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Abstract 

In recent years, automotive industry is facing a turbulent environment with an increasing demand for mass-customization and shortened product 

life-cycles. For manual assembly, this trend has led to a rising planning complexity, since growing numbers of product variants are hitting mixed-

model assembly lines. In this context, it is crucial for production planning to be aware of the actual state of an assembly line in order to identify 

inconsistencies between the situation in company-owned learning factories and the shop floor, especially when considering non-value-adding 

tasks (e.g. walk paths). However, a feedback loop for walk paths linking the assembly line with the planning department is not established in 

practice. Consequently, discrepancies between planned and real processes remain largely unknown since they only become apparent through 

production disruptions. In order to provide production planning with an objective tool for walk path assessment, this work proposes a novel 

tracking approach, being able to reconstruct operators’ motion within an assembly line. Based on a distributed depth camera array, a scalable and 

marker-less tracking system is presented that can be applied in productive environments. An in-depth evaluation underlines the performance of 

this novel approach and assesses the overall path accuracy. Finally, the proposed system is set up in an automotive final assembly line during 

operation. The gathered data is investigated regarding planning inconsistencies during operation.  

© 2016 The Authors. Published by Elsevier B.V. 
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1. Introduction 

Manual assembly process verification aims to achieve an 

optimal production process preparation through which 

efficient, ergonomically viable and robust processes are 

defined [1]. In practice, these processes are defined during the 

ramp-up phase in several production preparation workshops. 

These are typically conducted in company-owned learning 

factories which provide a “realistic manufacturing 

environment” through “the adoption of new manufacturing 

knowledge and technology” – according to the definition of 

Abele et al. [2].  

Rising variant complexity of production sequences coupled 

with simplifying assumptions of planning models (e.g. 

abstraction of walk paths ignoring operator drift) lead to a 

decreasing reflection of reality in process plans. Consequently, 

real production processes fall short of expectations stemming 

from the outcome of tests performed in learning factories. 

Since the real situation at the shop floor is hardly ever 

compared to the original plans after their deployment, these 

inconsistencies often remain unidentified. Similarly, not all 

optimization potentials can be fully grasped in the learning 

environments. A feedback loop as depicted in Figure 1 – 

linking the assembly operator with the relevant planning 

stakeholders – is a valuable tool to help overcome these 

drawbacks.  

Furthermore, by comparing shop floor data and the 

capabilities of current planning methods and models to depict 

this data, improvements for future methods and models can be 

derived. At the same time, the applicability of knowledge 

gained from learning factories can be reviewed.  

This paper presents a novel approach for marker-less walk 

path recording in order to compare actual walk paths with their 

corresponding planned ones. The proposed tracking system 

consists of a distributed depth camera setup and can be used in 

a manual assembly line during operation.  

http://www.sciencedirect.com/science/journal/22128271
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Figure 1: Proposed feedback loop between shop floor operations and planning 

departments. 

The remainder of the paper is structured as follows: First, an 

overview of current methods for planning walk paths is given. 

Second, the state of the art of motion capture techniques is 

reviewed and requirements for such systems on the specific use 

case “walk path assessments” are derived. On this basis, a 

marker-less tracking system is proposed, being tailored to the 

identified needs. Finally, the overall technical performance and 

applicability of the novel approach is evaluated both in 

laboratory conditions and in operating final assembly line work 

places. The paper concludes with a holistic assessment and 

outlook on further optimizations. 

2. Walk paths in paced mixed-model assembly flow lines 

Automotive assembly is typically carried out on a series of 

connected assembly lines, consisting of continuous conveyor 

belts that carry cars through assembly stations at a constant 

speed. The system is therefore continuously and strictly paced. 

In this case, unless the conveyor stops due to a disruption in the 

assembly process, the time that a car spends inside a station is 

fixed and defined as cycle time [3]–[5]. This represents the 

available mean time for an assembly operator to work on a car, 

assuming that operators are assigned to stations and do not 

move along with the cars. On the other hand, the assembly 

operations to be carried out on a certain car at a certain station 

can vary with each customer order, especially when 

considering mixed-model assembly lines. An actual sequence 

of cars (“production program”) may have a mean total 

assembly time per car that fits into the accumulated cycle time 

of all available stations. However, inside that sequence there 

might be subsequences of cars that exceed the available cycle 

time at a station, whilst others have an assembly time below the 

mean [5], [6]. Therefore, when planning an assembly line, it is 

crucial to not only look at the production program average, but 

also at the momentary peaks. 

