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ABSTRACT
Simulator studies have been conducted in the automotive do-
main since the 1960s. Recently, automated driving studies
have become more popular as real-world automated cars start
to emerge but at this time not all levels of automation can be
realized. A simulation does not entail all details of real driving,
creating a realistic simulation experience - both on a psycho-
logical and physical level - proposes recurring challenges.
These are among others: sample acquisition, simulator sick-
ness, simulator training, interface design, take-over requests
and secondary tasks in automated driving simulator studies.
In this paper, we review existing literature and summarize
important lessons from simulations in the domain of driving
automation to provide considerations for studies investigating
driver behavior in the age of highly automated driving.

Author Keywords
Automated driving; driving simulator; secondary task;
simulator sickness; interface design; user studies

CCS Concepts
•Human-centered computing→ User studies;

INTRODUCTION
Conducting studies that involve automated vehicles inherently
involves an apparatus. The current state of maturity of au-
tomated vehicles cannot cover all capabilities of automation.
Hence, the use of a real automated vehicle is not always pos-
sible. Furthermore, setups that involve dangerous situations,
have to be done in some kind of simulation. As apparatus sev-
eral technical systems are possible, such as a Wizard-Of-Oz
automated vehicle [109] which is also applicable for virtual
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reality [30]. A more low fidelity approach is the use of video
material to simulate an automated vehicle [55]. In this paper,
we focus on the use of driving simulators as apparatus.

Driving simulators have been used in both academic and in-
dustrial research since the early 1960s, investigating driver
behavior and interactions with the vehicle and the road [86].
Validity and reliability of driving simulator studies have been
investigated frequently [5] and simulated driver behavior has
been found to predict real-world driving to a considerable
degree [47, 110, 94].

The advent of automated driving opens up a whole new do-
main of simulator studies. Searching the ACM Digital Library
regarding the keywords autonomous driving, the publication
count from 2010 to 2017 per year rises steadily from 22 to 85.
Adding driving simulator to the filter, the publication count
per year increases continuously from 3 up to 27. This indicates
that research in automated or autonomous driving using simu-
lators has become increasingly popular over the last 10 years.
Experiments on user behavior in automated driving may focus
on very different phenomena, for example system acceptance,
trust, takeover behavior, cooperative strategies, usage of au-
tomation, etc. In consequence, new challenges, questions and
problems regarding simulator studies for automated driving
emerge.

In this paper, we review these challenges based on existing
literature and the experiences from conducting driving simula-
tor experiments for autonomous driving and those of fellow
researchers in the field of driver-vehicle interaction in the age
of (highly) automated driving. We derive basic considerations
to conduct studies in a driving simulator and studies that inves-
tigate user behavior in automated vehicles with an emphasis
on simulator studies on highly automated driving. The outline
of this paper is structured along the decisions a researcher has
to make during planning and conducting a driving simulator
experiment: acquisition and sample, briefing, responsibilities
and takeover, secondary tasks, simulator training, simulator
sickness, User Interface, and validity.
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PARTICIPANT ACQUISITION AND STUDY SAMPLE
In most HCI or simulator studies due to rather lengthy experi-
mental procedures (information, training, etc.) and high costs
of simulator operation [27, 7] small samples are tested. This
increases the danger of sampling errors or biases and can en-
hance the effect of single outliers on the results in unpredicted
ways.

Experience with automated driving influences participants’
behavior to a considerable degree. For example, focusing
on evaluations of user interfaces regarding automated driv-
ing, a tech-savvy and experienced sample may give different
feedback than novices [106].

A very common pitfall in HCI research is that recruitment
takes place at the labs, which mostly is a student popula-
tion [7]. This results in a population with a narrow range in
age, education, prior experience, motivation for participating,
etc. Recruiting a narrow and small sample can lead to com-
pletely different findings when investigating attitudes towards
automated driving compared to a sample of e.g. technological
enthusiastic young drivers.

It is therefore possible, that the recruited sample will have
low or no experience with autonomous cars as real world
experience with those vehicles is scarce. This needs to be
considered when interpreting the results of automated driving
studies. The behaviour the participants show in the simulator
is most often the initial reaction to the system and unlike the
behaviour we would observe with a well-known system on
the basis of daily interaction. Goodall [32] argued that future
generations growing up with automated vehicles, will be more
likely to rely on automation than today’s drivers. We therefore
recommend to report and discuss any possible implications
of the very narrow sample. If, for example age, education, or
affinity for technology mediates or moderates the results, a
critical discussion is mandatory. Furthermore, we suggest to
recruit a mixed sample including non-student participants.

Besides the participants’ experience with autonomous vehicles
or ADAS, participants’ specific motivation to participate in
the study can influence the study outcome. For example by
advertising with autonomous driving, the participants’ moti-
vation may be different than when advertising with driving
simulator. Especially when trust or acceptance is part of the re-
search question (e.g. measuring the duration of time driven in
autonomous mode), the participant’s motivation to participate
in the study is crucial for finding valid results. A participant
who wants to test autonomous driving, may not be willing to
disable the automation at all.

Therefore we suggest to consider not only where the advertis-
ing takes place, but also how the study’s task and purpose is
framed and explained. Above this, to control for these effects,
the participant’s study motivation could be assessed at the end
of the study.

It is known that there are considerable influences of mani-
fold factors on trust and acceptance of automated driving and
consequently on automation use [58, 42, 97]. These influ-
ences can be separated in the categories: human-, automation

or environment-related [36]. For recruitment and sampling
procedures in driving simulator studies, especially the influ-
ences of individual differences and psychological traits need
consideration [77, 81]. An overview on socio-demographic
and personality-related variables identified in the literature is
provided in Table 1.

