is given a certain weight.
The higher the weight the higher the influence of the certain
sensor on the user’s fused skeleton. A comprehensive set of
quality measures will be presented for real time skeletal fu-
sion:

First, we propose the distance between the user and a sen-
sor as the distance quality measure. At a distance of approx-
imately 2.5m tracking results are most reliable. This quality
measure weights the user’s skeleton over the distance to the
neck joint respectively.

@ 1—(d—2.5m)> forl.5m<d<3.5m
w =
0 ford <1.5muUd >3.5m
ey

Second, we introduce rotation quality heuristics for ro-
bust human activity analysis. If there is multiple data on the
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user’s posture we propose to weight the front facing skele-
tons highly and to set all rear views to weight zero. The user
has to stand as orthogonal to the sensor as possible, since 30°
has been found to be the maximum vertical user orientation
for reliably tracking limbs:

|o] o
w(¢)_{l—3oo for |¢|§3(l )
0 for|o| > 30

Lastly the lateral frustum quality heuristic limits the track-
ing frustum to a horizontal field of view of 50° so that the
limbs are still probable to be within the tracking area of the
sensor (70°). We propose zero weight if the user’s center
axis joints exceed 50° in horizontal Axis of the local camera
coordinate frame:

19 for|o| < 25°
w(o) = 25 - 3
() {o fiir o > 25° ©)

5. Evaluation of registration accuracy and validity

To determine the accuracy of extrinsic transformations and
therefore the spatial registration error, a series of experi-
ments has been carried out.

5.1. Experimental setup

Since an absolute accuracy evaluation is needed, a high pre-
cision marker-based tracking system was chosen as a ground
truth. The system consists of 16 *OptiTrack Flex 13’ cameras
which reported a residual mean error of 0.624mm for the
whole tracking volume. On the Kinect sensors, rigid body
markers were applied on the top of the sensor. The pivot
point translation of the rigid body markers was defined to
be in the Kinect’s depth camera focal point to match the ori-
gins of Kinect body tracking and the Optitrack rigid body
markers.

5.2. Design of Experiments

All registration scenarios were conducted using two Kinect.
The registration process has been recorded 100 times; for
each of the five scenarios 20 measurements were performed.
During each experiment point cloud movement data was
gathered for 10 seconds within the overlapping tracking
area. The scenarios differed by the angles around the ver-
tical axis: 0°, 45°, 90°, 135° and 180°. No outliers were
removed for the following evaluation.

5.3. Results

Figure 5 highlights the registration performance of the fu-
sion service. Circles depict the calculated ideal Optitrack
positions. For these scenarios the Euclidean distance in the
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Figure 5: Top view on the registration results: Master sen-
sor at [0,0], 5 scenarios with 20 registrations each, circles
indicate the ground truth of the OptiTrack measurements

floor plane is always less than 15mm to the ground truth
position. The vertical axis reveals maximum deviations of
1.5° for the sensor’s pitch axis. The body tracking estimator
within the SDK reveals uncertainties especially in the ver-
tical axis. The uncertainty of the joints can vary more than
20mm, depending on the angle of the user.

6. Ergonomic assessments

One specific use case within the automotive industry where
full body motion capture data is used are ergonomic assess-
ments of workplaces. Ergonomics experts are using motion
capture technology to virtually audit end-assembly work-
places. While being tracked a worker is performing the
pre-planned assembly routines in the virtual environment
whereas the ergonomics expert is evaluating the movements,
weights and resulting forces. The following three experi-
ments have been performed during real production planning
workshops:

e Reachability check for mounting an antenna on the roof
e Posture definition for screwing work tasks
e Stress screening for battery assembly

6.1. Experimental hardware & software setup

During these assessment workshop six Kinect sensors are
utilized which are all facing the center of the workplace
and are evenly distributed on the edges of the tracking area.
This area covers approximately 6m x 6 m since movements
within real workplaces in automotive end-assembly lines
have equal dimensions.

Having registered all cameras to a common world coordi-
nate frame, the presented system architecture in combination
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Figure 6: Delmia V5 DHM directly manipulated by mark-
erless motion capture approach. All assessments can be car-
ried out in real time.

with the fusion heuristics enable the worker to be constantly
tracked regardless of his position and his orientation within
the concatenated tracking frustum.

