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ABSTRACT

We present a toolkit for markerless skeleton tracking and
marker-based object tracking utilizing data fusion with an
arbitrary number of depth cameras. As depth-camera based
skeletal tracking is always inaccurate due to technology limita-
tions, our goal was to be able to preestimate systematic errors
for given tracking situations to improve fusion.

Previous work analyzed various aspects of depth camera accu-
racy, however to our best knowledge, there has been neither
systematic error modelling nor an application of such a model
for skeletal fusion.

Our paper presents such a model for the Kinect v2 camera,
by using statistical modelling on capture datasets using such
cameras and a marker-based ground truth capture system. By
applying this model, we are able to improve the overall accu-
racy of the fusion output by 68% by predicting data quality
with an error of around 3.2 cm.

Our toolkit is available for use by other researchers to eas-
ily create larger capture spaces with higher tracking accuracy
based on the error model when compared to single depth cam-
eras.
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INTRODUCTION

In the area of human motion tracking, for a long time commer-
cial motion capture systems were the only way of capturing
skeletal movements for research and industry purposes. These
systems are expensive and force the user to wear a special
marker or sensor suit. However, with the release of consumer-
grade, affordable depth cameras like the Microsoft Kinect in
2010, more and more applications began to utilize this low-
cost body tracking devices for a large number of different use

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions @acm.org.

EICS’16, June 21 - 24, 2016, Brussels, Belgium

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-4322-0/16/06. .. $15.00

DOI: http://dx.doi.org/10.1145/2933242.2933263

73

cases. Since these cameras are originally designed as con-
sumer gaming devices, their short tracking range and volatile
tracking quality limits the use in scenarios where large track-
ing spaces, occlusion robustness and constant quality are of
importance, e.g. in VR or smart home environments as well
as industrial tracking scenarios.

One way to overcome these limitations — soon presented by
different researchers — is the use of multiple depth cameras
to create an improved tracking system. While some works
(e.g. [11]) showed that is possible to fuse the raw point clouds
of the depth cameras, for a number of applications e.g. in
human-computer interaction which depend on real-time data, it
proved to be more useful to fuse the skeletal tracking data. This
data is often already provided out-of-the box by the camera
SDKs. We make such a system available to the manifold
community of potential tracking system users by introducing a
generic toolkit named FusionKit for skeleton, marker and rigid
body tracking based on multi-depth-camera fusion. It utilizes
an arbitrary number of depth sensors and is designed for, but
not limited to human computer interaction use cases. Through
its real-time capabilities, it is also suitable for delay-sensitive
applications like virtual reality applications.

As the fusion of skeletal data is heavily dependent on the indi-
vidual sensor performance and the actual fusion approach, we
propose a statistical model of systematic errors for the Kinect
v2 tracking device as well as an evaluation of the system per-
formance, and show the dependency of the performance on
this error model together with other factors like different data
models.

The main contributions of our paper thus are:

1. A statistical model which allows to predict tracking errors
with the Kinect v2 with high accuracy

2. A fusion system based on this model, using novel, skeleton-
optimized fusion

3. A filtering mechanism for an Iterative Closest Point (ICP)
using potentially error-prone skeletal data

4. An evaluation of the fusion system itself, showing large
improvements in tracking accuracy with our approach

Besides this, the presented ready-to-use toolkit software is
made available as open source for further use by researchers
and other users to build, support or evaluate interactive soft-
ware.



RELATED WORK

Various research has been done related to multi-depth sensor
fusion for skeletal tracking, covering a variety of use cases and
applications. However, the described approaches have been
largely developed to fit a specific use case and are restricted
in the amount of sensors or users. Furthermore, to the best of
our knowledge, neither of the described systems were made
available for further use, nor was there any in-depth evaluation
of the systematic errors in the source data or the improvements
accomplished by applying the particular methods proposed.

Kinect Accuracy

Yang et al. [22] analyzed the accuracy of the Kinect v2 for
Windows and suggest improvement strategies using multiple
sensors. They also provide measurements regarding the ac-
curacy distribution which proved the depth accuracy being
highly dependant on the distance of the tracked pixel as well
as from its angle towards the sensors origin. They also sug-
gest to overcome these limitations and to improve the depth
accuracy by using multiple Kinect sensors and a trilateration
method. Using multiple Kinect v1 sensors, the problem of
interferences between multiple sensors has to be solved [5].

Regarding skeleton tracking, Wang et al. [20] gave a first
insight of the accuracy, however restricting the angle between
participant and sensor as well as the amount of tracked move-
ments.

Multi-depth-camera Skeleton Tracking System Use Cases
Following, we first take a look at different use-case-centric
multi-depth-camera implementations, which show the state of
the art as well as the broad applicability of such approaches.

Regarding the fusion of skeletal data, earlier works e.g. by
Caon et al. [4] use a low-complexity fusion approach for their
smart-home-related application, based on Kinect v1 cameras.
They propose a weighted-averaging approach for the fusion
of joint coordinates, with the weighting factors being derived
from the Kinect SDK tracking state, either on a per-joint basis
or also considering the total number of joints being tracked
by a camera for a certain user as an overall quality criterion.
A similar fusion approach is presented by Schoénauer and
Kaufmann [19] for motion tracking.