User Characteristics Source
Socio-demographics and experience

Demographics [36]
Age
Gender [42]
Subject matter expertise [42, 24, 36]
Competency [36]
Faith [85, 70, 71]
Preexisting knowledge: expectations [42]
Prior experience [8, 36, 42, 58, 71]
History of interactions with the system [8, 36, 42, 58, 71]
Training [8, 36, 42, 58]

Personality
Prospensity to trust [36, 42, 58]
Neuroticism (Big Five) [42]
Extraversion (Big Five) [42, 10]
Dominance [73]
Intuitive vs sensing personality [42]
Locus of control [2, 78, 88, 90, 91]
Sensation seeking [43, 115, 78]
Attitudes towards the automation [36, 42]
Comfort with robots [36]
Self-confidence [22, 42, 58, 36, 61]

Situational
Mood [42]
Attentional capacity [42, 36]
Engagement [36]

Table 1. Overview on socio-demographic and personality-related vari-
ables. The references provide a detailed discussion of these variables.

As a first example, in the area of personality traits, locus of
control (LoC) [78, 91, 90] showed to be related with indi-
vidual differences in trust in automation and automation use.
Locus of control describes a person’s tendency to which entity
a cause of events is ascribed to – either own actions (inter-
nal LoC) or external factors beyond own control (external
LoC) [2, 88]. Therefore, giving up control which is necessary
for autonomous driving is especially difficult for people with
an internal LoC. Thus, individuals with a higher tendency for
an external LoC should be more positive about automated
driving [90]. Indeed, external LoC has shown to influence the
behavioural intention to use an automated vehicle [12] and
led to increased trust in automation [91]. Examples for LoC
scales are [54, 89]. As a second exemplary personality trait,
sensation seeking has been shown to influence the usage of
adaptive cruise control (ACC). Sensation seeking is defined as
the need and search for intense experience and the willingness
to take risk in order to reach these [115]. Individuals with
higher sensation seeking tend to drive riskier even when ACC
is engaged [78]. An example for a sensation seeking scales
is [43]. Additionally, a negative relation of self-confidence and
trust in automation was found in several studies [57, 16]. In
studies examining the role of the Big Five Personality facets,



extraversion was found to predict trust in automation [65] and
neuroticism was negatively related to the agreement with an
automated advice system [101]. In a recent study, significant
correlations of trust and agreeableness and consciousness were
reported [11]. Besides these rather general personality fea-
tures, the specific attitude towards automated driving has been
found to be a good indicator of how participants interact with
the systems [65, 29].

This underlines the impact of several personality traits on
the behavior of participants in simulator studies. Thus, they
need to be considered and controlled for. Furthermore, pre-
screening for such predicting personality traits during recruit-
ment of specific samples. At this point, it is unclear for many
personality facts if they are general predictors for trust and
automation use or if they only influence decision making un-
der specific conditions. Taken together, the current state of
research on the role of personality traits for the context of au-
tomated driving is scattered and in some regards inconclusive.
Thus, more research in this area seems necessary. Further-
more, for simulator studies it seems recommendable to decide
based on the research questions and on the basis of sample
size and study setup to assess some selected traits that may
influence the outcome of a specific study. The personality
traits should be assessed with validated scales, which have
to be chosen based on the available time and the respective
study context. While a general recommendation seems not
worthwhile, a short scale for sensation seeking can be found
in [43] and a very brief measure for the Big Five in [33]. In
order to test the participant’s attitude towards automation prior
to introducing the system, for instance the a priori acceptance
of ADAS questionnaire [78] may be feasible. Note that the
selection of assessed personality scales is specific for every
study and should be based on hypotheses on how personality
could affect participant behavior in the given study context.

BRIEFING
As long as autonomous vehicles are not part of our everyday
mobility, participants will have little or no experience in the
domain. Thus, participants’ expectation and imagination of
autonomous cars’ abilities are diverse as they will in most
cases not be based on facts but on word-of-mouth or emotions.
To reduce the impact of this error variance to our experimental
findings and for standardization and comparability, informa-
tion prior to experimental interaction with the system should
be used to adjust participant’s knowledge [53, 38]. This in-
cludes explanation of capabilities, functionality and limitations
of the automation. A crucial part of these instructions is the
framing of the system, especially to explain the system’s re-
liability [107, 52, 53]. Providing technical details about the
automation could result in a mixed understanding of abilities
among participants. For instance, telling participants that the
car’s sensors include radar might lead to mixed reactions in
foggy situations because some participants could assume that
radars are superior in such situations, other participants lack of
such information [106]. This suggests that the briefing should
contain the system’s abilities and system boundaries rather
than technical features to reduce the scope for interpretations.

People have a bias towards automation and generally expect
automated systems to outperform humans [22] and to work
nearly flawless (perfect automation scheme) [66, 61]. In con-
trast to this, introducing an automation as not perfectly reliable
may disappoint participants and thus lead them to rely even
less on the system [16]. Trust develops dynamically depend-
ing on dispositional characteristics of the driver, situational
factors and initial experience with the system (e.g. [58]). If
a driver trusts the system and relies on it immediately, trust
will develop differently than it would if he would not trust it
at all. The initial level of trust influences the initial reliance
strategy considerably. Therefore, experiences gathered in in-
teraction with the system will always influence the course
of development of trust into the automation resulting in an
interdependent relation of trust and reliance [42]. The driver
should use the automation optimally relying on the capabil-
ities and knowing where the restraints of the system lie. If
the driver is aware of system capabilities and restraints trust
is well calibrated (calibrated trust), the introduction of the
system should prevent drivers from overtrusting the system
(using it in situations it is not capable of) or placing distrust in
the automation (not using it although it would be capable) [58].
Taken together, if trust is a variable in the study, the system
should not be introduced as flawless [57]. We propose that the
instructions of the automation should be explained in detail in
the publication for replication of the study.

