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Abstract 

Automotive industry is currently facing the challenge to cope with the market demand for mass-customization whilst remaining competitive. In 
production planning, this trend towards product-diversification leads to a rising complexity, since growing numbers of variants are hitting mixed-
model assembly lines. Due to these changing preconditions, traditional planning models and respective simulations tend to decreasingly reflect 
reality. Actual manual assembly processes can deviate significantly from their corresponding plans due to simplified assumptions of simulation 
models, methods and tools. In order to contribute to a better prediction quality of planning models, this paper investigates walk paths in real 
assembly situations with regard to their deviation from corresponding plans. A novel algorithm set for walk path reconstruction and neural 
network based classification of work tasks is introduced. Therewith, data gathered by a mobile tracking setup can be automatically segmented 
and subsequently assigned to the process plans. This novel approach enables an assessment of predetermined assembly times by comparing 
reference to real walk paths. The method’s technical performance is verified in laboratory evaluation scenarios and its applicability is proven in 
a productive automotive final assembly line during operation. 
© 2016 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the Changeable, Agile, Reconfigurable & Virtual Production Conference. 
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1. Introduction 

 In the automotive industry, manual assembly planning is 
becoming increasingly complex since the demand for product 
variants with shorter life-cycles is growing continually. As a 
consequence of this development, traditional planning methods 
tend to decreasingly reflect reality since simplifying 
assumptions are leading to higher uncertainties within these 
models. For instance, previous work indicates that walk paths 
(see [1]) and process times (i.e. [2,3]) of real assembly 
operators can deviate significantly from their corresponding 
process plans. In this context, it is crucial to review planning 
models with regard to their applicability in order to unveil 
inconsistencies between planned and real processes, especially 
when considering walk paths in mixed-model assembly flow 
lines. Therefore, an efficient method for investigating actual 
task execution times of manual assembly processes is a 
valuable tool towards a better planning performance.  

This paper presents a novel approach to analyze the disparity 
between planned and actual assembly times of manual 
processes based on the operator’s walk paths.  

Therefore, an optical tracking system is utilized to 
unobtrusively record the routes of each assembly operator 
within a particular work place. These trajectories are 
subsequently processed and segmented via a neural network 
approach. These resulting subtrajectories are being matched 
and assigned to the process plan afterwards. Therewith, the 
actual assembly times can be compared with predetermined 
process plans for each cycle. 

The remainder of the paper is structured as follows: First, 
the state of art in the context of assembly time determination is 
reviewed. Second, a non-intrusive approach is presented being 
able to compare predetermined and actual assembly times for 
each product using multiple distributed depth cameras. 
Subsequently, the applicability and technical performance of 
the proposed method is verified within two holistic evaluations, 
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the former verifying the neuronal network algorithm 
classification performance and the latter assessing the overall 
applicability of this novel spatial disparity (drift) calculation 
approach. The paper concludes with an outlook on further 
optimization potentials and the resulting impact on future 
planning paradigms. 

2. Assembly time in mixed-model assembly flow lines 

Time determination systems are commonly used in 
industrial production systems for organization, planning and 
efficiency appraisals [4]. The resulting data sets are utilized 
among others for development, calculation, incentive systems, 
production program planning, production sequence and 
manufacturing planning. Within manual assembly planning 
they are commonly used to assign times to assembly processes, 
which are previously defined in workflow descriptions. The 
latter enables planners to optimize geometric and time-based 
interplay of the operator, workpieces, resources, material, 
energy and information within a working system [5].  

 Time management systems have brought up multiple 
methods for work time determination, which can be clustered 
in target time determination and actual time determination:  

2.1. Determination of reference assembly times and 

predetermined motion time systems 

Target times are defined as times, which have been derived 
from previously captured actual times [6]. This includes the 
category of “predetermined motion time systems” (PMTS), 
which are based on large studies with determined and fixed 
influence factors. They cluster basic work tasks in a tabular 
form [7] and are used to assign reference assembly times or so-
called target times to workflow descriptions. Multiple 
standards exist to plan assembly times: 

In Europe [8] commonly used PMT-systems are “methods-
time measurement” (MTM) [9], MTM-UAS or various 
company proprietary systems such as “C-values”. In NAFTA 
region, MODAPTS [10] technique is wide-spread in 
automotive industry as well. Depending on the manufacturing 
type, repetitiveness, cycle time and type of workplace, the used 
planning method abstraction level highly differs. For example, 
highly repetitive, monotonous mass-production with short 
cycle times can be planned via MTM-1 on a low abstraction 
level, whereas for custom-made products higher-aggregated 
and therefore simplified planning methods, such as MTM-UAS 
or MEK are applied.  