In reality, the point in time at which an assembly operator 

starts to work on the next car is not exactly synchronous with 

the pace of the flow line, but “floats”. For example, on one 

occasion the operator might start working on the next car only 

ten seconds after the car has entered his station because he was 

held up with the previous car, on another occasion he might be 

able to start ten seconds before, when the car has not yet entered 

his station. The term drift is used to describe this effect [6]. The 

drift at a certain cycle results from a variety of variables, a 

major one being the accumulated task times of the preceding 

cars up to that moment. Accounting for drift in assembly 

planning is especially difficult, because the amount of drift at a 

station depends on the sequence of the production program, 

which is typically not known in advance.  

When assessing the efficiency of a planned assembly line, 

in the spirit of lean production, often the ratio of value-adding 

and non-value-adding task times is regarded. The non-value-

adding portion is usually comprised to a large extent by 

walking. Thus, when optimizing an assembly line, minimizing 

walking distances is important. In practice, walk paths are often 

planned with pen-and-paper methods, such as spaghetti charts. 

The time needed for walking activities is usually determined 

using predetermined motion time systems (PMTS) and mainly 

depends on the traveled distance [3].  

For the sake of feasible modelling and planning effort, walk 

paths in process plans are usually static and do not reflect any 

drift situation. The typical planned situation is that the car is in 

the middle of the station. It is apparent that the more drift 

occurs at an assembly station, the more plans will deviate from 

reality. This can lead to overexertion of assembly operators as 

well as plans overestimating assembly line capacity. With the 

current trend of increasing product variance hitting mixed-

model assembly lines, practitioners are starting to pay more and 

more attention to the impact of drift on assembly line 

performance and line balancing.  

One possibility to account for drift-related walk paths is to 

perform simulations of assembly plans and production 

programs using station layout-based digital planning tools such 

as IPO.Log (see www.ipoplan.de). However, actions of real 

assembly operators can deviate significantly from the 

simulation, as is depicted in section 5. Frequent reasons are 

plan inconsistencies and the operator optimizing his work 

methods on his own. 

3. State of the art techniques for walk path assessments 

In order to improve the reliability of learning environments 

and to benefit from self-optimization processes, it is crucial to 

compare the predetermined plans with the real situation at the 

shop floor. Since the domain of manual assembly focusses on 

human work, the main subject of such an evaluation is 

operators’ motion, which needs to be captured precisely. 

Tracking systems are the enabling technology for 

reconstructing human movements. This includes Motion 

Capture (MoCap) techniques using various physical effects 

ranging from spatial scan procedures like e.g. time of flight and 

phase-difference sensing over inertial sensing to mechanical 

linkages [7], [8].  

Currently, in the automotive industry MoCap technology is 

frequently used for virtual assembly scenarios such as virtual 

training, maintenance and virtual process verification tasks. In 

practice, typical assessment scopes are production-oriented 

product optimizations, ergonomics, time planning or process 

verification [9]–[11].  

3.1. Marker-based Motion Capture systems 

Optical marker-based tracking systems consist of multiple 

fixed infrared cameras, being positioned on the edges of the 
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desired tracking frustum, called outside-in camera 

arrangement. The integrated camera modules emit modulated 

infrared light so that optical retroreflective markers can be 

detected within the scene. These rigid bodies are applied to the 

human body, so that movements can be traced in the scene. 

This technology is able to track huge interaction volumes with 

a high accuracy in position and orientation. High initial total 

costs are decreasing significantly, since they are deployed in a 

vast variety of use cases [12]. 

Another frequently used MoCap technology utilizes inertial 

measurement units (IMUs), combining magnetic, 

accelerometer and gyroscope sensors which are providing 

relative position and orientation updates (attitude and heading). 

This technology is deployed within various industrial use cases 

[13], [14]. These sensors offer fast update rates and an easy 

installation process. Due to missing external reference, small 

measure errors cumulate to an angular and positional drift over 

tracking time.  

In contrast to the already mentioned properties and 

advantages of marker-based tracking, such systems go along 

with several drawbacks: Operators have to be equipped with a 

so-called marker suit that consists of multiple rigid bodies, 

which are applied on the whole body. This procedure takes 10 

to 15 minutes and it cannot be ruled out that the cumbersome 

suit could affect the operator’s movements. 

3.2. Marker-less Motion Capture systems 

Marker-less optical capture systems that are able to track the 

motion of characters without interfering with the scene are still 

an ongoing research topic [15]–[17]. They inherit big 

advantages of the non-intrusive measurement way. Industrial 

use cases profit from lower setup times, no anthropometry 

calibration, no additional danger of damaging products and the 

user is able to wear his regular working clothes. 