Kaenchan et al. [13] use the fused results of multiple Kinects
to analyze the walking posture of a human subject in order
to check walking balance. For the fusion, the tracking state
of the Kinect is used as quality indicator. The fused position
is calculated as the average of all joints having the highest
possible accuracy rating by the Kinect. Furthermore, they
also feature an automatic, skeleton-based extrinsic registration
mechanism and a small evaluation of the fusion results, how-
ever only with respect to the raw camera data without further
ground truth. Multiple Kinects can also be used for action
or activity recognition, as shown by Azis et al. [2], Haller et
al. [9] or Hachaj et al. [8]. Using two perpendicular placed
Kinects, Azis et al. define one as main sensor. If a joint is not
tracked by the main sensor, it is substituted by the one tracked
by the second one. Hachaj et al. could show an improvement
for the activity classifier using multiple Kinect sensors with
similar methodology.
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Kitsikidis et al. [15] present a skeleton based ICP approach
for sensor registration, which is calculated repeatedly out of
single frame data. The result of the frame having the most
tracked joints in both compared skeletons is used as the final
result. The fusion is done by finding the skeleton with the
highest number of tracked joints as basis and exchanging the
positional information of untracked or badly tracked joints
with the average of the tracked samples of other sensors. The
fused and smoothed result is used for motion analysis for
dancers.

Williamson et al. [21] use a multi-Kinect setup for dismounted
soldier training. In this work, four Kinects are fused by two dif-
ferent approaches. For the rating of joints the SDK-provided
joint status is used, but extended by using a depth-to-joint
cross-validation, which allows to recognize occlusion-induced
measurement errors by comparing the joints depth (Z) mea-
surements to the raw point-cloud Z measurement at the same
X-Y position. In the first fusion approach a weighted average
over all joints with a value higher than a defined confidence
value is used. The second approach is orientation based and
works on the assumption that a soldier is carrying a gun which
aims into the direction he wants to face. This direction is used
to choose the most suitable Kinect at a time, with a hardcoded
optimal range. The system was also evaluated, but without
ground truth measurements.

Asteriadis et al. [1] use multiple Kinects to enhance motion
recognition, using an advanced rating and fusion approach.
For the extrinsic registration of the different sensors, they use
the tracked torso joints over time as a point cloud which is
analyzed to gather an optimal rotation and translation. The
presented fusion method is based on a fuzzy inference ap-
proach, considering not only the SDK-based tracking states,
but also different other quality parameters, like the depth-joint-
correlation already presented by Williamson, and aspects like
temporal continuity of motions, kinematic restrictions of the
human body model or modeled sensor noise. The presented
evaluation proves the performance of the method, but does not
provide absolute accuracy measurements.

Otto et al. [18] propose a multi-Kinect system for ergonomic
assessments. The neck joint is captured over time and used to
calculate the extrinsic camera registration by an ICP algorithm.
Additionally, the floor plane estimation of the Kinect SDK is
used to refine the registration. They also include an approach
for synchronization and interpolation of the sensor data, and a
set of quality heuristics to rate the different sensor skeletons,
like user angle, distance or position. The fused skeleton joints
are calculated using the weighted middle based on the quality
ratings. However, the joints are not weighted separately.

A broad overview of such use cases using Kinect sensors is
given by Han et al in [10]. Besides that, Gillian and Par-
adiso [7] intruduce the Gesture Recognition Toolkit that was
designed to enable even non-specialist users to work on real-
time machine learning and gesture recognition. Munaro et al.
[16] use the point cloud of a consumer depth sensor to create
a 3D-model of a person for re-identification. Skeletal data is
utilized to overcome the problem of comparing different poses.



They report on implausible poses and the limited tracking
space of the Kinect and its skeleton tracker.

Other Multi-depth-camera Systems

Besides these works which mainly focus on skeletal tracking,
there are some toolkits working with multiple depth cameras,
but not including skeletal tracking. As the underlying technical
challenges are partially the same, we also survey some of them
in the following.

The RoomAlive [12] toolkit uses multiple Kinects for interac-
tive projection mapping to augment any room using projectors.
Though no skeletal data or fusion is used, interaction is accom-
plished using either controllers or the captured depth map and
a real-time physics simulation. In latter case, moving objects
or users are tracked using particle models and a depth-aware
optical flow algorithm. OpenPTrack [17] is an open source
software to track people using multiple networked depth sen-
sors e.g. for surveillance scenarios. While not able to track the
users’ poses or skeletons, it is possible to track the positions
of more than six people (compared to the Kinect) over an
arbitrarily large area.

MOTIVATION

As visible from the related work, a range of different chal-
lenges needs to be addressed to perform fusion of skeletal
tracking data. Many of them are not specific to skeletal track-
ing fusion, but also apply to a multitude of data fusion methods,
and were previously defined e.g. in [14].

In our work, we particularly focus on two of those problems,
which were not addressed in detail in previous work on skeletal
fusion, but greatly influence the fusion result:

Systematic Tracking Errors

Real-world sensor data is always subject to imperfections e.g.
due to noise or measurement errors. When using skeletal
tracking on top of depth data, an additional source of error
is introduced as the pose estimation mostly follows a prob-
abilistic approach. We hypothesized that part of this error
is systematic, i.e. depending on factors like the user’s pose,
position or rotation. Being able to predict the dimension of
this error based on those factors enables the subsequent fusion
method to pick the data which is more likely to be correct,
thus leading to a better fusion result.

Fusion Data Models

While many of the already known skeletal fusion systems rely
on simply averaging positions of body joints or even treat the
skeletons as a whole, they also mostly do not respect the kine-
matic structure of the human body. Few approaches already
consider kinematic constraints like invariant bone lengths or
joint limits, however we assume that using a more kinematics-
driven model for the fusion process would yield improved
results over current models.

