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Figure 1: Overview of the proposed approach. Left side: statistically distributed locomotion trajectories. Right side: example
of automotive walk path planning.

ABSTRACT
Within the manufacturing industry, digital modelling activities

and the simulation of human motion in particular, have emerged

during the last decades. For the use-case of walk path planning,

however, recent path planning approaches on the one hand reveal

drawbacks in terms of realism and naturalness of motion. On the

other hand, the generation of variant-rich travel routes by means

of modeling the statistical nature of human motion has not been

explored yet. In order to contribute to a better prediction quality

of planning models, this paper therefore presents an approach for

realistically simulatingwalk paths of single subjects. In order to take

into consideration the variability of human locomotion, a statistical

model describing human motion in a two-dimensional bird’s eye

view is presented. This model is generated from a comprehensive

database (20 000 steps) of captured human motion and covers a

wide range of gait variants. In order to obtain short and collision-

free trajectories, this approach is combined with a path planning

algorithm. The utilized hybrid A* path planner can be regarded

as an orchestration-instance, stitching together succeeding left

and right steps, which were drawn from the statistical motion

model. Although being initially designed for industrial purposes,

this method can be applied to a wide range of use-cases beyond

automotive walk path planning. To underline the evident benefits
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of the proposed approach, the novel motion planner’s technical

performance is demonstrated in an evaluation.
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1 INTRODUCTION
The automotive industry is a highly competitive market. Manufac-

turers are currently facing the challenge of having to cope with a

demand for product diversification, which leads to extensive prod-

uct portfolios [Martín et al. 2013]. At the same time, this paradigm

shift entails rising complexity for production since the total number

of assembly tasks is growing. As a consequence of this ongoing

process, digital simulation software have become indispensable in

production planning, since traditional pen and paper methods are

increasingly impracticable. Even though constituting a first step in

the right direction, the outcome of industrial simulation software

can significantly deviate from the situation on the shop-floor. Espe-

cially when planning the routes of assembly operators, simplifying

assumptions of common path planning approaches are leading to a

gap between plan and reality - as shown by [Agethen et al. 2016].
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Most notably, these tools predominantly utilize algorithms (e.g.,

[Hart et al. 1968; Reynolds 1999]) neglecting gait and the statistical

nature or humanmotion. In particular, a sequence of coarse-grained

walk paths is simulated, which represents the average route of an

assembly operator. Based on this trajectory, next, the expected

mean distance and travel time is estimated. These information are

in turn used for optimizing workplaces within manual assembly

lines. However, this procedure does not consider the fact, that the

spatio-temporal properties of each walk path varies statistically.

For instance, each actual execution of a locomotion task is unique

and slightly differs from the other counterparts. As a consequence,

the sum of all walk paths being performed in the context of one

nominal route (e.g., "walk from rack to car") does not show a de-

terministic behavior - but forms a statistically distributed motion

corridor. Figure 1 depicts this phenomenon. Please note, that these

circumstances intensify in the face of low cycle times for automo-

tive production (approx. 100 s) and the high numbers of repetitions

that come along with it.

Therefore, more precise and accurate methods for realistically

modeling assembly workers’ behavior have to be employed. To

overcome these drawbacks, this paper presents a novel motion

planning algorithm which is tailored to effectively generate statisti-

cally distributed root-joint trajectories. Even though being initially

designed for the aforementioned use-case, the introduced method-

ology can be applied to a wide range of domains focusing on the

simulation of single subjects.

In particular, the three main technical contributions of this paper

are:

(1) A probabilistic motion model predicting the transition be-

tween succeeding left and right steps.

(2) The integration of this transition model into a hybrid A* path

planning algorithm.

(3) The actual implementation of the novel motion planning

algorithm.

The remainder of the paper is structured as follows: First, the

state-of-the-art in the context of simulation of human locomotion

is reviewed. Second, an approach is introduced to predict statis-

tically distributed motion variations. In order to implement this

principle for industrial purposes, a large number of human walking

trajectories is captured using an OptiTrack motion capture system.

Subsequently, a probabilistic motion model is presented, being de-

rived from this database. Having introduced the novel approach, its

applicability and technical performance is assessed in an evaluation.

The paper concludes with an assessment and outlook on further

optimizations.

2 RELATEDWORK
The approach presented builds upon the following main research

areas.

2.1 Motion Planning
In general, two-dimensional motion planning is utilized to generate

a collision-free trajectory between the initial position of a virtual

character and a target, while fulfilling certain constraints. In con-

trast to the domain of character animation, the whole locomotor

system of the human body is reduced to its root-joint. Approaches

in this domain can mainly be divided into local and global plan-

ners. Algorithms, which can be assigned to the latter category take

into account knowledge about the entire scene, hence generating

collision-free solutions on a global scale. In contrast, the former

only guarantees local optimality, while minor computational costs

are induced. Literature presents a wide range of approaches for local

and global motion planning: amongst others, techniques such as cell

decomposition [Hart et al. 1968], probabilistic roadmaps [Kavraki

et al. 1996], potential fields [Gasparetto et al. 2015] as well as rapidly

exploring random trees [LaValle 1998], genetic algorithms [Hu et al.