Two different clusters of marker-less optical capture 

technologies can be found in literature: Depth camera and RGB 

camera-based systems. Using common infrared, greyscale or 

RGB camera systems, there are multiple approaches to realize 

marker-less optical capture systems for MoCap data.  

One example for an multi-view MoCap system was 

presented in the paper and patent by Stoll et al. [18], which is 

commercially available as the Captury Studio software tool 

(see www.thecaptury.com). This system is already able to track 

subjects at interactive speeds, but rely on a color model (i.e. 

cloth and skin) that have to be initialized laboriously with a set 

of training data for each person. Moreover, highly specialized 

systems for performance analysis in professional sports like 

Prozone (see www.prozonesports.com) are used to track 

movements and distances covered by players [17]. With the 

advent of consumer-graded, low-cost depth cameras, new 

MoCap systems are pushing into the market. Kinect v1 and v2 

enabled gamers to marker-lessly interact with virtual 

environments. Being based on a structured light and time of 

flight approach, these systems are able to detect distinctive 

points of the human body, in order to reconstruct its skeleton 

[19]. Many industrial use cases have been presented using this 

approach, such as ergonomic assessments ([20]–[22]), 

maintenance [23] and training [24]. 

3.3. Applicability within industrial environments 

Having discussed the current state of the art of MoCap 

technology, requirements for a tracking system, being able to 

analyze walk paths within the industrial environment of an 

assembly line, will be provided and matched to the technical 

specifications of commercially available products. The major 

requirements for such a system are: 

 Technical applicability in industrial environment  

 No negative influence on productivity during capturing 

 Protection of operator privacy  

 Portability/Scalability  

 Fast setup (system & user tracking) 

 Tracking volumes encompassing entire workplaces 

 Medium requirements on precision (better than 100 mm) 

First, marker-based optical outside-in tracking systems, 

such as A.R.T (see www.ar-tracking.com), VICON (see 

www.vicon.com) or OptiTrack (see www.optitrack.com) are 

intrusive. Since it cannot be ruled out that the protruding 

markers damage the car’s surface or affect the operator’s 

productivity these systems do not meet the needs of an 

industrial factory environment.  

Second, IMUs lack positional stability and magnetic sensors 

suffer from factory environments, such as jamming 

interferences or material absorption of geomagnetic field. 

Commercial marker-less, multi-view approaches using 

RBG cameras (e.g. Prozone or Captury Studio) are highly 

specialized systems and apply use case optimized algorithms. 

Video surveillance approaches such as FXPAL (see 

www.fxpal.com) are collecting personalized data that can be 

linked to a certain operator. Consequently, these systems 

infringe labor agreements of most automotive companies and 

therefore cannot be used in regular assembly lines. In addition, 

single Kinect approaches are limited in their tracking space and 

consequently do not fulfill the spatial requirements of an 

automotive assembly station of at least 6 m × 4 m. 

Therefore, currently there is no MoCap system presented in 

literature or as a commercial product which meets all the above 

mentioned requirements.  

4. Marker-less Motion Capture for walk path assessments 

The determination of human walk paths in an assembly flow 

line has not yet been in the scope of literature. Therefore, a use 

case driven implementation of a marker-less, non-intrusive, 

tracking system that can be set up quickly in productive factory 

environments is presented. 

4.1. Multi Kinect tracking 

 The presented method utilizes the distributed camera 

approach presented in the publication of Otto et al. [25] and 

consists of multiple Kinect cameras that are observing one or 

more work places of interest. In order to prevent the system 

from collecting personalized data and thus protecting the 

operator’s privacy, each RGB sensor is covered with a small 

cap. Consequently, the information being used by this approach 

http://www.fxpal.com/
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is solely based on the depth sensors reconstructing anonymized 

skeletal data. 

The tracking data gathered by the Kinects are polled by the 

so called fusion server that synchronizes the local clocks. 

Furthermore, to establish a common world coordinate frame 

within the system, this computer calculates the extrinsic 

transformations between the cameras via an extended iterative 

closest point algorithm [25]. After determining a valid 

registration, the MoCap data from different Kinects are merged 

by a heuristic-based algorithm combining them in a meaningful 

way [25]. This tracking system operates at approximately 

30 Hz refresh rate and is interconnected via a 5 GHz wireless 

network, in order not to jam otherwise utilized industrial 

bandwidths.  

