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Abstract 
The EyeVR system enables eye and gaze interactions in 
VR glasses at a price below $100, while providing 
sufficient performance for many typical VR use cases, 
like foveated rendering, gaming, or attention-based 
storytelling. It is based on off-the-shelf hardware like a 
Raspberry Pi, can be used in wireless, mobile settings 
and allows for a widespread use of gaze tracking in 
different applications through open interfaces. Besides 
standard gaze tracking, another focus of the system 
lies on exploring new forms of interactions besides only 
gaze direction, by providing additional details about the 
eye like pupil size or eyelid movement. 
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Introduction 
With the current rise of affordable, widespread VR 
headsets, new ways of interaction with the presented 
virtual content are again an ongoing research topic. 
Besides button- and gamepad-based interaction, which 
is often already integrated in nowadays devices, other 
interaction methods like gestural interaction e.g. using 
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head-mounted devices [2], touch interaction [5] or also 
eye-based interaction are of increasing interest for end-
user products but also interaction research. 

While e.g. gestural interaction can be already facilitated 
with a combination of cheap off-the-shelf components 
[2], eye-based interaction is still inaccessible to most 
end-users and lots of researchers due to the small 
range of available devices (e.g. [3]) and their high cost.  

With EyeVR, we aim to close this gap by providing a 
system which allows to implement basic eye tracking 
tasks in VR at a cost of below $100.  
We accomplish this by using off-the-shelf components 
and a rapid prototyping approach with the smallest 
possible number of parts. 

System Architecture 
The EyeVR system is based on the Samsung GearVR 
headset, using any compatible Samsung Smartphone 
as a display. The headset is extended by a camera and 
an infrared LED for monocular tracking, however 
binocular tracking is also possible by integrating the 
hardware for each eye respectively. The camera and 
LED are connected to a Raspberry Pi (v3) board, which 
is responsible for the image processing, and in turn 
provides raw gaze positions to the Smartphone via WiFi 
or Bluetooth. This offloading leaves all smartphone 
resources for the 3D scene rendering while ensuring 
sufficient resources for the tracking algorithm to run. 

On the smartphone, an environment based on the Unity 
Engine is responsible for calibration, gaze-to-screen 
mapping and the rendering of the virtual scene. 

Hardware 
To capture a continuous image stream of the eye within 
the VR headset, a Raspberry Pi NoIR infrared camera 
module [1] mounted inside the headset is used. This 
camera is able to deliver infrared images at resolutions 
up to 1920x1080 and frame rates up to 90 fps. As the 
camera originally has not been designed for short range 
use, it is necessary to adjust the fixed lens focus to the 
very short eye-camera distance of around 2 cm. The 
camera is then fixed on a 3D-printed mounting bracket, 
which can be clipped around the the GearVR lens rings 
for easy attachment, positioning and removal. 

The mounting bracket also houses the LED close to the 
camera lens, to create a corneal glint which can be 
used in turn for the tracking algorithm. The ideal 
position and viewing angle for the camera and LED, and 
thus the bracket parameters were derived via facial 3D 
scans and 3D modelling and simulation, as they are 
very sensitive and crucial for a good tracking 
performance. 

The infrared LED is driven via the Pi GPIOs, using a 
DMA PWM approach to be able to control timing and 
brightness of the illumination. 

Using a CSI-HDMI adapter board, the camera signal 
and LED control signal can be connected through a run 
of standard HDMI cable, which allows to place the 
Raspberry Pi and a USB power bank at a convenient 
location, e.g. as a belt pack or in a pocket. This enables 
mobile use and does not add any additional weight to 
the headset besides the lightweight camera assembly. 
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Figure 1: Hardware assembly inside the GearVR – the cables 
lead to a HDMI adapter board on the outside of the GearVR 
case. 
 

Software 
The software part of the EyeVR system consists of two 
parts - first, the image processing running in real-time 
on the Raspberry Pi, and second the Unity VR 
application on the smartphone which is placed into the 
Gear VR. 

Tracking 
The tracking algorithm on the Raspberry Pi is based on 
the dark pupil approach (e.g. described in [4]). It first 
detects the position of the corneal glint in the eye 
image, and then tries to find a dark ellipse close to the 
glint by using a contour finding method on the 
preprocessed imagery. This step is followed by a rating 
procedure to rank pupil candidates by their probability 
to be the correct one. An ellipse fitting step then 
estimates center and size of the detected pupil. The 
vector between the ellipse center and the corneal glint 
is then provided via Websocket connection or Bluetooth 

to the Unity Application on the smartphone. It is also 
possible to retrieve other parameters like blink 
probability and pupil diameter. 

The algorithm is implemented on top of the OpenCV [6] 
library in Python, and is currently able to run at around 
45 to 50 fps on the Raspberry Pi hardware, which 
allows for tracking of most of the voluntary eye 
movements when using VR glasses. 

Calibration and Gaze Mapping 
The second part of the software runs on the 
smartphone and is embedded in the Unity 3D VR 
application. It receives the raw data from the Pi 
tracker, and maps the raw glint-to-pupil vectors to 
screen positions. For this, currently an initial calibration 
step is necessary, which collects gaze data for a set of 
points in central and peripheral screen positions.  
After outliers have been removed and preprocessing 
has been applied, a mapping of gaze to screen 
coordinates is established by solving the resulting set of 
equations of a non-linear model using a singular value 
decomposition. The resulting screen-space gaze data 
can subsequently be used for any kind of VR application 
in Unity 3D. 

 

Figure 2: Output of the tracking algorithm (right) and source 
image with recognized glint and pupil as an overlay (left). 
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Applications and Performance 
The system was built for research use in studies 
targeted towards eye-based interaction, and enables 
fast prototyping of eye tracking-enabled applications. 
However, it should be usable for a number of different 
use cases including simple forms of foveated rendering, 
or also estimation of cognitive states by measuring 
parameters like blink rate and pupil diameter. The VR 
headset environment provides very good conditions for 
such applications due to the great amount of control 
that can be exercised over lighting conditions and 
visual and/or auditory stimuli. 

Conclusion and Future Work 
We presented EyeVR, a working, low-cost approach to 
eye tracking in VR. It can be assembled out of available 
components for below $100 and is suitable for a 
number of VR applications. First tests showed the 
feasibility of the approach, already enabling basic 
tracking tasks. We currently work on improving the 
tracking algorithm for performance and greater 
robustness across different eye types and tracking 
situations, as well as binocular use for extended 
tracking possibilities. Furthermore, we plan to extend 
the calibration approach, which is currently based on 
previous calibration methods tailored for rectangular 
screen-shaped target areas, but should be modified and 
improved when being used in VR, where no rectangular 
screen space is present, but different virtual distances 
can occur. 

We also plan to conduct studies to measure the 
performance and technical aspects of the tracker as 
well as the user acceptance. Besides this, different 
possible applications are currently under evaluation and 
will be further investigated in dedicated studies. 
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