Besides informing participants about system failures, the ques-
tion arises if system failures should be demonstrated during the
initial phase of the study. Witnessing a system failure can be
expected to affect participants’ trust towards the automation,
even if it was made clear that the failure was intentionally im-
plemented in this specific situation [45, 114]. We recommend
to consider the influence of this exposure on the behavior and
the results of the study and to decide individually whether to
include a demonstration to system failures or to omit it.

Another important aspect in the instructions is to inform par-
ticipants about the possibility of simulator sickness (see below
for a thorough discussion of the phenomenon). The stronger
participants expect simulator sickness, the more likely it will
occur [51]. The way information is presented about simulation
sickness, can amplify the experienced sickness because of a
framing effect [103]. Accordingly, the introduction should
be phrased in a way to avoid an increased simulator sickness.
For instance, it should be avoided to tell participants that the
simulation may cause vomiting.

SIMULATOR SICKNESS
Apart from the positive effects driving simulators pose for ex-
perimental research, they remain virtual environments which
can potentially cause a perceptional conflict called simula-
tion sickness. This includes symptoms like nausea, vertigo,
sweating, headache and in the worst case sometimes vomit-
ing [84, 49]. 80-90% of participants report simulator sickness
related symptoms in simulator studies, that can affect about
5-30% of participants in such a way that they cannot finish the
experiment [99]. There are different theories why simulator
sickness and motion sickness occur. The popular sensory con-
flict theory explains simulator and motion sickness due to the



discrepancy between the actual sensory information and the
expected sensory information [83, 75, 6].

According to [37], characteristics that can worsen simulator
sickness symptoms are: long exposure time, curves, turns, and
higher speeds:

Cobb and colleagues [13] state that under one hour of expo-
sure, simulator sickness symptoms steadily increase. After
the one-hour mark is reached, symptoms return to a nominal
level fifteen minutes later. Others [28, 50] suggested, that
there might be be a positive and almost linear relationship be-
tween simulator sickness and exposure time. The best strategy
against simulator sickness is exposure and adaption [98] but
adaption itself is a highly individual process [56]. Participants
are able to adapt to simulator sickness over multiple exposures
in the simulator [98]. Some people will adapt over time while
sickness is declined [56], but symptoms can also increase
through repeated exposures [35]. About 5% of participants
may not be able to adapt [39]. Road design also seems to
affect simulator sickness. The road should be designed that
there is a minimum of curves and if there are curves, they
should not have small radii.

Surrounding conditions (like temperature) should be consid-
ered to mitigate simulator sickness [27]. Simulator sickness is
higher in fixed-base driving simulators compared to moving-
base simulators [15]. In fixed-based simulators, the feeling
of acceleration and deceleration is absent. Therefore, feed-
back mechanisms to control speed are lacking [95]. Also,
pre-screening of participants provides a perspective to control
the problem. The Georgia Tech Simulator Sickness Screening
Protocol (GTSSSP) [28] is one approach to pre-screen par-
ticipants in order to predictively filter participants regarding
increased risk for simulator sickness.

Despite occurring simulator sickness, some aspects of driving
performance may not be influenced [37], but this mainly ap-
plies for speed and lane keeping behavior. But on the other
hand, especially nausea can affect driving performance nega-
tively. Loss of motivation, avoidance of tasks that are found
disturbing, and possible distraction of the normal attention al-
location process are possible negative effects [68]. The experi-
menter should also be aware that participants cannot decide
whether they have to abort the experiment or not, therefore, we
propose that the experimenter asks for their well being or the
need for a pause as opposed to asking for aborting the experi-
ment. Once the participant feels so sick that they need a pause,
the likelihood of becoming sick again after the pause is high
and it should be considered to abort the experiment [37]. Au-
tomated driving could increase simulator sickness compared
to manual driving, which can lead to preventing the activa-
tion of the automation or engage in non-driving related tasks
(NDRTs) [18]. Presumably because of the inability to antici-
pate the future motion path. Consequentially, implementing
motion path cues could help to reduce simulator sickness [18].
The effects of lacking motion path cues also apply when per-
forming secondary tasks. Therefore, preferring non-visual
secondary tasks or locating displays in peripheral view of the
road could reduce simulator sickness [18]. Therefore, we sug-

gest to anticipate higher dropout rates compared to a manual
driving simulator study. Severe symptoms of simulator sick-
ness can influence the results, At the end of the study, it is
common practice to ask participants for simulator sickness
symptoms (e.g. [49]).

RESPONSIBILITIES AND TAKEOVER
To categorize the driver’s level of responsibility, the SAE
levels of automation can be used as an orientation [14]. When
investigating NDRTs, execution of driving (level 1) must be
on the side of the system, which is the case in SAE level 2
and above because NDRTs are only available when the human
driver is currently not in control. The monitoring responsibility
(level 2) and fallback entity (level 3) are the key factors when a
takeover request (TOR) is triggered. We recommend to define
the levels of automation of the system for the study to handle
takeover situations properly (see the following section). How-
ever, naming the level of automation and definitions might not
necessarily be in the instructions. It might be more prudent to
explain the capabilities and boundaries of the system along
with the responsibilities of the driver. Participants need not
comprehend technical definitions but should know how to han-
dle the automated driving feature, including malfunctions and
takeovers [58, 22].