Limitations: Whilst target time and predetermined motion 
time systems inherit advantages in terms of simplicity, 
feasibility, planning speed and harmonization, they also have 
some drawbacks in contrast to actual time determination 
methods.  

Analyzing human work is especially difficult since it is 
highly flexible, statistically distributed and varies to a large-
scale [2,3]. Modeling statistic variances can help enhancing 
model and simulation quality, dealing with variance and 
optimizing the overall planning quality. Using reference 
assembly times, this variance is neglected. This could lead to 
unexpected errors during operation in production as well as to 

an overexertion of assembly operators. Therefore, reference 
assembly times have to be compared to actual shop-floor data 
in order to verify their validity. 

2.2. Determination of actual assembly times 

In contrast to PMTS and target time determination, actual 
times are defined to be real times which humans or resources 
need to execute certain process steps [6]. Various research has 
already been carried out in the field of determination of real 
assembly times (see [4,7,8]), ranging from methods of self- 
documentation over direct to indirect measuring principles. 
According to Deuse and Busch [7], direct measuring 
approaches, in which a third person or sensor is gathering 
temporal data from the shop-floor, are usually applied when 
analyzing manual assembly lines. In most cases, the execution 
time is determined using stopwatches [8], whereas recent 
approaches (see [11]) utilize sensors like inertial measurement 
units or RFID-Tags (i.e. [12,13]) being attached to parts or the 
human body.  

Limitations: Even though these methods are frequently used 
in practice, they neglect important influence factors. Generally, 
the manual documentation of process times using stopwatches 
lacks of objectivity since the unambiguous determination of 
particular actions (i.e. screwing) in human motion is error-
prone and depends on the respective person (see 4.1). 
Additionally, commonly used RFID approaches enable binary 
process monitoring on abstract level only. These approaches 
only monitor binary process acknowledgements during 
production.  

In contrast to the state of the art, in the following chapter a 
method will be introduced which produces highly detailed 
information on spatiotemporal relations within a production 
environment to gain deeper insights on the processes itself and 
to overcome drawbacks of the previously mentioned systems. 

3. Markerless Motion Capture for assembly time analysis 

This paper presents a non-intrusive approach to 
automatically determine the disparity between planned and 
actual assembly times of manual processes based on the 
operator’s walk paths. In order to implement such a system, a 
common definition of trajectories is given in the following.  

3.1. Concept 

 Following Buchin et al. (see [14]) a discrete trajectory � is 
defined as “a mapping from a series of time stamps ��, ��, … , �� 
to the plane (or a higher-dimensional space).” For any 
timestamp ��, the location in the plane at time ��	is denoted by 
�
���. For any two times �� , �� 	 ∈ 	 ���, … , ��� with �� 	≤ 	 ��, the 

subtrajectory of � from time �� to time �� is defined as �	���, ��� 
[14]. 

Based on this definition, Figure 1 depicts the concept of 
analyzing the spatial distance between the reference and real 
walk path in order to deduce the underlying time gap in the 
course of time. Assuming that the operator drift ����� 
represents the vector between a corresponding point pair being 
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projected onto the conveying vector, the delta-time ����� 

results from equation 1. 

∆����� =	 �����
���� !"�#

=	
$%&'(�
)��*%+!(',)-./��� !"�#

���� !"�#
	   (1) 

As automotive end-assembly is typically carried out in 
paced assembly lines, consisting of connected conveyor belts 
with a constant speed, 012��3425  is known in advance. 

Therefore, the spatial distance $�678�
���, �9387,��./ between a 

corresponding point pair contains the cumulated time 
difference stemming from the disparity between plan and 
reality. Moreover, when observing two consecutive cycles, it is 
possible to determine the particular temporal gap for each car 
within the production sequence.  
 

 

Figure 1. Spatial difference between the planned and real walk paths in 
a manual assembly line. 

When implementing a temporal assessment approach based 
on walk paths, two main tasks can be identified: First, the 
implementation of a robust walk path reconstruction system 
and second, the determination of corresponding point pairs 
between planned and actual trajectories.  