SKELETON TRACKING ACCURACY

When working with single depth cameras for skeleton tracking,
the aforementioned imperfections related to tracking accuracy
and range become quickly visible. Besides the low-level re-
strictions imposed by hardware and the optical system per se,
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we also observed a range of phenomena concerning the limita-
tions of the Kinect SDK’s skeletal tracking algorithms, which
further deteriorated the overall tracking result. This included
rather obvious factors like optical occlusion leading to badly
tracked skeletal joints, but also more subtle parameters, like
the user’s position within the tracking space.

The earlier analysis of the accuracy of Kinect cameras (e.g.
[20]) provide first insights on accuracy errors, but were only
focused on restricted motions without 360° rotational freedom
which is relevant to a fusion system with multiple cameras.
Besides this, no further evaluation on how the different factors
influence the overall accuracy were conducted. Therefore, we
decided to perform a more in-depth evaluation of those factors
as a first step to improve the overall fusion result.

Apparatus

We designed and performed a study which was aimed at un-
covering systematic errors in the skeletal tracking output. This
study is based on several captures using multiple Kinects and
a ground truth, as described subsequently.

Sensor Setup

To collect a sufficient amount of data for the analysis, we
placed multiple Kinect v2 sensors on tripods around a rect-
angular capture area faced towards the center. As a ground
truth, we used a traditional, marker-based motion capture sys-
tem based on 16 OptiTrack Flex 13 cameras surrounding the
capture space (see also fig. 1). All capture instances were tem-
porally synchronized using NTP with offsets not exceeding
one millisecond. The Kinect positions were also tracked by
the marker-based system to establish a common coordinate
space to which each Kinect skeleton was transformed. The
marker suit included 46 markers tracked with a mean residual
< 1.0 mm.
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Figure 1. Kinect and Optitrack Setup with the approximate capture area

The skeleton tracked by the OptiTrack system was used as a
reference skeleton. We then measured errors as the euclidean
distance between the joint position in the respective Kinect’s
skeleton and the reference skeleton. Since the skeletal model
slightly differs between the OptiTrack system and the Kinect,
a constant retargeting offset was applied.

Participants’ Movements
Using the described setup, we captured 20 minutes of move-
ments of 5 participants (3 male, 2 female, age 24 - 28, skinny



to normal build), consisting of different motion types including
frontal movements towards and away from one sensor, lateral
movement at fixed distance (frontal to one sensor), walking
a circular path, pointing with extended arm, arm rotations,
bending arms and knees at fixed position and random natural
movements across the capture space.

Overall, over 250.000 motion frames were captured, contain-
ing 25 joint positions in three-dimensional space, which served
as a dataset for the analysis described in the following.

Kinect Accuracy Results

To obtain an overall view on the Kinect’s accuracy, we first
analyzed the whole dataset regarding its mean error, defined
as the euclidian distance between the ground truth measure-
ment and the sensors’. The mean regarding all joints showed
to be around 12 cm while analyzing the natural movement
task. A closer look by analyzing the mean deviation for each
joint separately (Fig. 2) revealed that the error greatly differs
throughout the various joints of the skeleton, ranging from
values around 3 cm with the spine joints up to around 25 cm
for the right wrist joint.

This is presumably a consequence of the user occluding parts
of his own body when standing sideways to the sensor. If for
example only one arm is visible to the camera, we observed
that the left and right arm joints are mistaken to be at the same
position. In addition, the Kinect SDK does not distinguish if
a user faces the sensor or is turned around. The skeleton is
mirrored in the latter case, which also leads to a sharp increase
of the mean error values especially of distal joints.
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Figure 2. Mean error per joint (in cm) of one Kinect while performing
random natural movements.

Error Prediction

A reliable prediction of errors based on the tracking situation
is necessary for the fusion of data. Put simply it has to be
decided which sensor can be trusted at a time.

Heuristics: Error Influencing Factors

Since the error cannot be predicted reliably only by using the
SDK tracking states, we analyzed how the different factors like
occlusion and self-occlusion, position and rotation contribute
to the overall error. For this, we reviewed the captured motions
with the goal of manually identifying key factors, which we
further on call heuristics, which are likely to influence the
tracking quality and also included the influence factors already
found in the related work. Overall, we identified 8 of those
heuristics for further analysis, which are described briefly
below.

The Kinect SDK itself already provides coarse information
about the joint’s accuracy. This rating includes three states
named tracked, inferrend and untracked. Joints marked as
tracked are supposed to have an accurate position value. The
accuracy of a joint marked as inferred ranges from values
similar to the tracked state to deviations of more than one meter
at the boundaries of the capture space during our analysis.
Joints which are marked as untracked by the SDK do not
provide any useful tracking data (e.g. zero coordinates), but
did also not occur during our analysis in regular tracking
situations, as the SDK always tries to keep on tracking all
skeleton joints (marking them as inferred) until the skeleton is
not tracked any more as a whole. These states are used as our
first heuristic.

The second identified heuristic is the absolute distance of
joints to the sensor. We observed that the accuracy of a joint
is varying with the distance, having the maximum accuracy at
around two and a half meters.

When getting closer or farther, the quality decreases until the
skeleton detection fails due to mostly invisible body parts,
missing depth data at greater distances or decreasing angular
resolution with increasing distance.

The third and fourth additional heuristics consider the horizon-
tal and vertical field of view (FoV) of a sensor. We observed a
decrease in accuracy of joints when moving closer to the edge
of the sensor’s FoV in X or Y direction.