2004] or neural networks [Glasius et al. 1995] are used. Other works

introduce steering behavior approaches [Reynolds 1999], physical

models [Helbing et al. 2000] and velocity obstacle methods [Van

Den Berg et al. 2011] or use vision-based approaches [Ondřej et al.

2010] to simulate human motion.

Even though literature presents algorithms (e.g., [Kavraki et al.

1996; LaValle 1998]), which are either based on statistical models or

which utilize sampling-based approaches, none of those works ad-

dress the vagueness of human locomotion. In contrast, probabilistic

principles are predominantly chosen due to the high complexity

of the search problem (e.g., robotics). Moreover, others investigate

the stochasticity of human motion, however, solely in the context

of crowds. For instance, Wang et al. [Wang et al. 2016, 2017] utilize

Bayesian models to evaluate path patterns in crowds. Based on sim-

ilar techniques, Yi et al. [Yi et al. 2015] on the one hand calculate

statistically distributed travel times of multiple pedestrians. On the

other hand, Musse et al. [Musse et al. 2012] develop an approach

to compare crowds using velocity distributions. Although starting

to consider the vagueness of human motion, current approaches

are still limited to the use-case of two-dimensional crowd simula-

tion. For modelling walk paths of single subjects, such probabilistic

techniques are not in scope of literature so far. Furthermore, none

of the aforementioned approaches explicitly addresses human gait

and the probabilistic generation of realistic walk paths.

2.2 Data-driven Character Animation
In the field of character animation, several data-driven approaches

exist, which amongst others utilize blending techniques [Bruderlin

and Williams 1995], motion graphs [Kovar et al. 2002a], deep learn-

ing [Holden et al. 2017] or motion matching [Clavet 2016]. Even

though achieving outstanding results in terms of naturalness, this

paragraph only considers approaches being able to reproduce the

vagueness of human motion.

In this context, literature presents various elaborate approaches,

which model the fine-grained motion of each limb. By means of

applying statistical motion models, it is furthermore possible to

enabling the simulation of an infinite number of variants based on a

restricted number of training data. In particular, literature presents a

wide range of approaches utilizing different statistical models. This

includes hidden Markov models [Bowden 2000; Tanco and Hilton

2000], linear time-invariant models [Hsu et al. 2005] and Gaussian

Process Dynamical Models [wan [n. d.]]. More recently, Min and

Chai [Min and Chai 2012] present an approach for probabilistically

modeling of full-body human motion based on a motion capture

database. Manns et al. [Manns et al. 2018] adapt this approach to

the use-case of assembly planning. This representative overview of
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approaches underlines the high potential of probabilistic motion

models for various use-cases. Instead of simulating one plausible

motion, these algorithms allow to cover the full spectrum of human

motion and the inherited vagueness.

Even though showing many evident benefits, the high dimen-

sional models and complex processing pipelines show considerable

requirements - both in quality and quantity - with regard to the

utilized motion capture data sets [Manns et al. 2016a,b]. In contrast,

the problem of generating realistic root-trajectories comprises a

significantly reduced number of dimensions. In fact, most of the

information being contained in such models is not needed for the

use-case of walk path simulation. For instance, the approach pre-

sented by Manns et al. [Manns et al. 2018] utilize motion capture

data with≈ 80 dimensions per frame, whereas the introducedmodel

is based upon 2D root-trajectories.

2.3 Footstep Planning
A third relevant domain of previous work is footstep planning.

Being located between character animation and path planning,

this cluster aims at planning an optimal sequence of foot contact

points. Subsequently, the thus obtained footsteps can either be used

to animate a virtual character or to navigate a robot through an

unknown environment.

In the context of computer graphics, Choi et al [Choi et al. 2003]

present an approach to determine footprints using probabilistic

roadmaps. Moreover, multiple works (e.g., [Egges and van Basten

2010; van Basten et al. 2011; van de Panne 1997]) generate biped lo-

comotion using sequences of contact points. More recently, Agrawal

and van de Panne [Agrawal and van de Panne 2016] demonstrate

how to on the one hand plan footsteps while taking task-specific

context information into account. On the other hand, they subse-

quently generate realistic fully-articulated motion using an inverse

kinematics. Furthermore, a large body of previous work investigate

biped motion planning algorithms in the context of robotics. In

particular, multiple works (e.g, [Chestnutt et al. 2003, 2006; Kuffner

et al. 2002]) present approaches combining finite gait transition

sets with various path planning algorithms. A detailed overview

can be found in [Perrin 2018].

In general, approaches as presented in [Agrawal and van de

Panne 2016; Choi et al. 2003] are ideally suited to plan footsteps be-

tween a start and a target configuration. However, the root motion

is only approximated based on the optimized sequence of floor-

contact points in a subsequent step. Consequently, the problem of

directly generating realistic root-trajectories in two dimensions is

still unsolved. Moreover, none of the aforementioned approaches

considers the statistical nature of human motion. Same applies for

the field of robotics, which utilizes a finite set of possible steps to

generate collision-free motions. Nevertheless, the idea of combining

a transition model with a path planning algorithm forms the basis

for this paper. In particular, this paper builds upon the inspiring

work of Chestnutt et al [Chestnutt et al. 2006].