3.2. Walk path reconstruction 

The presented method utilizes an optical Motion Capture 
(MoCap) system (see [15]) consisting of multiple distributed 
Kinect depth cameras. Using this approach stakeholders are 
enabled to robustly gather anonymized skeletal data from each 
assembly operator [15]. Skeletal data represents an estimation 
of the human body’s posture and position in three-dimensional 
space over time. Due to the redundant sensors, this system is 
able to cover large working areas up to several workplaces. 
Moreover, since no additional markers or sensors have to be 
attached to the operator, it can virtually be ruled out, that the 
non-intrusive working principle affects the operator’s 
movements or productivity. 

Based on this tracking system, the gathered skeletal data are 
used to obtain the trajectory �9387 , describing the operator’s 
two-dimensional motion on the plane during the observed time 
frame. For this purpose, the center of mass is approximated 
within every frame by the center of the hip, spine and shoulder 
joints (see [16]) and subsequently projected onto the ground 
plane [1]. Finally, the trajectory is reconstructed by linking the 

resulting vectors for each point in time �� 	 ∈ 	 ���, … , ��� to a 
concatenated walk path [1]. 

3.3. Segmentation 

Reference walk paths �678�  are usually planned using 
PMTS [7]. As pointed out in chapter 2.2, however, these 
predetermined tasks times can deviate from their actual 
execution times. As a result, the planned time intervals of 
assembly operations can significantly differ from reality on the 
shop-floor. For example, on one occasion an assembly operator 
might complete working on a particular car ten seconds after 
the scheduled time because he was held up with the previous 
task due to unexpected excess work, whilst on another occasion 
he might be able to start ten seconds before. Consequently, the 
timestamps ��  and �� describing a corresponding point pair in 

�678� and �9387  have to be determined independently in order 
to deduce the delta-time according to equation 1 – which 
linearly corresponds to the spatial operator’s drift due to fixed 
012��3425  speed. 

An accurate method of obtaining these coinciding planned 
and real timestamps ��  and ��  in both trajectories is to detect 

distinctive actions (i.e. screwing, fetching components or 
returning to a certain position). In this paper the transitions 
between walking and interacting with the environment are 
chosen as the criterion to detect corresponding point pairs since 
the spatial starting and ending points of assembly tasks are 
independent of execution times and temporal offsets between 
plan and reality. 

Based on this approach, a novel classifier is implemented 
using a neural network, which is thereby segmenting the walk 
path into a set of subtrajectories. The network utilizes several 
spatiotemporal criteria presented by Buchin et al. [14]: 
Velocity, angular velocity and acceleration. Since the 
classification based on those three input parameters cannot be 
assumed to be linear and the exact functional relation is not 
known a priori, a multi-layer neural network is chosen for this 
problem. The implemented two-layered feed forward neural 
network hereby consists of three inputs neurons - one hidden 
layer including three neurons and one output neuron, which 
serves as classification output. Due to the properties of the 
training data (pairs are known a priori), the supervised 
backpropagation learning method (see [17]) is chosen. 

Based on these extracted subtrajectories and the reference 
walk paths, which are pre-segmented by definition, 
subsequently, the first and last element of each path describing 
operator walking are used to establish corresponding point 
pairs, ultimately solving equation 1.  

4. Evaluation 

In order to determine the performance and applicability of 
the proposed algorithm set, both in a laboratory environment 
and on the shop-floor, several experiments have been carried 
out. 



4 Agethen et al. / Procedia CIRP 00 (2016) 000–000 

4.1. Assessment method validation in laboratory setting 

 Initially, the proposed segmentation approach is examined 
with regard to its temporal accuracy. Therefore, a 
representative experimental setup is designed, that is based on 
characteristic processes within an assembly line.  

Experimental setup: As depicted in Figure 2 the setup 
consists of two racks and one table. Each rack contains two 
boxes including a single screw on difference shelves. The 
pickup-points for screws 1 and 3 are at a height of 1 m, whereas 
screws 2 and 4 are placed at 0.6 m. Each rack has a distance of 
2.5 m to the table, spanning an angle of approximately 30°. A 
workpiece with four screwing points is placed on the table at a 
height of 0.6 m. Moreover, six Kinect cameras are used during 
all experiments, being evenly arranged in a circle around the 
interaction area. 
 