Due to self occlusion, we also suspect the user’s rotation to-
wards the sensor to be a contributing fifth heuristic for the
overall error. For this, the angle between the user’s viewing
direction and the inverted direction of the sensor is calculated.
In the manual analysis, we saw that with this angle exceed-
ing £30 degrees, the resulting accuracy of joints that suffer
occlusion (e.g. on the far side of the body) decreases rapidly.

The sixth heuristic considers spatial jitter of the joint position
over time, by comparing the actual position measurement to an
estimation based on previous velocity and acceleration. The
difference between actual and estimated position is used as
the heuristics’ value.

As already shown by Wang et al. [20], the bone lengths vary
over time, which we use as a seventh heuristic by calculating
the difference to fixed, known values.

The last heuristic is based on the angle of one bone. We assume
that the more perpendicular the bone is oriented relative to the
camera’s viewing direction the more precise is the tracking



accuracy, due to occlusion effects and the skeletal tracking
algorithm itself.

Linear Regression Models

For the evaluation of the predicted errors we cross validated
the data to prevent overfitting in all of our models. This means,
that the validation of the model was done using different data
as it was used to set up the model.

We first tried to predict an error based on the three states
provided by the Kinect SDKs using a linear regression model.
Since only one influence is used, an optimal (in this case mean
error) is assigned to each state.

The predicted error differed by around 8.5 cm compared to the
measured one. This offset is too high considering the mean
measured error of around 12 cm.

Using a linear regression model we could show that each
described heuristic has a significant influence on the 5% level
and can therefore be used in a more detailed heuristic model.
Using the full set of heuristics, we tested the error prediction
again using a linear regression model. Though the prediction
was improved, the measured offset between predicted and
measured error is still around 6.4 cm in mean.

One drawback of the simple linear model is the potential
prediction of negative errors as well as the fact that the error is
long-tailed, meaning that most errors will be near zero but few
can become very large. Therefore a second linear model was
tested that assumes a gamma distribution of the error. In this
case, the predicted errors are linked to the heuristics via an
exponential function. We were able to reduce the difference
between predicted and measured error by another 2 cm to
around 4.4 cm in mean by using this model. As this result is
mainly sufficient for centered joints, where the offset is only
around 1.9 cm, the offset for the wrist joints is around 7.5 cm.
We therefore also tested a non linear model.

Non-Linear Boosting Model

The last tested model was a non-linear gradient boosting
model, based on a large ensemble of small regression trees, to
estimate more complex dependencies [6].

Using this more complex model we were able to predict the
error with a mean offset of around 3.2 cm. The errors of
the spine shoulder and neck joint were predicted most accu-
rate with an offset of around 1.2 cm while the wrists and feet
suffered an offset of around 5.5 cm.

Explained and Systematic Error

The relative influence of the heuristics on the error was mea-
sured with the boosting model using variable importance [6].
Each influence can be interpreted as how much closer the
predicted error gets to the measured one when a heuristic is
included to the model. Therefore the explained error is a sum
of all influences which can be calculated for each joint. The
explained error is systematic and predictable by our set of
heuristics, while the unexplained error is either not systematic
or arises by a not tested heuristic.

The explained error varied between 31% for the wrist and 80%
for the neck joint. All influences are summarized in figure 3.
For 23 of 25 joints the orientation of the tracked person has the
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highest influence (34% to 74%) on the explained error. Only
tracking of the head and base of spine are almost independent
of the person’s viewing direction. Both distance and the ver-
tical displacement have high influence as well, respectively
between 5% to 25% and 8% to 30%.

A reason why the error for example of the wrist joints could
not be predicted as accurate as the ones for the more centered
joints can be found in the nature of the Kinect skeleton tracker.
Each joint that is not tracked is only inferred. This guess about
the position varies the most for limb joints which leads to
unpredictable errors.

The great impact of the distance and the horizontal and vertical
periphery can be explained by the results of Yang et al. [22]
who described the optimal tracking area with a limited distance
and field of view. Other features, like the user or bone angle
result from the nature of optical devices e.g. body parts that
occlude others.
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Figure 3. Influence of the different heuristics on the tracking error ac-

With the results of the first analysis we designed and imple-
mented a system which is able to improve the tracking accu-
racy as well as to enlarge the tracking space by fusing the data
from multiple depth sensors. Besides the prediction of errors
there are further challenges when building such a system like
extrinsic registration, temporal synchronization and interpola-
tion, and the fusion itself. With our FusionKit implementation,
we strive to provide a stable, reliable and usabe solution for
all of those challenges by integrating common but also novel
methods to deal with those challenges.

On the hardware side, we chose to focus on Kinect v2 sensors
because of their ubiquitous availability and tracking perfor-
mance, but the system architecture is designed to also accom-
modate to other types of depth cameras. The system itself is
designed as a distributed system, on the one hand because the
Kinect SDK only allows one camera to be used per PC, but on
the other hand also to be able to scale more easily to a large



number of cameras, e.g. over a large area by using existing
networking infrastructure. This also balances the calculation
load, as the costly tasks like skeleton tracking and image seg-
mentation can be done on the respective node, while the main
fusion node only needs to handle preprocessed data.

The main processing pipeline used by the fusion node in prin-
ciple uses a similar strategy for skeleton and marker data as
shown in figure 4 and is described in more detail in the follow-

ing sections.
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Figure 4. The FusionKit workflow: The sensor data of all connected sen-
sors is forwarded to the processing pipeline in defined time steps. The
fused data is stored in the output module and can be collected by differ-
ent applications.