When TORs are implemented, it is important for participants
to know how to react. A takeover is a system initiated control
transition from automated drive to manual drive: automation-
initiated driver control (AIDC), commonly due to a system
boundary [60]. The participant’s instructions should explain
the differences between a system boundary and a malfunction.

A system boundary is well defined and predictable and is
reliably detected by the system [31]. A malfunction occurs
when something is not predictable, for example when a sensor
is failing. For instance, a system boundary is reached when
the vehicle is leaving the motorway if the automation can only
drive on a motorway. The participant’s instructions should
explain all system boundaries and the required action, which
most likely is a takeover. It is also important to explain the
consequences if the participant fails to regain control over the
car during the takeover. The consequences depend on the car’s
level of automation. The participant’s instructions should also
explain what happens when a system failure occurs [58, 22].

Other research has shown that the presence of motion
cues [93], or traffic density [80] influences takeover perfor-
mance. This suggests to, if feasible, aim for more realistic
simulations in terms of perceived motion and consider the
influence of simulated traffic on takeover performance. If not
feasible, the limitations and implications should be discussed.

SECONDARY TASKS
One of the advantages of automated driving is the possibility
to engage in NDRTs during driving. Such tasks can be any
possible activity in the car, such as reading a newspaper or
playing games on the phone. Depending on the car’s level of
automation, the driver must be capable to take over control of
the car at all times and drive manually. The time to recover



from a NDRT and to build up sufficient situational awareness
is a factor very crucial for driving safety [25]. Some tasks may
have a longer recovery time than others [69].

When the driver is involved in the driving task to a certain
extend, which is the case in all levels of automation except
for full automation (level 5), the NDRT becomes a distraction
because the driving task may still become important at some
point.

Driver distraction can be categorized in auditory, visual, cog-
nitive, physical, technology-based and non-technology based
distractions [112]. Physical distraction can further be dis-
tinguished according to the degree of interruptibility of the
task [74]. An easily interrupted task is something that requires
few or no action to stop the task and return to the driving
task, such as reading a book or playing chess (without clock).
Whereas hardly interruptible tasks require the user to do addi-
tionally steps to pause the task or involve some kind of pun-
ishment (e.g. watching movies then hit pause). Therefore, one
should consider the factor of interruptibility of the secondary
task as well as to discuss its influence on the performance.

Especially in the context of a research study, the priorities of
the driving task and the secondary task can differ from real life
as no real danger is given and losing a Tetris highscore may
be more important for some participants than taking control
of a simulated car.

Having a secondary task requires some judgment regarding
the relative importance of both tasks – a task that is not triv-
ial at all [23]. There are examples of other research [67]
where performing well in the driving task was not incentivised
but performing well in the secondary task has been encour-
aged. The validity of such studies is questionable and as stated
in [67], such results only serve as worst case examples [67].
We discuss the influence of incentives in the Section Validity
and Behavior.

As mentioned before, a reason for automation use can be gain-
ing free time for NDRTs. The motivation to use automated
driving features may depend on the possibilities to do some-
thing else during the ride in order to prevent underload [44,
113]. In this regard, the question arises what kind of secondary
tasks can be provided in a driving simulator study. There are
standardized tasks that can cause different kinds of distrac-
tions, such as SuRT (ISO/TS 14198) or n-back (e.g. [110, 80]).
However, those tasks are usually not very entertaining and
hence inappropriate to counteract boredom during automated
driving.

There are several other approaches, some use selected litera-
ture to read or messages to write [21], some use smartphone
games [104, 64], and other use movie trailers [108]. Another
possibility to provide secondary tasks is that participants can
bring their own tasks or use their private smartphones.

Participants may have a different degree of intrinsic motivation
to engage in an otherwise unrewarded secondary task (e.g.
some participants dislike playing Tetris whereas others love to).
Providing other secondary tasks can have different influences

on the usage of automation or even attention to TOR and the
willingness to gain back control [26].

Letting participants chose their tasks for themselves, could
create the highest external validity but also brings a highly
uncontrolled factor into the study and consequently diminishes
internal validity. In our literature research, we have found ex-
amples for all of the aforementioned techniques. All of these
approaches have their own characteristics, drawbacks, advan-
tages and possible consequences for the results. Therefore, we
assume that there is not one perfect secondary task for simu-
lator studies. In any case, motivational influences (possible
differences of engagement) of the secondary task should be
discussed when behavior is a matter of research.

The incentive to do NDRTs in a more naturalistic setting are
intrinsic. Drivers may want to be productive or entertained. In
a study, intrinsic motivations may not be present. To control
the motivation of the NDRT, extrinsic motivation seems there-
fore adequate. The use of a controlled tasks, like watching
movies combined with external incentives (e.g. provide higher
payoffs for correctly answered questions regarding the movie
(e.g. [108]) is one approach.

We suggest that the driving task should be introduced as the
highest priority. To support this, accidents or even violations
of traffic rules should influence the final payout negatively.
This includes accidents and violations caused by the automa-
tion, because incentives serve as substitution for consequences,
which are independent of the nature of the driver (human or
machine). Besides the driving performance, the secondary task
performance should be coupled with incentives to adapt the
motivation in participation. Another approach is to provide
tasks that participants have to do during the study but can
decide when they want to complete the task. A participant can
be given the choice do a secondary task during or after the ride
to simulate productivity.