By generating fused skeletal data from the distributed depth 

cameras, the system is able to track the operator’s motions 

continuously within an area that can be scaled up to several 

workplaces and stations. Generally, to cover a typical 

automotive assembly line section of 6 m extensively, a tracking 

setup would utilize four to five sensors which are located at the 

edges of the production line and are facing outside-in. 

4.2. Walk path reconstruction 

In order to reconstruct the walk paths, the fused skeletal data 

are utilized to determine the operator’s center of mass (COM) 

in each frame (see Figure 2). Following Gabel et al. [26], this 

distinctive point is chosen to be the center of the hip, spine and 

shoulder joints. Since walk paths in assembly planning are 

generally created in a two-dimensional bird’s eye view, the 

COM is subsequently projected on the floor plane to be 

compatible with the target data. For this purpose the proprietary 

Kinect Software Development Kit (SDK) is used to obtain a 

rough estimation of the underlying floor plane. 

 

Figure 2: Typical setup of registered Kinect sensor array for walk path 

reconstruction throughout a whole station. 

 Subsequently, based on the two-dimensional COM, the 

change in position and time between two consecutive frames is 

computed. The walk path of an operator is finally reconstructed 

by linking the resulting vectors to a concatenated trajectory. 

4.3. Evaluation of path accuracy and validity 

To gain insight into the accuracy of the walk path 

reconstruction in combination with the concatenated 

registration process, several experiments have been carried out.  

Experimental setup: In each case, a marker-based tracking 

system consisting of 16 ARTtrack2 cameras was used as the 

baseline due to its high positional accuracy of 0.42 mm. Since 

the user is moving in an upright posture during the whole 

evaluation, it can be reasonably assumed that the COM 

corresponds to the center of the subject’s hip. Therefore, this 

distinctive point was defined to be the center of two optical 

markers, attached on both sides of the hip. The three-

dimensional point was subsequently processed by the 

reconstruction method, mentioned in chapter 4.2. Finally, both 

tracking systems were aligned by placing an ART marker on 

the main Kinect, closing the transformation chain between the 

two coordinate frames. During all experiments six Kinects 

were used, being evenly arranged in two straight lines on both 

sides of an 8 m × 5 m tracking area. 

Design of experiments: In three different scenarios, a single 

user was walking at approximately 3 km/h in the common 

tracking space along three predetermined path: A straight line 

with the length of 4.5 m, a circle (Ø 4.5 m) and a lemniscate 

(external dimensions of 4.5 m × 2.0 m). Each scenario 

included 10 repetitions.  

 

Figure 3: Technical evaluation of generated walk paths: Proposed approach 

vs. A.R.T. baseline. Left: Bird's eye view of walk paths comparison, Right: 

Histogram of Error Distribution; (a) Straight line; (b) Circle; (c) Lemniscate. 

Results: Figure 3 depicts the results of the three experiments. 

The left side shows the walk paths for the three scenarios in a 

two-dimensional bird’s eye view. The blue line represents the 

walk path of the high-precision ART camera system, whereas 

the orange trajectory is reconstructed by the novel tracking 
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approach. Additionally, the right half illustrates the distribution 

of the overall error, being defined to be the Euclidian Distance 

between each corresponding COM pair. 

Within scenario a) the mean error was 35.0 mm, with a 

standard deviation of 19.8 mm, whereas in c) the two values 

approximately doubled. The lemniscate experiment scored 

similar to the straight line (see Table 1).  

Table 1: Overall error between the proposed marker-less approach and the 

marker-based tracking system. 

Scenario Straight 

Line 

Circle Lemniscate 

Mean Euclidean 

Distance 

35.0 mm 62.2 mm 27.5 mm 

Standard deviation  19.8 mm 32.2 mm 17.7 mm 

 

Considering that the resolution of walk path plans in MTM1, 

i.e. the PMTS with the highest modelling detail, is “one human 

step” (which depending on the carried weight ranges between 

0.60 m and 0.85 m) [27], the tracking accuracy of the proposed 

marker-less approach is deemed sufficient for the purpose of 

comparing planned and real work paths. 

5. Practical evaluation of assessment method in 

automotive final assembly line 

Additionally to the presented technical evaluation, the 

proposed method is also evaluated towards its investigative 

power, optimization potential and its practical applicability in 

real shop floor environments.  