Data Capturing

Data capturing is part of the node software, which is called
SensorServer. For the skeleton tracking we use the Kinect
SDK tracker while marker tracking runs on the infrared and
depth image.

Skeleton Tracking

The Kinect SDK provides an own skeleton tracker based on
the depth image. The human skeleton is represented by a
set of 25 joints, like neck, head or wrists, each having a 3D
position as well as an orientation in some cases. In each frame,
the depth image is used by the SDK to perform a per-pixel
body part classification and thereafter a presumption about the
joints. Finally, prior knowledge and temporal continuity are
used to map the joints to fit the skeleton and its joints [24].

Marker Tracking

Besides tracking of skeletal data, it is often useful to be able
to track arbitrary objects in 3D space. With common, 2D-
based motion capture systems, this is mostly accomplished
using either active (IR-emitting) or passive (IR-retroreflective)
spherical markers, which are tracked with multiple 2D infrared
cameras. The 3D position is then reconstructed by solving a
multiple-view geometry problem based on the 2D positions
and the known 3D registrations of the cameras.

With the Kinect it is also possible to capture infrared imagery
which can be used for marker tracking. We provide such
a feature in the SensorServer part of our toolkit, mainly to
enable object tracking and interaction, which is especially
useful in e.g. VR applications to enable the representation of
real objects in virtual space.
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The Kinect captures infrared images at a resolution of 512x424
pixels with 13 bits of dynamic range. While this imagery is
mainly used within the camera to generate the depth image,
it can also be retrieved separately for further processing. In
our system, the IR images are retrieved and segmented after
some preprocessing like amplification and thresholding to find
possible markers in the image and their respective center x and
y pixel coordinates using OpenCV. Additionally, we query the
depth data generated from the IR image, to gather z values for
the area of the image where possible markers are assumed to
be located.

Unfortunately, we found that the markers themselves suffer
from overexposure in the infrared image, which, while simpli-
fying the task of finding 2D positions, prevents the camera’s
ToF algorithms from computing a correct depth estimation.
However, through analysis and measurements of the IR and
depth marker images, it was found that usable depth values
can be gathered from the area which is directly surrounding
the marker. This "corona" (see figure 5) was found to reli-
ably deliver correct depth values for the marker z coordinate.
By sampling this area, a list of possible values is acquired
and post-processed to gather a single z value for a suspected
marker.

a)
S

Figure 5. Coronary features (b) around markers (a) observed in the
Kinects depth data

Using the pixel’s x and y as well as the z values, it is possible
to calculate the position in metric 3D space in the camera’s
coordinate system using the Kinect SDK’s internal coordinate
mapper features. Based on this metric values, further valida-
tion steps like examining the real-world size of markers can be
carried out. To allow for an easy use during common tracking
situations, we also implemented masking methods common
with traditional motion capture systems, which provide au-
tomatic and manual masking possibilites to eliminate stray
markers and reflective areas in the capture space. Finally, the
marker tracking data is provided to the fusion core in real-time
using the same interfaces like the skeletal tracking data.

Data Transmission

The system components provide basic interfaces, which are
accessible via REST, WCF and UDP, for polling skeletons or
markers, to start and stop a capture or to change a setting. In
case of data polling, the returned data consists of a list of joints
containing position data as 3D vectors, as well as orientational
data as quaternions and a assumed error value in centime-
ters gathered by our heuristics. The marker information only
contains a 3D position and an ID for re-identification.



Data Modelling

The Kinect skeleton is defined by a collection of joints that can
be located by a 3D position vector. The vectors’ origin is the
zero position in the sensor’s coordinate system. This kind of
view on the skeleton will further on be called absolute skeleton
since it relies on absolute positions of the joints. We also use a
different view on the skeleton that is further on called relative
skeleton, which is based on the definition of a kinematic chain.
Such a model is already used for e.g. character animation, but
not for processing or fusion. A kinematic chain is a graph
with joints as nodes. Therefore the edges can be interpreted
as bones. In the relative skeleton, the root is the only joint
with an absolute position information. The relative position
P, of every other joint j is defined by the direction vector
between the previous joint j_; and j (P = P; — P;_,). Each
position information of the joints (except the main joint) can
be interpreted as a bone with a certain direction and length (see
figure 6). We use this relative data representation extensively
in user and registration handling, as well as for the fusion itself.
A more detailed description follows in the respective sections.
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Figure 6. a) Example of a four joints in the absolute skeleton (a; ... as)
and the relative direction vectors (| ... r4), ap remains the same for the
relative skeleton. b) The relative direction vectors ignoring the kinematic
chain.

Data Processing

In this section the main functionality of the skeleton and
marker fusion process is described. Our application uses a
multi-threaded pipeline architecture in which components can
be chained to each other, to create a customizable dataflow
with optimized skeleton and marker tracking for specific use
cases. We also provide an optimized implementation of such a
dataflow including a UI, called Studio which can be used out
of the box.