3 CONCEPT
In industrial production, walk paths are planned in a bird’s eye view,

while the operator’s traveled distance is taken into account to assess

the efficiency of the assembly workplace. In this context, the fully-

articulated human body composing several joints and dimensions is

reduced to its root. For the sake of feasible modelling and planning

effort, current process plans do not consider human gait and its

resulting sinusoidal shaped root-trajectory. Furthermore, the fact

that the same motion will be performed differently by a group of

subjects (i.e., inter-variance) is also neglected. Same applies for the

intra-variance. In order to take into account the aforementioned

aspects, this paper presents an approach combining a hybrid A* path

planner [Petereit et al. 2012] with a statistical motion model, which

is inspired by Min and Chai [Min and Chai 2012]. Additionally,

the approach incorporates a motion planner, the hybrid A* star

algorithm [Petereit et al. 2012], to obtain short and collision-free

trajectories between a start and a goal configuration. Using this

novel algorithm, realistic root-joint trajectories of single subjects

can be simulated. As the proposed approach considers both, the

statistical nature of human motion and effects being induced by

gait, it is possible to effectively generate a rich repertoire of realistic

walking trajectories.

3.1 Overview
In general, the proposed approach can be sub-divided into four

fundamental steps. In a first step, movements of actual persons

are recorded using a motion capture system. The result of this

are whole takes of continuous and fully-articulated motions. Hu-

man locomotion generally consists of sequences of succeeding left

and right steps. Therefore, the data is afterwards fragmented into

those atomic motion segments. These segments are hereinafter

also referred to as motion primitives. Having obtained an adequate

database, it can be used for synthesis of new motions by means

of stitching together succeeding left and right steps [Kovar et al.

2002b]. To exclusively concatenate adequate motion segments from

the database, a hybrid A* path planning algorithm is utilized to find

suitable solutions to given motion planning problems - without

violating any collision-constraints. To take into account the varia-

tion in human locomotion, each utilized motion primitive is drawn

from a statistical motion model [Manns et al. 2018; Min and Chai

2012]. In particular, a transition model (i.e., Gaussian processes) for

succeeding motion primitives is trained, which allows sampling of

novel physically feasible and reasonable motions. The following

gives a detailed description of the algorithm and the necessary

steps.

3.2 Motion Capture
In order to obtain a database for the subsequent steps, first, mo-

tion capture data have to be acquired. In the context of this paper,

motions stemming from 12 participants were recorded. For this

purpose, an OptiTrack motion capture system (120 Hz) was utilized.

Each participant was equipped with 37 retroreflective markers,

in order to obtain sufficient detail for movements of crucial body

parts (hip region as well as the feet). Subsequently, the root was

projected onto the floor plane in order to be compatible with two-

dimensional motion synthesis. In total, an area of 3.3m × 3.2m
could been tracked using the described setup.
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Figure 2: Setup of experiment: (1) Participantswalked freely
in the rectangular tracking space. (2) Participants walked
around a pole for varying angles and distances. (3) The iden-
tical group walked along a straight line in a range between
3.0 m and 4.0 m (not shown).

To cover a large motion variety and to consider, both intra- and

inter-subject variance, 12 healthy persons participated in an ex-

periment. The group comprised 5 female and 7 male and showed

following statistics: age: µ = 24.4, σ = 1.8 and height: µ = 1.75m,

σ = .04m. In order to not obstruct the walking style, participants

wore their own clothing and shoes. None of the participants re-

ported vision or balance disorders.

Moreover, the experiment consisted of three main scenarios:

(1) Walking around freely in the rectangular tracking space

while varying speed and curvature for 4 min. This includes

side steps as well as turn steps.

(2) Walking straight lines with path lengths of 3 m and 4 m,

respectively, for a duration of 2 min each.

(3) Walking straight towards a pole, passing it, turning by a

certain angle, then walking straight again for angles of 45
◦
,

90
◦
, 135

◦
, and 180

◦
, respectively, each for path lengths of

3m and 4m (see Figure 2). The duration of each experiment

was 2 min.

Overall, a total amount of 5 h of walking could be captured, which

corresponds to ≈ 20 km of walking distance.

3.3 Motion Segmentation
In order to obtain single motion segments that can be used for

modelingwalk paths, the recordedmotion has to be decomposed. To

determine segments where movement characteristics are uniform

in some sense (see [Buchin et al. 2011]) the human gait cycle is

initially analyzed:

In general, a walking motion consists of a succession of alter-

nating left and right steps. A step can be divided into two phases,

the stance phase and the swing phase, respective to each foot. The

stance phase starts when the heel of the right/left foot touches

the floor, initiating a phase of double support - at this time, both

feet contribute to carrying the weight of the body. Then, when the

right/left foot is fully loaded, the remaining foot is left off the ground

and swung forward. During the left/right foot’s swing phase, the

opposite foot is single supporter of the body’s load. Then, when

the left/right heel touches the ground again, the course of action

described above is repeated with both feet interchanged.