SIMULATOR TRAINING
Training sessions are common in HCI studies to avoid learning
effects and to familiarize with a new system. Such training is
also commonly a part of driving simulator experiments. This
is especially important as the driving simulator responds dif-
ferently to braking, accelerating and steering as a real vehicle.
Main reasons for training include: (1) adoption, the reasons
for a simulator training are (2) familiarization with the interior,
like indicators and switches, (3) learning to handle study spe-
cific things like UI, and (4) reducing simulator sickness [19,
87]. (5) Adapting to transitioning between manual and auto-
mated driving, for example TOR (if such transitions occur in
the study). (6) reduction of novelty, curiosity, and excitement
and introduction to the system’s behavior in specific [58, 42,
22].

In previous research, there is no uniform procedure for simu-
lator training (e.g. time, distance, driving tasks) [95]. Some
studies used a pre-defined period of time, a pre-defined dis-
tance, a self-assessment or a mixture [87]. The duration of the
training is very diverse in previous research, reaching from two



minutes [3] up to two days [76]. In between, some sessions
lasted 5 minutes [102], 10 minutes [20], and 30 minutes [105].

When adaption is insufficient or even lacking at all, partici-
pants have to familiarize with the simulator during the actual
experimental trials which influences the performance in the
driving task and could bias the results of the experiment [95].
Spending more time in the simulator can improve adaption,
while the probability for simulator sickness may rise [56, 50].
McGehee and colleagues [63] claim that a training benefit
has reached its maximum after five minutes except for older
drivers (65+) which need about eight minutes to adapt. The
familiarization should cover the awareness and consequences
of transitions and it should take the fear of executing such
transitions [58]. If there are multiple ways to execute a tran-
sition (e.g. disabling the automation by a button, by braking,
etc.) every method should be covered in the training session
to prevent participants acting out of curiosity. A participant
should not discover the features or behavior of the automation
during the actual trials. For example, if participants do not
know how the system performs when overtaking other cars,
the participant should test this in the training and not in the
test trial. A more complex and demanding track, requires a
longer adaption period than a straight road [87].

Driving an automated car is a novel experience for most partic-
ipants. Especially when investigating the usage of automated
driving, the participants curiosity regarding automated driving
might be a confounding factor. It is hard to eliminate this
because participants may even be curious after having driven
with the system for a while. Not only curiosity regarding au-
tomated driving, but also curiosity towards the simulator may
exist. Therefore, not only the curiosity for automated driving,
but also for manual driving should be considered.

After all six aspects of a simulator training have been con-
sidered, it is also important to check if the training had the
required effect to a sufficient extend. For this, we propose
three different approaches: (a) self-report of participants if
they feel to have been provided with enough training [96, 87].
(b) evaluation of the participants’ performance, e.g. lane devi-
ation and stopping the training as soon as their performance
reaches a certain threshold [95]. (c) evaluation of the correct-
ness of the mental model of the participants by asking about
specific situations or functions.

For each six aspects, we suggest different assessment strate-
gies: For (1) familiarization with the interior: Asking partic-
ipants if they have an understanding of the interior, as well
as testing participant’s knowledge for specific functions (e.g.
indicator or light) might work well and we assume that the car
interior and UI is understood very quick and intuitively.

For (2) adapting to the vehicle dynamics: performance indica-
tors are measuring lane deviations, adherence to speed limits,
and estimate breaking distances[27]. This can also be com-
bined with asking participants if they feel comfortable to drive
the car. The feeling of adaption can vary among participants
from 10 [62] up to 30 minutes [79] and is an aspect that should
be considered when scheduling participants.

For (3) adapting to study specific features: this is different for
each study, therefore, we suggest to decide individually and
explain the decisions appropriately.

For (4) adapting to transitions: if participants struggle with
takeover situations, we recommend to include multiple transi-
tion changes within the test tracks.

For (5) novelty: it is hard to identify when participants are
familiar with new situations. Therefore we suggest to ask the
participant about their personal feeling about the system and
if they want to further explore the (automated) system. The
test drive should be continued until their impressions about
the system remains constant.

For (6) situations: we suggest to run through every situation
at least one time in order to demonstrate the system’s behavior
in each situation if possible. Participants should discover the
abilities and the performance of the automation during the
training. If this is not possible, the study design should include
retesting of important situations.

UI
The user interface (UI) plays an important role in automated
vehicles and influences the way automation is perceived and
used. As the UI opens up the black box of automation and
provides a large extent of the information used to built up the
mental model of the automation, even slight modifications
(e.g. in a HUD) could entail major consequences for the psy-
chological reality of the driver interacting with an automated
vehicle. This may lead to significant changes in variables
like reaction times, subjective effort or decision making [34].
The appearance of the system influences trust towards the au-
tomation (e.g. [58, 42]). An interface that looks rather old or
immature, can cause participants to depreciate the system’s
capabilities [42, 111, 58, 48].

To provide some guidance for designing user interfaces for
automated driving, NHTSA has released the Federal Auto-
mated Vehicles Policy [1] in 2016 that includes minimum
requirements an automated driving related human machine
interface should inform the operator (driver) if the system is:
(1) functioning properly, (2) currently engaged in automated
driving mode, (3) currently unavailable for automated driving,
(4) experiencing a malfunction, and (5) requesting control tran-
sition from automated driving to manual driving. Most driving
simulators will not have any specific hardware indicating the
status of the automation. Therefore, graphical interfaces play
an important role in communicating the automation state.