Standardized tracking protocols have been implemented
to connect to commercial VR software used: A.R.Tracking
protocol, VRPN and ARVIDA linked data protocol. To carry
out the mentioned ergonomic assessments in real time the
virtual manufacturing software Delmia V5-6 R23 has been
used in combination with Haption RTID plugin. The follow-
ing pipeline was used in this case: The fusion service ex-
poses all fused tracking joints via the A.R.Tracking protocol
as 6DoF tracking data. The Haption suit and configuration
maps this tracking data onto the fully flexible virtual human.
20 tracking joints are used to modify the DHM interactively.

As depicted in Figure 6 the virtual scene in Delmia V5
included a car body in the assembly status for the respective
station. Dynamic parts have been simulated and attached to
the right hand joint. The anthropometry of the virtual human
was adjusted to the real worker’s size and weight.

6.2. Results

All mentioned manufacturing tasks could be carried out
without having any prior physical mock-ups. Limitations of
the pre-planned process and unfavorable ergonomic situa-
tions could be identified for all three experiments with this
virtual methodology. Additionally the results gathered could
be verified by subsequent traditional hardware workshops.

Comparing common marker-based tracking systems to
this novel approach, ergonomic experts pointed out several

effects: First of all, the users do not have to put on a special
suit with retro-reflective markers. This is time-consuming
and cumbersome for the tracked persons. User’s movements
may be influenced by the marker suits and seem not as nat-
ural as in regular working clothes. Secondly, users can swap
immediately without any preparation time, so that multiple
users can test the process without any prior work. Lastly,
the markerless system induces more latency and jitter to the
tracking data than the marker-based tracking system. Er-
gonomic experts pointed out that the motion capture data
quality is still sufficient to identify and solve the issues re-
lated to ergonomic assessments. Latency of several frames
is considered to be irrelevant, since there is no immersive
feedback to the user causing motion sickness. It became ap-
parent that the registration and fusion precision are sufficient
for human posture analysis, for profound ergonomic simula-
tions and for large-scale view point control applications in
virtual environments.

Additionally for an automatic recognition of digital hu-
man postures, the ErgoToolkit was utilized in this pilot case
that was presented by Alexopoulos et al. in 2013 [AMC13].
With this additional plugin a rough stress screening could
be carried out automatically and critical postures could
be detected reliably. Furthermore, experts appreciated the
side benefits of this tracking approach like visibility checks
through interactive viewpoint control and validation of as-
sembly and disassembly routines for dynamic virtual objects
via hand joint tracking. Follow-up processing times like doc-
umentation can be reduced significantly, by pre-filling as-
sessment sheets automatically. All of these use cases will
directly profit of advances in multi depth-camera tracking
technologies.

7. Conclusion

In our effort to improve multiple depth-camera systems,
we developed a novel large-scale multi depth camera sys-
tem, which supports scalable setups and different use cases
through its service-oriented architecture. The number of pos-
sible tracking nodes is limited by computing power and net-
work throughput. Setups up to ten tracking services have
been successfully tested but more sensors should be possi-
ble as long as network throughput is sufficient. The fusion
service itself can be addressed transparently and acts ex-
ternally as if it was a single sensor tracking service. Stan-
dardized tracking protocols have been implemented in or-
der to achieve interoperability. Furthermore, several novel
registration-relevant techniques have been presented and
evaluated like time-synchronous interpolation, front/rear de-
tection and error measures. Additionally, a comprehensive
set of quality heuristics has been derived for the skeletal fu-
sion process, which showed to improve skeletal tracking.

Three pilot test cases within the automotive industry have
been carried out to evaluate the system’s performance with
real ergonomic use cases. The requirements in terms of oc-
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clusion robustness (e.g. when working with car bodies in the
tracking area), tracking range and tracking precision could
be fulfilled in each of the pilot test cases. Since the novel
system proved its applicability, reduced costs and the ease-
of-use, it will complement the variety of existing industrial
tracking systems.

In future work, we plan to refine the fusion process by
extending heuristics with additional criteria and more fine-
grained weighting, e.g. on a per-joint or per-bone level in-
stead of the current per-body approach. Additional measure-
ments and analysis may also broaden the insight on the be-
havior of the proprietary Kinect technology and thus lead to
further improvements in this approach.
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