Figure 3: Motion segmentation results: Single motion seg-
ments of one experiment, performed by a specific subject.

Hence, the walking motion is divided into segments by means

of detecting changes in foot contact with the ground. The frames

where these changes occur are denoted as key frames. In order

to obtain those frames, the speed and z-value (elevation) of both

feet is monitored. Both values approach zero when a foot is fully

loaded. When the foot is lifted from the ground, speed and the

z-value of the toes take on positive values. Thus, key frames can be

found by identifying changes in these features using an adaptive

threshold (scipy [Jones et al. 2001], function gaussian_filter1d, σ =
180, offset = 5

th
percentile).

When key frames have been extracted from the motion capture

data, the result is a set of segmented root-trajectories representing

left and right steps, respectively. For later use, the root-trajectories

are aligned in a way that they all start in the origin of the horizontal

plane. Furthermore, the trajectories are rotated towards the up-axis

so that the hip’s starting orientation points into the same direction.

In total, the database of ≈ 20km (see section 3.2) of walking

is thus automatically segmented into approximately 20 000 steps.

Figure 3 shows an example of segmented and aligned trajectories

stemming from one specific subject (both left and right steps).

3.4 Motion Synthesis and Path Planning
After the motion has been divided into single segments, the result-

ing set of left and right steps can be used to generate realistic paths

from a start to an end point. Following Kovar et al. [Kovar et al.

2002b], a complex motion can be generated by means of connecting

multiple motion primitives (or elementary motions). Transferred

to human locomotion, a walk trajectory can be composed from a

series of gait cycles and succeeding steps. However, the arbitrary

combination of different primitives will lead to unnatural results.

In particular, the end of each primitive has to match the beginning

of the subsequent counterpart in terms of continuity of motion.

Otherwise, the discontinuity will become visible in a jerk move-

ment, which results in an unnatural seeming trajectory. Moreover,

pairs of primitives must be physically feasible and reasonable. In

particular, even if two motion primitives fit together well in re-

gard to continuity of positions, some concatenations will lead to

inconsistencies. This refers to mainly two properties of motion,

namely speed and direction of heading. For instance, a sharp turn
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would seem unnatural for high walking speed and moreover, would

physically not be feasible due to mass inertia of the human body.

In order to meet these criteria, a multidimensional function ap-

proximation is used to model the relationship between motion

primitives and their corresponding predecessors. In this paper, this

is archived by means of fitting a statistical model to the captured

≈ 20 000 transitions between consecutive steps (training data). Fol-

lowing Min and Chai [Min and Chai 2012], Gaussian Processes (GP)

are used for this purpose as they are able to efficiently model non-

linear properties of transition functions, while the learning process

only involves very few tuning parameters. To obtain continuous

and physically feasible transitions as input data, the GP-model is

trained using pairs of motion primitives, which have actually be cap-

tured in succession (during section 3.2). Naturally and by definition,

those pairs of predecessors and successors are reasonable, feasible

and continuous, since they have in fact been performed by real

human subjects. Having trained the GP-model, it is possible to ob-

tain a novel continuous, physically feasible and reasonable motion

primitive for given predecessors by means of drawing samples.

As the initial step within each trajectory has no predecessors,

the trained transition model cannot be used to sample the first

motion primitive. Consequently, a second generative model has

to be constructed, which enables to independently generate mo-

tion primitives - similar to those depicted in Figure 3. Therefore, a

kernel-density estimation (KDE) is used, which is a non-parametric

statistical approach for modelling random variables. The underly-

ing principle is that each observed data point creates its own local

density function using a kernel function (in this case a Gaussian

Kernel). The estimated density at an arbitrary data point can then

be calculated as the mean density given by the kernel function. The

Gaussian KDE-model allows for sampling data which is near to the

original, but still showing variance.

The interplay between both statistical models is implemented

as follows: First, the Gaussian KDE approach samples an initial

motion primitive. Next, the GP-model uses this first step as input

to predict a continuous and physically feasible successor. Having

generated a second motion primitive, the last step is in turn used

to simulate a third gait cycle. This procedure is repeated until the

target point is reached. Figure 4 illustrates this proposed approach.

It can be seen, that the walk path of a virtual human is generated by

means of stitching together succeeding left pL and right pR steps.

Even though each generated atomic root trajectory will fit to

its preceding counterpart, an arbitrary combination of pi might

not lead to the target destination - or violate collision constraints.

Figure 4 depicts this problem. Some of the six sampled motion primi-

tivespR,1, ...,6 will lead to detours (e.g.,pR,1,pR,2 andpR,5), or might

result in unnecessary short stride lengths (seepR,3). Therefore, both
statistical models are integrated into a hybrid A* [Petereit et al.