Synchronization

Due to the nature of a distributed system using different com-
puters attached to different sensors, temporal aspects are an
important factor. Regarding synchronization it is likely that
time stamps of incoming data vary due to clock offsets and
network latency. Therefore each node has to be synchronized
to a common clock which is provided by the fusion service.
Each node provides a REST interface for polling the current
time in ticks. The timestamps are polled every 10 seconds to
calculate and save the offset to the local time, accounting the
half round trip time (RTT).
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Interpolation

When performing faster movements (like waving a hand with
around 3 m/s) the data provided by the sensors may vary
by around 10 cm within the duration of one frame (with a
Kinect capturing at 30 fps). Though the data is synchronized,
the capture timestamps still differ. Therefore the data from
different sensors has to be interpolated to a common time to
accommodate for this possible offset. Therefor, all frames are
interpolated in a linear way using a configurable constant delay
applied to the actual time. The frames before and after this
time slot are used for interpolation to calculate the position.
The interpolated position is computed under the assumption
of a linear velocity between the past position and the future
one. If the offset is smaller than the frametime, the state of this
frame has to be predicted. In this case an linear extrapolation is
done for predicting the position. To be still able to work in real-
time the delay is set to 35ms by default but can be increased
(e.g. for standard motion capturing) or decreased (e.g. for VR
applications). Interpolation also enables a variable frame rate.
This allows the system to run at higher frame rates than the
Kinect default of 30 fps.

Filtering and Optimization

The FusionKit also offers a variety of improvent strategies
to optimize the tracked skeletons and markers as well as the
fused results. A Kalman filter can be used to smooth the input
and output skeletons or markers.

The predicted error that is used to calculate weights for the
fusion can also be Kalman filtered. Though decreasing the
accuracy of the prediction, the Kalman filter smoothes the
fused motions by prohibiting fast changes of the weights. If
cameras are set up in a circle, skeletons that are tracked from
behind can be removed since they are the less reliable ones. In
addition some assumptions about the human skeleton are used
to optimize the positions of joints. For example we correct the
bone lengths and the shoulder positions, which should always
be in roughly aligned with the spine shoulder joint. It is also
possible to enable a limit for the velocity of joints as a simple
kinematic restriction.

User and Marker Handling

The user handling (or correspondence finding between users
from different sensors) is a critical part of skeleton fusion since
a wrong mapping of a sensor skeleton or marker to a user or
marker object would lead to errors in the registration and in
the fusion itself. There are two different system states that
have to be considered separately. In a fully registered system
every sensors’ data can be transformed into a unified coordi-
nate system and can therefore be compared directly based on
the registered position, using some amount of threshold (de-
faulting to 10 cm for skeletons). If the registration of a sensor
is unknown, a different approach has to be chosen. Since a
usable fusion is impossible in a unregistered system, a simple
one user scenario is active as long as no registration was cal-
culated. If one sensor detects more than one skeletons at one
time, both skeletons are ignored.

An alternative approach matches users without a registration
and enables multi-user handling for registration (but not fu-
sion). It considers the users pose and body instead of the not



available global position and allows user handling in an unreg-
istered system. Two features are used to decide whether two
skeletons belong to the same user. The first one compares the
lengths of the bones. The second criterium for user mapping
is the user’s pose. For comparing the pose the relative skeleton
(excluding the main joint) is interpreted as a point cloud to
compute the rotation and translation between them. Since the
direction vectors of the relative skeleton’s joints do not consist
of absolute positions, the translation of the point clouds has to
be 0 using a fully accurate tracking device. Using the Kinect
as tracking device, the translation can be interpreted as an
error which has to be under a proposed threshold of 2 cm.
This principle is described in more detail in the following
section. This second approach allows for example to perform
multi-user registrations, although with the downside of much
longer durations since the unregistered multi-user approach is
more restrictive. As it is usually possible to perform a single-
user registration, we use this approach to user handling as the
default method due to better results and shorter registration
durations.

Similar to the correspondence finding for skeletons, markers
have to be mapped to a unique marker, too, which is done by
comparing their registered positions.

Extrinsic Registration

In order to calculate the extrinsic registrations between the
sensors, one sensor is defined as main sensor. The main sensor
provides the globally used coordinate system to which each
other sensor is registered. A modified ICP approach is used,
which uses the tracked skeleton over time as point clouds to
calculate the relative rotation and translation iteratively. Since
correspondence finding is not necessary due to the already
established relation given by the joint and the missing scale
factor, the algorithm can be simplified. The new registrations
are updated in background after defined time steps. Using the
human skeleton supersedes the use of an calibration object,
but has drawback of using inherent inaccurate data of the
Kinect skeleton tracker which greatly depends on the tracking
situation.

Different approaches have been proposed in the related work
to overcome this problem. The first one is to use only the best
tracked joint [1]. Since the used torso joint (from OpenNI)
is most of the time only moving in two dimensions, this ap-
proach only provides accurate rotations around the x and y
axis. The second approach [18] includes the estimation of the
groundplane in addition to the best joint. Since the Kinect
groundplane estimation is not always reliable or sometimes
even unavailable, we based our registration process on mul-
tiple joints. As this also includes inaccurate joint data, we
developed a filter to remove badly tracked joints before they
are added to the point cloud.

In the following we define a point cloud as a set of tuples
with the first items (P) including the data of sensor 1 (S1)
and the second items (Q) the matching data of sensor 2 (S2).
Each rotation and translation pair is computed by an algorithm
that minimizes the euclidean distance of P and Q [3]. To
find the rotation and translation the covariance matrix H is
computed (see equation 1). The rotation (R) can be computed
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by multiplying the matrix V* by U transposed (U”) using
the Singular Value Decomposition of H (H = UXV™). The
3D vector of the translation (7') is computed as shown by
multiplying R with the centroid of P and adding the centroid

of Q.

n
H= Z (a; — centroidy) - (b; — centroidp) (D
i=0

The whole registration process is split in two steps. The first
one is done in each frame, where the data of each sensor pair is
compared and filtered to add the result to the registration point
cloud of the respective sensor pair. The second step is repeated
in certain intervals and follows the principle of a simplified
ICP with the result beeing the relative rotation and translation
of the sensors.