We recommend being aware of the consequence of ambigu-
ous UIs. The interface should communicate the automation
state unambiguously [92]. Buttons for switching automation
state like Automation ON might create confusion because
the button might display the action or the current state. One
solution to overcome this challenge could be dividing the UI
into status and action components: the status display shows
the current state of the automation (e.g. automation is: on |
off | unavailable), the action button shows the future state of
the automation (activate | deactivate). See Figure 1. Experi-
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Figure 1. Example for an automated driving HMI. The Figure shows
3 different automation states from left to right: unavailable, disabled,
and enabled. The automation status is color coded, unavailable is gray,
disabled is red and enabled is blue. The button text encodes the action,
not the current state to avoid ambiguities regarding automation state.
The button for enabled and disabled are on different positions to avoid
accidentally double pressing and switching states.

menters should also consider to implement multiple ways to
disable and enable the automation, for example by pressing
the acceleration or brake pedal. We recommend to evaluate the
interface before the study and discuss possible confounding
effects of the UI.

VALIDITY AND BEHAVIOR
When conducting simulator experiments, the inherently safe
environment is often an advantage. Testing participant’s be-
havior in hazardous situations or other situations in which par-
ticipants would be in danger in the real world are almost only
possible in simulations. Also in terms of experimental control
a simulation provides crucial advantages over real world driv-
ing [27]. First, confounding variables such as weather, traffic
and lighting can be standardized and controlled. Second, the
driving situations can be easily repeatedly produced and study
costs are considerably lower than real vehicle studies.

However, simulators cannot fully replicate real-life in every
aspect [17]. Participants do not behave the same way, as they
would in their own vehicle [27]. Although user reactions might
be completely different in a simulator than in reality because
nobody is exposed to real danger, a simulated crash may have
a psychological effect on participants [27]. However, when
hazardous situations are the scope of the investigation, it is
often criticized that simulators can measure performance, but
not behavior. This means it can be observed what participants
can do but not what they choose to do [72, 82]. We currently
face the problem that real automated vehicles cannot be used
for any kind of automated driving studies due to restricted
availability or indefensible dangers for the driving environ-
ment or participants. To date, the validity of automated driving
simulator studies has not been fully investigated.

To address this problem, we first discuss several subcategories
of validity: Absolute validity, describes the gap between re-
sults in a lab experiment and potential results in the real world
(can be measured via the deviation of speed and lane posi-
tion, task time, and visual attention) [110], whereas relative
validity describes the direction of change. Physical validity
describes the accuracy of a simulator’s underlying visual and
physical realism, for example rendering and calculating iner-
tia. Behavioral validity describes the discrepancy between the
actions and decisions during the experiments versus on-road
behaviour [4, 110]. Both, behavioral and physical validity, are
not necessarily aligned but it seems reasonable that a realistic
simulation produces higher behavioral validity [9]. The term

performance validity describes parameters like speed and lane
keeping.

We assume that absolute validity in automated simulator stud-
ies is hard to achieve and results claiming absolute validity
may be questionable when decision making or behavioral
aspects are measured. However, we further assume that be-
havioral validity can be investigated in a simulated automated
vehicle [47, 110, 94].

It is known practice to replace components that have been
eliminated by the simulation through instructions and incen-
tives. Improving relative behavioral validity can be achieved
by incentives, like a reward/penalty system [27]. Although
the consequences for the participant cannot be the same as in
reality, the participant’s reaction in the simulator to a certain
event should be as close as possible to the same event in real
life. Achieving this is not trivial. In reality, the consequences
for a failing automation reach from nothing, over cost up to
death. Besides the immediate consequences, there are also
consequences regarding the attitude towards the automation
itself that is likely to be influenced. When the automation fails,
drivers may be concerned about the automation’s capabilities
for a long time. Our observations in simulations however show
that trust in the automation rises very quick after a failure hap-
pens or a takeover request occurs, which is in line with the
literature [40, 77, 91].

Incentives for driving simulators can be distinguished in the
following categories [27]: (1) Consequential, which can lead
to real world consequences. For example when simulations
are used to measure the subject’s ability to perform a tasks,
like pilots failing in the simulation leading to consequences in
real life. Here the simulation has consequences regarding the
permission to operate on machines in reality. This does not
apply for simulator studies. (2) Intrinsic incentives, that comes
from the participant’s willingness to perform well in a specific
task, for example because of a given challenge. (3) Extrinsic
incentives, like monetary rewards. It is considered ethical to
use deception at the beginning of a study and make participants
believe that it will impact their compensation/reward, but then
give all participants the same reward afterwards anyway.

In driving simulations practitioners rely mainly on intrinsic
and extrinsic incentives. One approach to add consequential
incentives could be to add raffle for an additional monetary
reward, like a voucher that one of the participants can win.
Then lower the chances to win the voucher if participants are
involved in accidents or similar.