2012] path planning algorithm. Similar to the A* approach [Hart

et al. 1968], this adapted version divides the scene into cells and

optimizes transitions between cells using a heuristic function. In

contrast, the hybrid A* also allows continuous positions within cells,

which enables the assessment of each motion primitive’s end point.

In general, the sampled pi trajectories define all possible actions
within each expand step. Metaphorically, each sample’s suitability

for a given search problem can be determined using the hybrid A*

methodology. For Figure 4, this iterative process would accept pR,4.

Figure 4: Concept of proposed algorithm: A statistical mo-
tion model samples multiple feasible motion primitives
which are assessed using the Hybrid A* path planner.

Next, the GP-based sampling process will be repeated using pR,4
as new predecessor.

4 IMPLEMENTATION
In this section, the algorithmic implementation of section 3.4 is

explained. An overview in pseudocode is given in 1.

4.1 Preprocessing and Model Fitting
To train both, the KDE- and the GP-model, the segmented motion

capture dataset is initially preprocessed. This step mainly ensures

an efficient and robust fitting of the model to the training dataset.

In particular, each trajectory is initially represented by a B-spline

in order to counterbalance the effect of outliers and to further

reduce the number of dimensions [Min and Chai 2012]. For this

purpose, the path is subdivided into five equidistant spaces. The

resulting landmarks are used to build the B-spline upon (function

BSpline [Jones et al. 2001]). Next, a Principal Component Analysis

(PCA) is performed in order to exclude unnecessary information.

The idea of PCA is that, given a set of data in the high dimen-

sional space, an affine lower dimensional subspace is to be found,

that contains most of the variance of the original data. This kind

of linear dimensionality reduction is done using Singular Value

Decomposition. Therefore, the Python library sklearn (function

PCA, svd_solver = full) is used [Pedregosa et al. 2011]. Thus the

data is projected into a subspace, which contains at least 95% of

the variance of the data. Subsequently, the single features of the

data in subspace are standardized by setting the mean to µ = 0

and scaling the data to unit variance (σ = 1) using the function

StandardScaler [Pedregosa et al. 2011].
Afterwards, both generative models are trained. For the kernel-

density estimation the function gaussian_kde of the Python library

scipy [Jones et al. 2001] is used while the Gaussian Process Re-

gressor is implemented by sklearn [Pedregosa et al. 2011]. For the

GP-model, a prior needs to be specified. Its mean is assumed to be

constant and zero; its covariance is specified by a Radial-basis func-

tion kernel, whose hyperparameters are optimized during fitting

by maximizing the log-marginal-likelihood (LML). Afterwards the
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Gaussian Process Regressor is able to find a feasible successor for a

given predecessor as described above. For a specific set of motion

primitives, the preprocessing steps have to be carried out only once;

the PCA, scaler and parameters of the Gaussian Process Regressor

are saved in order to reverse the steps when a successor primitive

has been drawn.

4.2 Initialization and Exploration Loop
Having trained both models, motion synthesis is performed at

120 f ps . For this purpose, first, the start configuration is trans-

formed to a corresponding node ns with zero cost (д = 0), no

predecessor and information about its heuristic value as well as

its cell position and index. The heuristic h used is defined to be

the two-dimensional Euclidean distance (straight-line) from the

respective position to the center of the goal area. Furthermore the

open list O , which is implemented as min-heap, is being initialized

by inserting the starting node ns . Initially, the closed list is empty.

Next, the exploration loop is iteratively performed. As described

above, the KDE is model is utilized to randomly sample 30 left and

right starting steps. Once multiple feasible transitions have been

sampled, the algorithm successively explores the node nbest with
least estimated total cost f . This node is removed from O and its

index is added to the closed listC . If the position of nbest lies within
the goal area G (tolerance of .25m), the algorithm terminates. In

this case, the root-trajectory is determined by means of traversing

the constructed search-tree from leaf (= nbest ) to root (= ns ), while
concatenating the transitions (i.e., motion primitives). Otherwise,

the node is expanded and a list of feasible successors is appended to

the path, if they do not end in a cell whose index is in the closed list.

In all subsequent iterations, the Gaussian Process Regressor uses

the most suitable root-trajectory to, in turn, generate 10 potential

transitions between cells (see Figure 4).

To derive a trajectory from the set of features created by the

KDE- or GP-Model, the first three preprocessing steps are reverted:

First, the data is scaled back. Afterwards, the data is transformed

back to its original space S, and lastly, the B-spline is evaluated.

The result is a trajectory in a local coordinate system, starting in

the origin and heading in the direction of the up-axis. In order to

append a trajectory to its predecessor, it has to be converted from

the local coordinate system to the global coordinate system. This

is done by rotating the trajectory so that it fits the heading of its

predecessor and translating the trajectory so that it starts where

the preceding motion primitive has ended.

5 EVALUATION
In order to assess the technical performance of the proposed ap-

proach, a two-staged evaluation is performed.

5.1 Assessment of Technical Performance and
Generated Trajectories

Figure 5 shows 15 trajectories in a bird’s eye view being generated

for an exemplary scene, comprising a starting configuration (top

left corner), a goal region (bottom right corner) and a number of

obstacles that have to be avoided by the novel path planner. For

this scenario, a cell size of .08m was used.