For the filter, the data of each sensor pair is added to a point
cloud as relative bone vectors (excluding the main joint). The
optimal rotation and translation are used to filter the data.
Since no absolute data can be found in the point clouds the
translation should be zero and its magnitude can be interpreted
as an error value which can arise by comparing different poses
or bone lengths which are both caused by tracking errors (or
by comparing different users, which should not be the case
during a single user registration or a working user handling).
If the translation’s magnitude is too high, the matching joints
with the maximal euclidean distance after applying the com-
puted optimal rotation are filtered and a new registration is
calculated using the remaining joints. This iterative approach
is illustrated in figure 7. The remaining joints are added to
the registration point cloud using their absolute position. The
simplified ICP runs after defined time frames. The current
registration is used in every further step for filtering the point
cloud based on the euclidian distance of two matching posi-
tions after applying the registration.

If no registration can be calculated between a sensor (S) and
the main sensor (M) — e.g. due to no overlapping tracking
space, the registration handling tries to register S to any other
sensor that is already registered to M. As soon as the rotation
and translation between S and a registered Sensor is known,
both values are transformed by the already known registrations.
Using this mechanism we ensure to register sensors even if
they have no overlapping space to the main sensor.

Beside the skeleton based point cloud, the registration can also
be done capturing one marker over time. Only one marker
is allowed at the same time since the correspondence finding
for markers is only working in a fully registered state, which
makes this variant very sensitive to erroneous marker data,
although potentially delivering more precise registrations.

Fusion

The fusion of skeletal sensor data is a two step process. In the
first step the joints of each skeleton are rated by our heuristics.
The second part is the fusion itself.

Heuristic Models: Weighing Joints and Markers

We implemented the best performing two heuristic models as
described in our heuristic evaluation, the linear model using a
gamma distribution and the non linear gradiant boosting model.
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Figure 7. Illustration of the relative skeleton based filter. a) Reduced example of a relative skeleton using three points. b) Finding and applying the
optimal rotation and translation — the origin of the blue skeleton is moved from the center which indicates an error. ¢) The blue skeleton is only rotated.
Obviously r, and r} don’t match and are removed from the point cloud. d) The point clouds can be mapped without or minimal translation. The

remaining joints would be added to the registration point cloud.

Each heuristic model predicts an error value for each joint of
each skeleton of each sensor seperately. All errors regarding
the same joint of all matching skeletons are normalized as
weights for the fusion step.

Data Models

We implemented the described data models for the fusion. The
Jjoint model is based on the absolute skeleton and is described
by absolute position data. We propose to use a bone model
(based on the relative skeleton) for fusion. We also imple-
mented an improvement strategy based on previous knowledge
and the strict assumption about the human skeleton that the
length of a bone may not vary over time, as already proposed
by Yeung et al.[23].

Fusion Approaches

We implemented three different vector based fusion ap-
proaches inspired by the related work which handle both data
models. The first is to take the best rated joint or bone as the
final result (called best). The second uses a weighted middle
of all available data. The third approach is to exclude outliers
from this average. The predicted error is used to filter all joints
with a higher error than the measured median. In a second
step, outliers regarding the variances of the distance to the
weighted middled position of a joint or bone are ignored for
the fusion.

The elemination of outliers follows two steps — the first consid-
ering only predicted error values and the second considering
positions. All joints having a higher predicted error than a
threshold based on the average are excluded first. In a second
step the predicted error values of the remaining joints are nor-
malized and inverted as weights (w). The weighted middle
(see equation 2) of all remaining joints is used for the second
step. All joints with a higher euclidean distance to the middle
than the average of all remaining joints are further excluded.

For each weighted middle approach the fused vector (V) using
the not excluded joint vectors (V] ...V,,) is computed according
to equation 2.

n
Vi=) wa Vi 2
i=0

The fusion of marker data can only be done using the absolute
marker position which is therefore the only model in use.
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Rigid Body Tracking

A rigid body consists of n (where n > 2) markers (M), each of
them having n — 1 connections (C) to the other markers. The
distance of each connection c¢ in C has to be different to each
other connection. Therefore a rigid body marker is distinctly
defined by n — 1 connections.

The euclidean distances between each marker is calculated
every frame and matched to one or more connections, using
a fixed threshold while the deviation is remembered as a con-
fidence value. The result is a number of tuples consisting of
a connection and a sensor marker. In an optimal case only
one sensor marker would fulfill the condition of matching the
n— 1 connections defined by the rigid body marker. If there
are more than one matching markers, the confidence value is
used for the final decision.

Data Output

The FusionKit provides several output modalities for different
use cases. The REST interface can be used for infrequent re-
quests while the UDP streaming and the WCF interface were
designed for continuous tracking. These flexible output modal-
ities allow an arbitrary amount of clients and easy connection
of other systems. If no live data is required, it is also possi-
ble to capture whole sequences either by a remote call to the
REST interface or by the Fusion Service Ul itself, which can
be saved to different file formats afterwards. At the moment,
we support the common motion capture data file format Biovi-
sion Hierarchy (BVH) as well as an own file format being a
JSON representation of the FusionKit’s internal data model.

SYSTEM EVALUATION

To evaluate the accuracy of our toolkit, we conducted a second
study which was split in two steps. The first one was to find
the optimal settings and the second to evaluate the accuracy of
the FusionKit itself.