There are several approaches for incentives in simulator stud-
ies. Stein and colleagues [100] describe a monetary re-
ward/penalty system where faster completion times were re-
warded, speeding was associated with speeding tickets result-
ing in monetary penalties. The ticket was not always fined
but followed a parameterized probabilistic algorithm. Crashes
influenced both, completion time and money. The effect can
be enhanced by adding noises on specific events, like sirens
for tickets and breaking glass as well as screeching tires for
a crash [59, 27]. The idea of completion time can also be
adopted to automated driving. For instance, the automation



can be instructed as driving more ecologically which pays off
as rewards in the end of the experiment to encourage using
automated driving. On the other hand, the automation may
drive very defensive and slow compared to an average hu-
man driver to encourage manual driving [41]. In this study,
the automation was slowed down by a vehicle ahead. When
participants canceled the automation and took over the car
in front, they could drive faster. This behavior was rewarded
because their payment was linked linearly to the length driven
on the track. When participants drove manually and as fast as
allowed and possible, they would get 9e, when the automation
drove the entire time, they would get 6e. We assume that this
effect could be enhanced when instructing that participants
will get the full amount (e.g. 9e) and that a certain behavior
(e.g. driving a fewer distance, causing crashed) result in sub-
tractions of the end value because according to the prospect
theory [46], ’losses loom larger than gains’. The incentive
does not necessarily have to consist of money.

CHECKLIST
Stepping through the process of automated driving simulator
studies, we identified eight stages where we found typical chal-
lenges to overcome when conducting studies. We summarized
all considerations from the text above into the checklist below.

SAMPLE

• Recruit a mixed sample, report and discuss the sample and
limitations.
• Consider and assess psychological traits and socio-

demographics (e.g. LoC, sensation seeking and attitudes
towards the automation) (possibly pre-screen).
• Consider selection bias. Avoid advertising that addresses

the curiosity or motivation of participants.

BRIEFING

• Exclude technical information from the briefing.
• Describe system’s capabilities and system boundaries in-

stead.
• Decide whether to include a demonstration of system fail-

ures.
• Refrain from introducing the system as flawless, if trust is

of interest in the study.
• Explain the instructions of the automation in any publication

to facilitate replication.

SIMULATOR SICKNESS

• Avoid long exposure times, narrow curves, sharp turns, and
high speeds.
• Pre-screen participants (e.g. GTSSSP) to exclude partici-

pants experiencing severe symptoms of simulator sickness.
• At the end of the study, assess simulator sickness (e.g. SSQ)

to avoid confounded results.
• Ask for participants’ well-being and need for breaks.
• Stop the experiment if the participant feels severe symptoms

of simulator sickness.

• Implement motion path cues.
• Consider framing effects when briefing simulator sickness.

TAKEOVER

• Explain the differences between a system boundary and a
malfunction and the desired action if a TOR occurs.
• Aim for realistic motion simulation.
• Consider simulated traffic as an influence on TOR perfor-

mance.

SECONDARY TASK

• We recommend to discuss motivational influences (possible
differences of engagement) of the secondary task when
behavior is a matter of research.
• Control the motivation for the secondary task with external

incentives.
• Introduce the driving task as the primary task.
• Preferring non-visual secondary tasks or locate displays in

peripheral view of the road to reduce simulator sickness.

SIMULATOR TRAINING

• Simulator training should cover: adoption, familiarization
with the interior and the study setup, transitioning between
manual and automated driving, reduce simulator sickness,
and novelty effects.
• Check training effects: self-reports from participants, per-

formance evaluation, and participant’s knowledge test.

USER INTERFACE

• Avoid ambiguous UIs for example by separating the action
buttons from the automation states.
• Implement multiple ways to enable and disable the automa-

tion.

VALIDITY

• Introduce a penalty/reward system as consequences for driv-
ing behaviour.

• Let accidents/violation of traffic rules influence the final
payout negatively.

CONCLUSION
In this paper, we provided insights and practical suggestion
for conducting simulator user studies in automated driving.
We investigated common aspects of recent automated driving
studies.

We see our listings and suggestion as useful hints and not as
a complete standard. We discussed and examined different
subtopics of automated driving simulator studies. We mainly
focus on a literature research and also on self reports and
observations. In order to extend our considerations into guide-
lines or standards, our observations need to be confirmed with
user studies. One question that needs further investigation
will be the general validity of automated driving simulator



experiments because of the safe environment. Another topic
that needs further investigations is the use of secondary tasks
and NDRTs. There are different approaches what participants
can do while driving automated. Our observations provide
useful insights and a concrete checklist of aspects to consider
when planning and conducting simulator experiments in the
context of automated driving.

ACKNOWLEDGMENTS
This work was funded by the Carl-Zeiss-Scholarship for PhD
students.

REFERENCES
1. National Highway Traffic Safety Administration and

others. 2016. Federal automated vehicles policy.
Accelerating the next revolution in roadway safety. DOT
HS 812 (2016), 329.

2. Icek Ajzen. 2002. Perceived behavioral control,
self-efficacy, locus of control, and the theory of planned
behavior. Journal of applied social psychology 32, 4
(2002), 665–683.

3. Peter H Baas, Samuel G Charlton, and Gary T Bastin.
2000. Survey of New Zealand truck driver fatigue and
fitness for duty. Transportation research part F: traffic
psychology and behaviour 3, 4 (2000), 185–193.

4. Gerard J Blaauw. 1982. Driving experience and task
demands in simulator and instrumented car: a validation
study. Human Factors 24, 4 (1982), 473–486.

5. Evi Blana. 1996. Driving Simulator Validation Studies: A
Literature Review. (1996).

6. Willem Bles, Jelte E Bos, Bernd de Graaf, Eric Groen,
and Alexander H Wertheim. 1998. Motion sickness: only
one provocative conflict? Brain research bulletin 47, 5
(1998), 481–487.