 

Figure 2. Experimental setup: Two racks with each two screws are 
placed next to a table with a workpiece on it, while six Kinects are 

tracking the user’s movements.  

Design of experiments: During the evaluation a 
representative set of assembly tasks are carried out twice by 
five production planning employees, thus generating five 
training and five reference sets. Within the scenario, a user is 
instructed to mount four components on a single workpiece 
representing the car in the assembly line. The operator has to 
successively fetch each screw, carry it to the workpiece and 
finally tighten it. Subsequently, these steps are repeated in 
reverse order, in order to disassemble the components, thus 
reestablishing the initial situation.  

Having determined the training and reference sets, each 
trajectory is manually segmented in a post-processing step. The 
former is used to train the neural network, whereas the latter 
serves as baseline for assessing the proposed approach. Since 
several preliminary tests unveiled that the temporal 
determination of transitions between interacting and walking 
varies considerably when observing video footage of tasks, 
both data sets are manually segmented in a post-processing step 
by a group of five people. By using redundant subtrajectories 
from more than one participant as a baseline and input for the 
neural network, the subjective bias can be minimized.  

Finally, the neural network is trained using an 
implementation of the backpropagation algorithm for 10 000 
cycles at a learning rate of 0.05 with a series of approximately 
90 000 input vectors consisting of velocity, acceleration and 
angular velocity. In order to obtain universally valid input 

values they are normalized using their 95th percentile. Having 
initialized the classifier, the algorithm is applied to the five 
reference sets. The results are ultimately compared with the 
average of the manually segmented transitions representing the 
baseline. 

Results: Figure 3 depicts the results of this experiment. The 
upper section illustrates the segmented walk paths in a bird’s 
eye view. The red lines represent the subtrajectories being 
assigned to “walking”, whereas the black paths show areas in 
which the user was interacting. The lower left side depicts the 
distribution of absolute time differences in the manually 
segmented reference data set. The distribution of absolute time 
differences between the results of the proposed approach and 
the baseline can be seen on the lower right side.  
 

 

Figure 3. Top: Bird's eye view of walk paths, Bottom: Histogram of 
temporal errors. Left: Manual segmentation, Right: Neural network 

based segmentation.  

Comparing the temporal divergences in the reference data 
set with the results generated by the neural network (see 
Table 1), the temporal segmentation accuracy is regarded to be 
sufficient since no significant differences between the 
benchmark and the proposed approach can be determined.  

Table 1. Overall temporal divergences between the manually segmented 
baseline and the proposed neural network based approach. 

Approach Manually segmented Neural network 

Mean temporal error 0.17 s 0.15 s 

90th percentile 0.35 s 0.27 s 

Max 0.80 s 1.01 s 

 
Furthermore, the evaluation unveils that the classifier 

occasionally suffers from false-positive “walking” 
recognitions for a short series of frames. However, these 
defective datasets can be suppressed automatically using a low-
pass filter in combination with continuity criteria.  
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Having either manually or automatically annotated center of 
mass vectors of the respective experiment, the data has been 
matched to the planned correspondences in terms of start- and 
end-point of each transition between “walking” and 
“interaction”. Highly accurate automatic transition detection 
between these two states allowed semi-automatic mapping 
between planned and real data. After applying the low-pass 
filter on the results gathered from the neural network 
classification, in average only one out of 20 transitions were 
false-positive recognitions and had to be removed manually for 
matching the correct work-task process. 

4.2. On-site shop-floor evaluation of assessment method 

The described system has been used in real production 
environments, in order to assess the applicability of the 
proposed system within the industrial environment of an 
automotive final assembly line 

Experimental setup: The mobile motion capture setup using 
multiple Kinect v2 sensors has been set up in an operative shop-
floor situation at a Mercedes Benz Cars assembly plant. The 
system was consisting of 5 cameras that covered a 6 m x 6 m 
large tracking frustum. The sensors were arranges, so that all 
of them were oriented the center of one workplace within the 
mixed-model paced assembly line. With this system, a given 
real mixed-model production sequence has been observed and 
captured for more than 5 hours in order to gain anonymized 
skeletal data. The latter was converted into trajectories in a 
post-processing step and afterwards annotated by the neural 
network using the described methods.  

The work tasks in the particular station were conducted 
overhead with the car body bottom being at an average height 
of 2 m. The station work tasks included fetching, screwing and 
safety acknowledge tasks. The conducted assembly processes 
vary significantly for each product within the sequence, 
whereas corresponding PMTS planning predicts that the 
overall work load averages during the observed time frame. 
 