Algorithm 1 Path Planner

Input: Start and end configuration with constraints motion

primitives (xs ,G,m,ν )
Output: Collision free path from start configuration to end

configuration

1: procedure preprocessing(ν )
2: νspline ← representation of all motion primitives

in ν as cubic B-splines

3: νpca ← νspline after PCA

4: µ ← standard scaled νpca
5: create KDE for beginning steps

6: create GP-model for transitions between different kinds of

motion primitives

7: return µ, KDE, GP

8: procedure findGoal(xs ,G,m, µ,KDE,GP )
9: initializeAlgorithm(xs ,m,KDE)
10: repeat
11: pick nbest from O such that f (nbest ) ≤ f (n),∀n ∈ O .
12: remove nbest from O and add index x̃n to C .
13: if nbest in G then EXIT.

14: Expand nbest : x← findFeasibleSuccessors(nbest ,GP )
15: for all successor in x do
16: append succ to nbest if not

(x̃succ in C orm(x̃succ ) == True)
17: until O is empty

1: procedure initializeAlgorithm(xs ,m,KDE)
2: ns ← (x̃s ,xs , 0,h(xs ),−)
3: O ← ns
4: C ← ∅
5: for i=1,2,...,#starters do
6: resample from KDE-model for beginning steps

7: append resample to ns if not
(x̃succ in C orm(x̃succ ) == True)

1: procedure findFeasibleSuccessors(nbest ,GP )
2: draw samples from GP transition distribution for

the trajectory of nbest
3: for sample in samples do
4: Reverse Scaling: Scale sample back

5: Reverse PCA: Transform data back into its

original space

6: Transform spline representation into trajectories

7: return trajectories

First of all, it can be seen, that on the one hand, smooth and short

paths are obtained, connecting the start and the target region. On

the other hand, none of the generated results violates any collision-

constraints. Most importantly, each of the 15 trajectories is unique

and differs from the remaining counterparts within a motion corri-

dor. It can thus be confirmed that the proposed algorithm is able to

reproduce the statistical nature of human locomotion by means of

generating statistically distributed trajectories.
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Figure 5: Macroscopic results of the proposed approach in
a bird’s eye view: 15 randomly sampled root-trajectories be-
tween a start and a target configuration.

Furthermore, Figure 6 depicts two exemplary root-trajectories

with a distance of 2.5m. Note that the plots are not scaled uniformly,

in order highlight the effects of gait on the walk path. The upper half

represents a captured motion from the KIT Whole-Body Human

Motion Database [Mandery et al. 2015], whereas the lower sub-plot

depicts its simulated counterpart. Comparing the routes, it becomes

apparent that the proposed planner explicitly considers the human

gait-cycle, as both root-trajectories show a similar sinusoidal shape.

This can be mainly traced back to the underlying sampling principle

generating alternating left and right steps. Even though reproducing

effects being related to gait, the artificial walk path shows a slightly

different shape. A possible reason for this is the fact, that varying

motion patterns can be observed for different subjects, which are

unique for each human.Moreover, bothmotions can be decomposed

into 5 primitives (= 5 steps), while the artificial trajectory comprise

smooth and feasible transitions. Summarizing the aforementioned

findings, it can be stated that besides addressing the vagueness

in human locomotion, the novel motion planner also reproduces

effects being related to gait.

Performed on an Intel i7-6820HQ with 2.70 GHz, the proposed
probabilistic motion planning algorithm allows the generation of

8m (see Figure 5) walk paths in approximately 5 s . Transferred to the
use-case of industrial walk path planning, the simulation of a rep-

resentative assembly workplace comprising five walk paths would

take half a minute. This can be regarded to be reasonable. How-

ever, compared to a mean computation time of .5 s , for generating
similar root-trajectories using a standard A*, it becomes apparent

that a more efficient implementation of the GP-model could signifi-

cantly increase the overall-performance. Please note that a slightly

modified implementation (discrete cells) of the utilized Hybrid A*

algorithm was used to benchmark the novel approach.

5.2 Compassion to State of Art and Captured
Human Motions

Besides visually analyzing generated root-trajectories, the proposed

algorithm is also compared to a state of art planner and a large

Figure 6: Microscopic results of the proposed approach in
a bird’s eye view: two detailed representation of a captured
and a simulated trajectory which consider gait.

database of captured human motion. In order to obtain an adequate

set of walk paths, first, 10 participants were recruited. In particular,

the group showed following characteristics: 9 male and 1 female

being aged from 21 to 40 (µ = 27.80, σ = 6.08) with a height

ranging from 1.60 m to 1.98 m (µ = 1.79m, σ = .12m). None of the

participants reported vision or balance disorders.

Next, a representative assembly station is set up, which com-

prise one car and three racks (see Figure 7), each containing two

screws. Based upon this apparatus, a list of assembly tasks is subse-

quently defined. In particular, first, each subject started at rack 2

and successively carried and fastened the two screws to the car at

a self-selected speed. Next, the same procedure was repeated for

rack 3 and 1. Finally, the operator had to carry a tool from rack 2

to 3. This set of assembly tasks was repeated 10 times by each

participant.