7. Kelly Caine. 2016. Local Standards for Sample Size at
CHI. In Proceedings of the 2016 CHI Conference on
Human Factors in Computing Systems (CHI ’16). ACM,
New York, NY, USA, 981–992. DOI:
http://dx.doi.org/10.1145/2858036.2858498

8. Erika N Carlson and R Michael Furr. 2013. Resolution of
meta-accuracy: Should people trust their beliefs about
how others see them? Social Psychological and
Personality Science 4, 4 (2013), 419–426.

9. Oliver Carsten and A Hamish Jamson. 2011. Driving
simulators as research tools in traffic psychology.
Handbook of traffic psychology 1 (2011), 87–96.

10. Justine Cassell and Timothy Bickmore. 2003. Negotiated
collusion: Modeling social language and its relationship
effects in intelligent agents. User Modeling and
User-Adapted Interaction 13, 1 (2003), 89–132.

11. Shih-Yi Chien, Michael Lewis, Katia Sycara, Jyi-Shane
Liu, and Asiye Kumru. 2016. Influence of cultural factors
in dynamic trust in automation. In Systems, Man, and
Cybernetics (SMC), 2016 IEEE International Conference
on. IEEE, 002884–002889.

12. Jong Kyu Choi and Yong Gu Ji. 2015. Investigating the
Importance of Trust on Adopting an Autonomous Vehicle.
International Journal of Human-Computer Interaction
31, 10 (2015), 692–702. DOI:
http://dx.doi.org/10.1080/10447318.2015.1070549

13. Sue VG Cobb, Sarah Nichols, Amanda Ramsey, and
John R Wilson. 1999. Virtual reality-induced symptoms
and effects (VRISE). Presence: teleoperators and virtual
environments 8, 2 (1999), 169–186.

14. SAE On-Road Automated Vehicle Standards Committee
and others. 2016. Taxonomy and Definitions for Terms
Related to Driving Automation Systems for On-Road
Motor Vehicles. SAE Standard J3016 (2016), 01–30.

15. R Curry, B Artz, L Cathey, P Grant, and J Greenberg.
2002. Kennedy ssq results: fixed-vs motion-based FORD
simulators. In Proceedings of DSC. 289–300.

16. Peter de Vries, Cees Midden, and Don Bouwhuis. 2003.
The effects of errors on system trust, self-confidence, and
the allocation of control in route planning. International
Journal of Human-Computer Studies 58, 6 (2003),
719–735.

17. J De Winter, P Van Leuween, and P Happee. 2012.
Advantages and disadvantages of driving simulators: A
discussion. In Proceedings of Measuring Behavior.
47–50.

18. Cyriel Diels and Jelte E Bos. 2016. Self-driving
carsickness. Applied ergonomics 53 (2016), 374–382.

19. Joshua E Domeyer, Nicholas D Cassavaugh, and
Richard W Backs. 2013. The use of adaptation to reduce
simulator sickness in driving assessment and research.
Accident Analysis & Prevention 53 (2013), 127–132.

20. Lisa Dorn and David Barker. 2005. The effects of driver
training on simulated driving performance. Accident
Analysis & Prevention 37, 1 (2005), 63–69.

21. Frank A Drews, Hina Yazdani, Celeste N Godfrey,
Joel M Cooper, and David L Strayer. 2009. Text
messaging during simulated driving. Human factors 51, 5
(2009), 762–770.

22. Mary T Dzindolet, Scott A Peterson, Regina A
Pomranky, Linda G Pierce, and Hall P Beck. 2003. The
role of trust in automation reliance. International Journal
of Human-Computer Studies 58, 6 (2003), 697–718.

23. Ward Edwards. 1961. Costs and payoffs are instructions.
Psychological Review 68, 4 (1961), 275.

24. Fredrick Ekman, Mikael Johansson, and Jana L Sochor.
2016. Creating appropriate trust for autonomous vehicle
systems: A framework for HMI Design. In Proceedings
of the 95th Annual Meeting of the Transportation
Research Board, Washington, DC January 10-14, 2016.

25. Mica R Endsley. 1995. Toward a theory of situation
awareness in dynamic systems. Human factors 37, 1
(1995), 32–64.

http://dx.doi.org/10.1145/2858036.2858498
http://dx.doi.org/10.1080/10447318.2015.1070549


26. Alexander Eriksson and Neville A Stanton. 2017.
Takeover time in highly automated vehicles: noncritical
transitions to and from manual control. Human factors 59,
4 (2017), 689–705.

27. Donald L Fisher, Matthew Rizzo, Jeffrey Caird, and
John D Lee. 2011. Handbook of driving simulation for
engineering, medicine, and psychology. CRC Press.

28. Thomas M Gable and Bruce N Walker. 2013. Georgia
Tech Simulator Sickness Screening Protocol. Technical
Report. Georgia Institute of Technology.

29. David Garcia, Christine Kreutzer, Karla Badillo-Urquiola,
and Mustapha Mouloua. 2015. Measuring Trust of
Autonomous Vehicles: A Development and Validation
Study. In International Conference on Human-Computer
Interaction. Springer, 610–615.

30. David Goedicke, Jamy Li, Vanessa Evers, and Wendy Ju.
2018. VR-OOM: Virtual Reality On-rOad Driving
siMulation. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems (CHI ’18).
ACM, New York, NY, USA, Article 165, 11 pages. DOI:
http://dx.doi.org/10.1145/3173574.3173739

31. Christian Gold, Daniel DambÃűck, Lutz Lorenz, and
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