Apparatus

The sensor setup was the same as shown in figure 1. Three
participants (2 male, 1 female, age 24 - 27, height 1.69m -
1.88m, skinny to normal build) were instructed to perform ran-
dom natural movements within the tracking area of the multi-
Kinect and OptiTrack system. This rather unrestricted random
task instruction was chosen since the performance should be
evaluated not under consideration of any specific use case,
but as representative as possible for any kind of movements.



The participants mostly performed common movements like
walking, moving arms and pointing, as well as jumping or
kneeling. Each recording lasted for about two minutes and
therefore consisted of roughly 3600 frames and thus samples
per joint from the Kinects (capturing at 30 fps), and about
14400 frames / samples for the Optitrack system (capturing at
120 fps). Each provided error value is interpreted as the eu-
clidean distance between the FusionKit joint and the OptiTrack
one.

Feature Evaluation

Some of the features developed for the FusionKit provide al-
ternative implementations. The heuristics for example were
on one hand designed using a linear gamma distributed model
and a non-linear boosting model both using our full set of
heuristics. We also implemented two data models and three
different fusion approaches. To optimize our system we com-
pared the different alternatives and measured the accuracy of
the FusionKit using optimal settings.

Heuristics

We compared the influence of the error prediction on the fusion
results using the two heuristic models. All calculations were
done using the bone model with outlier fusion. While the error
prediction of the boosting model performed around 0.5 cm
better then the linear one, the error after the fusion was reduced
by 0.8 cm. The joints that were optimized most using the
boosting model were the knee joints (around 1.4 cm) and the
hips (around 1.3 cm). The overall error using the boosting
model was 12.4% less then using the linear model.

Fusion

We analyzed the accuracy of the two data models (joint and
bone model) that were fused via three different fusion ap-
proaches (best, weighted, outlier). Consequently 6 different
approaches are compared in their mean and per joint error.
Tukey post-hoc tests were used for further validation. Each
significance is stated according to the 5% level.

Every fusion approach was significantly more accurate than
the Kinect with the least error. The weighted fusion turned out
to be the worst one — no matter which data model was used.
Though the outlier approach was little more accurate than the
take best semantic, the differences were not significant.

The bone model was the significantly most accurate data
model, independent of the fusion approach with a mean error
of around 2.6 cm compared to 3.3 cm using the joint model
when fused with the outlier approach.

Considering the accuracy by joint, the bone model improved
the accuracy of every joint except the head, wrists and elbows
significantly. The largest improvement could be observed on
the knee joints (left: 2.4 cm and right: 2.3 cm), followed by the
feet (both 2.1 cm) and ankles (left: 1.0 cm and right: 0.9 cm).

System

Since the bone model proved to be the most accurate one,
reducing the error by 21% compared to the joint model we
used this model for the final system. The model is fused by
the outlier fusion approach, which was, though not significant,
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FusionKit Tracked Joints
Joint Error (cm) SD (cm) | Error(cm) SD (cm)
Head 2.66 2.65 2.79 2.46
Neck 1.43 1.94 2.795 2.61
Spine Shoulder 1.28 1.71 2.04 2.59
Shoulder I/r 1.27 1.90 5.51 4.33
Elbow I/r 3.32 2.31 12.70 8.95
Wrist I/r 4,37 2.64 16.13 14.51
Spine Mid 1.06 1.92 2.37 2.40
Spine Base 1.90 1.74 1.78 2.52
Hip I/r 2.54 2.19 6.13 2.93
Knee l/r 3.04 2.14 9.67 4.49
Ankle I/r 2.74 2.74 9.76 6.12
Foot l/r 3.60 2.59 13.87 7.65
Mean 2.64 241 8.38 8.41

Table 1. Mean error per joint of the fused skeleton with the best per-
forming settings of the FusionKit and using only tracked joints.

a little more accurate than the take best approach. Each joint
is weighted based on the error predicted by the non linear
boosting model.

We compared the best performing settings to two reference
measurements, the first being the best performing single
Kinect, and the second being a simplified fusion approach
using the mean position of all joints having the tracked state.
Compared to the best performing single Kinect, the error was
reduced by 9.4 cm in mean (around 78%) and compared to
the tracked joints by 5.7 cm (around 68%). The error per joint
of the FusionKit result and the tracked joints is illustrated in
table 1.

As our results indicate, the accuracy of fused skeletal data
heavily depends on different factors, most of all by the weight-
ing strategy and the used model.

CONCLUSION

In this paper we presented an analysis of factors influencing the
Kinect v2 tracking accuracy. With these results, we were able
to create different statistical models which allow to predict the
magnitude of tracking errors based on the tracking situation.
The offset of our predicted error and the measured one was
around 3.2 cm in mean. By applying these models to multi-
Kinect fusion we were able to build a toolkit named FusionKit.
The proposed toolkit realizes fusion of multiple depth-cameras
for marker-less skeleton as well as marker and rigid-body
tracking.

Using our accurate prediction of errors using a statistical non
linear boosting model including a large set of heuristics, as
well as a data model following kinematic principles, we could
reduce the error compared to a single Kinect by 78% resulting
in a mean error of around 2.6 cm.

Our architecture allows to process data in real-time at flexi-
ble framerates and is therefore suitable for a variety of HCI
applications like VR, gestural interaction or real-time motion
capturing.

We hope that through the release of this software as an open
source toolkit, a lot of users are enabled to use motion tracking
technology for their work in diverse scientific and industrial
use cases, without having to implement custom depth camera
solutions on their own.
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