During the experiment the participants’ root-joints were moni-

tored using an HTC Vive tracking system (update rate 60 Hz). In

particular, a controller was placed on the front side in center of the

participant’s hip (i.e., umbilicus) with the help of an elastic belt. The

root was subsequently derived for each participant as the extension

of the controller’s z-axis while taking into account half of the torso

depth and the distance between controller and skin.

Having conducted the experiment, the 10 participants generated

a database of 1984 point-to-point walk paths with an overall-length

of 4.06 km. In a subsequent step, the captured scenario is simulated

while taking into account the knowledge about number of captured

trajectories and the position and dimension of all obstacles. Besides

the presented algorithm, the evaluation also comprised two state

of the art approaches in order to ensure comparability. In partic-

ular, an A* path planner is utilized to simulate the identical scene

(similar implementation as the proposed algorithm). Again, a cell
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Figure 7: Setup of the representative workplace, which is
utilized to benchmark the proposed algorithm.

size of .08m was used. Moreover, the fully-articulated motion of

a data-driven character animation approach being presented by

Holden et al. [Holden et al. 2017] is also compared to proposed

algorithm. In particular, the implementation of Sebastian Starke
1

was used, which followed the planned A* trajectories. Note that in

all subsequent steps, only the root joint is utilized.

Figure 8 depicts the results of this evaluation in a bird’s eyes

view: The upper left side depicts the outcomes of the deterministic

A* approach, whereas the upper right section represents the tra-

jectories, being generated by [Holden et al. 2017]. The lower left

side shows the trajectories being generated using the proposed al-

gorithm, while the corresponding right side illustrates the captured

baseline. Grey boxes illustrate the positions and dimensions of the

utilized racks and the car (see Figure 7).

It becomes apparent, that the A* and the character animation

approach (see upper half of Figure 8) do not generate statistically

distributed motion corridors, even though each of the four subplots

comprises the same number of walk paths. When being executed

multiple times, rather, both algorithms simulate an identical set of

walk paths for a given planning problem. The reason for this finding

lies in the deterministic nature of both path planning algorithms,

which does not allow to cover the vagueness and variant-richness

of human locomotion (using identical input parameters). In con-

trast, the proposed probabilistic algorithm (see lower left section in

Figure 8) reproduces the widespread motion corridor of the base-

line. Interestingly those bundles of trajectories on average follow

the routes, being generated by the A* algorithm. This is mainly

due to the fact, that the novel planner inherits a derivative of the

state of art approach (i.e., hybrid A*) in order to determine feasible

successors. Consequently, it can be concluded, that the GP- and

KDE-model metaphorically enrich the A* trajectory.

Furthermore, the walk paths being determined using the A* algo-

rithm show sharp and unnatural turns while gait is not considered.

Even though the trajectory might be post-smoothed [MAN 2015],

the two remaining aspects (i.e., gait and vagueness) will still remain

undressed. In contrast, the upper right side of Figure 8 reveals,

that the character animation method [Holden et al. 2017] generates

realistic and smooth walk paths, which show a sinusoidal form.

Similar results can be observed for the novel approach - as shown

in Figure 6.

1
https://github.com/sebastianstarke/AI4Animation

To compare the baseline trajectories and the three artificial sets

of walk paths, the Euclidean cloud-to-cloud distance is calculated

for each pair : baseline↔ A*, baseline↔ [Holden et al. 2017] and

baseline↔ proposed approach. For this purpose the tool Cloud-

Comparer [CloudCompare 2018] is used. Low error values indicate

that a tested set of trajectories geometrically overlaps and thus

covers the same area. This in turn is mainly affected by, the shape

of the routes and the geometrical variability (i.e., breadth of mo-

tion corridor). Consequently, the cloud-to-cloud distance on the

one hand measures similarity in terms of geometric variance and

variability of motion. On the the other hand, the shapes of the

generated trajectories are further taken into account.

According to a performed Kolmogorov-Smirnov test (SPSS), all

three pairs show non-normal error distributions (i.e., p = .000)
and following descriptive statistics: baseline ↔ path planning:

50
th

percentile .091m and interquartile range (IQR) .113m. Base-

line↔ character animation: 50
th

percentile .065m and IQR .098m.

Baseline↔ proposed approach: 50
th

percentile .002 m and IQR

.002m. Comparing the path planning with the character animation

approach, a considerable median error reduction of 29 % can be

observed. A performed Wilcoxon signed-rank points out statisti-

cally significant results (i.e. p = .000, 1 − β = 1.0). This can mainly

be attributed to the consideration of gait and the realisitic root

trajectories. Comparing the error distributions of the proposed and

the A* planner, the cloud-to-cloud distances point out a error re-

duction of 98 %. The Wilcoxon signed-rank test indicates statistical

significance (i.e. p = .000, 1 − β = 1.0). This underline the previous

findings, that the proposed approach outperforms the state of art

in terms of geometrical motion corridor coverage.