5.1. Experimental Setup 

The system has been set up in a productive mixed-model 

assembly line. Three Kinect Sensors have been set up at the 

border of the station (see Figure 2). The sensor array has been 

facing the conveyor belt from the edge of the production lane 

at a distance of 1.5 m to the car body. Whereas the system 

observed a whole station, only one certain workplace within 

this station has been evaluated during one work shift. The three 

analyzed work tasks, which had to be conducted successively, 

accounted for approximately 50 % of the processes that had to 

be carried out within one cycle of 120 s in this particular 

workplace. The plan defined these tasks as: 

 Fetching a paper-based card and scanning it for 

documentation of safety critical parts. 

 Fetching a corded screw-driver and screwing two times at 

the left side of the chassis. 

 Screwing two times at the right side of the chassis and 

returning the screw-driver. 

Approx. 2.5 h of Motion Capture data have been recorded 

from one single operator that carried out all tasks during the 

shift. All captured data were segmented and aligned to the 

actual production program in a post-production step. 

5.2. Results and discussion 

On-site evaluation showed that walk paths could be 

reconstructed inside the whole observed work place with 

comparable results to the laboratory evaluation (see Figure 3).  

Due to the unobtrusive working principle and the usage of 

anonymized skeletal data, no negative effects to the 

productivity could be identified. Operators’ privacy was hardly 

affected. Moreover, the evaluation revealed that the proprietary 

Kinect SDK occasionally suffers from false-positive skeletal 

recognitions, i.e. when moving car chassis are detected as 

human skeletons. However, the vast majority of the flawed data 

can be filtered out in the post-processing step both 

automatically and manually. In summary, it can reasonably be 

stated that all organizational requirements defined in section 

3.3 are fulfilled. Additionally, the system is proved to be 

reliably working within operational environments since the 

outcomes are comparable to the technical evaluation in the 

previous section.  

Figure 4 underlines this assumption by depicting four 

representative examples of the captured, filtered and 

segmented data. This floor-plane projection shows the bird’s 

eye view on the walk path trajectories of real human operators. 

The grey transparent line represents the preplanned ideal walk 

path analysis generated by production planning in advance. 

Thin colored lines represent the operator’s captured walk paths 

of four exemplary, consecutive cycles.  

 

Figure 4: Planned (thick) vs. captured (thin) walk paths recorded in a real 

production environment. Points of Interest: Screwdriver and scanning station, 

documentation card, 2x screw points on body chassis. 

Although the main focus is on proving the applicability of 

the proposed approach, observing the work place for multiple 

cycles reveals that the operator has had the possibility to reach 

an average negative drift of -0.99 m, meaning he is able to 

achieve tasks faster than cycle time during the observed period. 

Additionally, operators self-optimize the preplanned processes 

for their own work place. In Figure 4 this process can be seen 

where the operator fetches the documentation card without 

returning to the screw-driver station, effectively shortcutting 

the planned walk paths.  

Current walk path planning methods often use static 

simulation routines. The movement of conveyor belts and 

moving working points are not represented in planning data. 

This leads to spatial inconsistencies which can be identified in 

the results of Figure 4 as well: During the first screwing task 
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no movement of the operator and the product has been 

considered, in contrast to the second screwing task.  

This evaluation shows differences between preplanned walk 

paths and reality, although the gathered results cannot be 

considered to be generally applicable since the preliminary 

analysis only covers one participant at one workplace in a 

timeframe of 2.5 h. Despite these limitations, by assessing only 

one work place, already multiple effects caused by static 

planning methods and simplifications can be revealed. 

According to the plan, the operator has to cover an overall 

distance of 7.2 m per cycle, whereas the analysis reveals that 

due to self-optimization the real walk path has an average 

length of 6.34 m. 

6. Conclusion 

This paper presents an approach for reconstructing walk 

paths within assembly flow lines in order to identify 

inconsistencies and limitations of current planning methods 

and plans stemming from company-owned learning factories. 

Providing a possibility to uncover and learn from planning 

mistakes, stakeholders are enabled to improve the productivity 

and quality whilst preventing the operators from overexertion. 

Furthermore, since the walk paths document how employees 

optimize processes on their own, knowledge about 

optimization potentials is transferred to the planning 

department and learning environment. Both evaluations have 

shown that the system is technically and practically able to be 

used for walk path assessments in real shop-floor 

environments. 

For future work, an investigation of stations on a long-term 

basis in order to optimize the planning quality with a 

statistically significant basis is proposed. Moreover, automatic 

segmentation of assembly processes and determination of key 

figures (e.g. drift, walking distance) based on MoCap data 

would enable a comprehensive use within several stations. 

Finally, an extension of use cases from walk paths to a holistic 

ergonomic assessment is planned. 
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