 

Figure 4. Three captured vs. planned trajectories: Results of the 
proposed segmentation an annotation approach deducing the spatial 

difference ����� between plan and reality.  

Results: Figure 4 depicts the pre-planned walk path for the 
captured station with three exemplary annotated and segmented 
walk paths. Task with a classification of “interaction” are 
denoted as red lines. Captured walk paths are depicted as 
dashed, grey lines. 

These three different examples in Figure 4 underline the 
findings from the previous experiments, since the classifier is 
able to reliably distinguish between walking and interacting. 
Based on these subtrajectories, the distinctive points and 
corresponding point pairs are established using the last 
transition (interacting-walking) within each cycle. The 
resulting spatial differences (or operator drift) �����  are 
exemplarily illustrated in Figure 4 . It can be seen that, that the 
overall walk path length depends on the current operator drift. 
Moreover, the drift situation can be visualized for each car 
within the production. Therefore, for each captured trajectory 
the total drift is calculated and visualized in Figure 5. This 
graphic depicts the course of ����� for 50 product cycles. It can 
be seen, that the disparity between plan and reality has a 
cyclical character, whereas the overall workload has an average 
above zero, meaning that the operator by trend does not drift 
out of his station and is able to complete all assigned work tasks 
in time. Nevertheless, it can be reasonably stated, that in this 
particular time frame real assembly processes deviate from 
their corresponding plans since Figure 5 shows spatial 
difference up to ± 1.5 m over a considerable timespan.  

Furthermore, the evaluation unveils that the operator drift in 
this particular station is limited, since one of the work tasks 
includes screwing using a stationary tool, which has to be 
fetched in each cycle at the same position in the station. 

 

 

Figure 5. Cumulated total operator drift over multiple cycles times, 
respectively products. 

Markerless motion capture system showed technical 
limitations, since the tracking technology sporadically suffers 
from false-positive recognitions due to occasional occlusion 
within the industrial environment. However, these defective 
data sets could be filtered out manually in a post-processing 
step. 

5. Conclusion 

In this paper a novel, non-intrusive approach to assess real 
and pre-planned walk paths is presented. Using the proposed 
algorithm set, production planners are enabled to assess 
temporal and spatial disparities between real production 
sequences and their corresponding plans.  

In order to obtain reliable tracking data, a markerless, 
scalable motion capture system is proposed being able to track 
operator’s motion. Having calculated the walk path trajectory 
for the operator out of the raw three dimensional skeletal data, 
a segmentation on distinctive actions is carried out. This 
process is achieved with the help of a novel classification 
approach using pre-trained, multi-layer neural networks. 
Therewith, input parameters are deducted from the operator’s 
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walking trajectory, such as velocity, angular velocity, 
acceleration. Subsequently, the outcomes of the two-layered 
feed forward neural network are utilized to determine 
correspondences between the reference walk path and real 
trajectory in order to analyze the temporal discrepancies 
between the process plans and reality.  

In order to get insights into the technical performance of the 
proposed approach, a two-staged evaluation has been carried 
out: First, the applicability of the neural network based 
segmentation algorithm within a laboratory environment is 
presented. The resulting findings show that automatic 
segmentation is sufficiently to classify processes solely based 
on the walk path. The mean segmentation error of the neural 
network is 0.15 s, whereas mean manual segmentation error is 
0.17 s.  

Second, an on-site shop-floor evaluation has been carried 
out in a real automotive final assembly line production site. The 
proposed and pre-trained neural network is applied to data sets 
being gathered in an operating final assembly line. By bringing 
the method to a real shop-floor surrounding, the total operator 
drift can be calculated in the course of time. 

6. Outlook 

Future work will optimize and extend the novel 
classification algorithm to robustly segment more distinct work 
tasks and to classify the automotive final assembly processes at 
a more detailed level.  

Finally, planning paradigms have to be discussed in general. 
Nowadays, industrial standard uses PMTS whilst novel 
planning approaches are technically already available. 
However, changing these planning paradigms to a completely 
new approach, leads to novel planning processes on the one 
hand, but also to the introduction of novel industrial regulations 
and clearance processes in automotive industry on the other 
hand. This will be discussed in further publications in detail. 
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