To further disaggregate this enhancement, each of the five differ-

ent walk path (T1 to T5, see Figure 8) is analyzed separately with

respect to its length. Table 1 summarizes the distribution for each of

the five walk paths T1 to T5. Comparing the median of the baseline

and the A*, it becomes apparent, that the path planner overestimates

the distances - except for T5. This delta of up to 11 % mainly stems

from the artificial trajectory’s sharp turns, which increase the dis-

tance. The character animation approach considerably reduces this

deviation, which can be attributed to the realistic root trajectory,

considering gait. However, please note, that both algorithms solely

determine a single walk paths, without generating variance (see

IQR). Finally, the proposed approach predicts the median length

with a similar deviation compared to [Holden et al. 2017]: 1 % to

4 %. However, it is noteworthy that T5 points out a considerable

deviation. This is due to the fact, that the motion model is mainly

trained using longer walking distances comprising larger stride

lengths. As a consequence, a short path of ≈ 1m is very likely to be

simulated using a single step of .8m - even though two short steps

would be more suitable. Comparing the IQR, it becomes apparent

that the proposed algorithms predicts between 60 % and 90 % of

the captured variance. Given the two-dimensional motion model,

which does not considers the influence of task-based locomotion

(see [Agrawal and van de Panne 2016]), this result can be regarded

as sufficient.

Transferring these finding to the initially mentioned use-case

of automotive production planning, the A* path planner seems

unsuitable due to the overestimation of distances. In contrast, the



Towards Realistic Walk Path Simulation of Single Subjects MIG ’18, November 8–10, 2018, Limassol, Cyprus

Figure 8: Overview of the results; top row: motion corridors being generated by the A* path planner and the character anima-
tion approach [Holden et al. 2017]; lower half: results of the proposed algorithms (left) and the captured baseline (right).

Table 1: Walk path length distribution for each of the five
walk paths T1 to T5, being depicted in Figure 8: median and
interquartile range in meters.

Distribution walk path length [m]

Baseline A* [Holden et al. 2017] Proposed
50

th
IQR 50

th
IQR 50

th
IQR 50

th
IQR

T1 2.38 .21 2.42 - 2.41 - 2.41 .16

T2 2.25 .40 2.34 - 2.36 - 2.35 .24

T3 3.15 .38 3.48 - 3.28 - 3.11 .21

T4 2.44 .34 2.60 - 2.46 - 2.43 .21

T5 1.07 .21 .99 - .97 - .80 .23

character animation approach precisely reproduces the average

walking behavior, however, neglects the vagueness of motion. This

problem can be solved using the introduced approach, as it cov-

ers the predominant proportion of variance. Accounting for this

variability can help to identify problems, which only occur as a con-

sequence of accumulated statistical effects. Given the high numbers

of repetitions in automotive production, even the observed variance

of ≈ 14 % (ratio IQR and median walk path length) might lead to

production disruption - since it is not considered in process plans.

As a matter of fact, average process plans can over- or underesti-

mate the actual performance of an assembly line, which potentially

leads to overexertion of assembly operators. This underlines the

potential of utilizing probabilistic motion planning algorithms for

industrial applications.

6 CONCLUSION AND FURTHERWORK
This paper presents an approach that combines a hybrid A* path

planner with a statistical motion model to effectively generate a

rich repertoire of walking trajectories. The motion model is gener-

ated from a comprehensive database (20 000 steps) of captured and

segmented human motion and covers a wide range of gait variants.

The hybrid A* path planner can be regarded as an orchestration-

instance, stitching together succeeding left and right steps, which

were drawn from the statistical motion model. Moreover, the hy-

brid A* planner ensures a collision-free path between a start and

an end point. Summarizing the findings of the two-staged evalua-

tion, it can be concluded that on the one hand side, the data-driven
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motion model enables the generation of realistic sinusoidal shaped

trajectories. On the other hand, the chosen Hybrid A* path planner

ensures the combination of meaningful motion primitives, hence

generating short and collision-free paths. Most importantly, the

chosen probabilistic model is able to cover a wide range of motion

variations, which significantly increase the prediction quality of

two-dimensional motion planning of single subjects.

Future work will concentrate on extending and optimizing the

presented algorithm. In this context, it is planned to enhance the

exploration loop by means of introducing artificial potential fields.

The principle idea of these methods is to allocate a potential to each

point of the configuration space. This potential field consists of a

superposition of an attracting potential (the goal) and a repulsive

potential (the obstacles). By incorporating the potential field in

the heuristic, distances to obstacles can be tuned in a more precise

way. Furthermore, the generation of trajectories can be accelerated

by lessening the likelihood of futilely exploring paths leading to

obstacles that may appear to be less costly when only considering

straight line distances. In this paper, the transitions between two

succeeding steps are based on Gaussian Processes with empirically

derived parameters. Possible future workwill therefore consist of an

evaluation of various transition models. This includes varying and

evaluating diverse parameter configurations or altogether testing

various approaches to supervised learning such as neural networks.
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