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Figure 1: Pipeline of proposed approach; Left: steering parameter estimation using a motion capture database; Center: derived probabilistic
motion model containing statistically distributed steering parameters; Right: resulting motion variants.

Abstract

The simulation of two-dimensional human locomotion in a bird’s-eye perspective is a key technology for various domains to
realistically predict walk paths. The generated trajectories, however, are frequently deviating from reality due to the usage of
simplifying assumptions. For instance, common deterministic motion planning algorithms predominantly utilize a set of static
steering parameters (e.g., maximum acceleration or velocity of the agent) to simulate the walking behavior of a person. This
procedure neglects important influence factors, which have a significant impact on the spatio-temporal characteristics of the
finally resulting motion - such as the operator’s physical conditions or the probabilistic nature of the human locomotor system.
In order to overcome this drawback, this paper presents an approach to derive probabilistic motion models from a database of
captured human motions. Although being initially designed for industrial purposes, this method can be applied to a wide range
of use-cases while considering an arbitrary number of dependencies (input) and steering parameters (output). To underline its
applicability, a probabilistic steering parameter model is implemented, which models velocity, angular velocity and acceleration
as a function of the travel distances, path curvature and height of a respective person. Finally, the technical performance and
advantages of this model are demonstrated within an evaluation.
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1. Introduction

Various domains ranging from video games [ASK15] over
crowd simulation [VDBSGM11] to industrial production plan-
ning [IPO17, ia17] utilize two-dimensional motion planning algo-
rithms to predict and analyze walk paths. Even though these appli-
cations differ in their scope, they nevertheless share the same goal
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to accurately reflect reality in order to increase the user experience
or to draw conclusions from the simulation.

For automotive production planning, however, the outcomes of
industrial simulation software are increasingly deviating from real-
ity due to the use of simplifying assumptions [AOGR16]. Namely,
these tools predominantly apply two-dimensional path planning al-
gorithms to calculate the shortest, collision-free path between two
assembly tasks [MM15]. Based on this trajectory, a so-called mo-
tion model consisting of multiple steering parameters (e.g., max-
imum acceleration or velocity) is utilized to animate the assem-
bly operator along the path. Furthermore, the travel time between
both assembly tasks is estimated using this model, which is the key
performance indicator for planning and assessing industrial work-
places. These parameters, however, are fixed for each route and
do not consider important influence factors. Additionally, by using
identical steering parameters for multiple executions of the same
walking task, the probabilistic nature of the human locomotor sys-
tem (see [MC12]) is neglected. In contrast to this development, re-
cent trends such as mass-customization and Industry 4.0 are leading
to a growing number of different product variants. As each product
variant is inevitably linked to a unique assembly sequence on the
shop floor, the need for adequate simulation approaches is currently
rising.

In order to overcome this drawback, this paper presents an ap-
proach to set up probabilistic motion models, containing statisti-
cally distributed steering parameter variations. Therewith, state of
art motion planning algorithms are able to generate realistic and
variant-rich motions, ultimately reducing the deviation between ar-
tificial and captured trajectories. The introduced principle can be
used for a wide range of use-cases while taking into account ar-
bitrary influence factors. Subsequently, this universally applicable
methodology is implemented for the above mentioned use-case of
automotive production planning. The resulting set of steering pa-
rameters statistically manipulates velocity, angular velocity and ac-
celeration as a function of the travel distance, height of person and
path curvature. In particular, the three main technical contributions
of this paper are:

1. A generic approach to generate probabilistic motion models
from a database of captured trajectories.

2. The adaption of this principle to the use-case of automotive pro-
duction planning.

3. The implementation of the probabilistic motion model.

The remainder of the paper is structured as follows: first, the
state of art in the context of deterministic and statistical motion
synthesis and steering parameter estimation is reviewed. Second,
an approach is introduced to enable deterministic motion planning
algorithms to consider statistically distributed motion variations. In
order to implement this principle for industrial purposes, a large
number of human walking trajectories is captured using an Opti-
Track motion capture system. Subsequently, a probabilistic motion
model is presented, being derived from this database. Having in-
troduced the novel approach, its applicability and technical perfor-
mance is assessed in a representative experiment, inspired by an
assembly situation. The paper concludes with an assessment and
outlook on further optimizations.

2. Related Work

The approach presented in the following builds upon three main re-
search areas: deterministic motion synthesis, statistical motion syn-
thesis and steering parameter fitting algorithms.

Deterministic motion synthesis: Two-dimensional motion
planning algorithms are generally utilized to generate trajectories
between a starting and an end point, which fulfill certain con-
straints. These constraints, which are strongly affecting the be-
havior of the agent (e.g., path shape, velocity profile or turning
speed), are usually chosen with regard to the respective use-case
and physical characteristics to be modeled. Within this work, this
parametrization is further referred to as motion model. In con-
trast to statistical algorithms, deterministic approaches are based
on analytical models. Therefore, deterministic motion planning al-
gorithms are leading to identical results, when being executed mul-
tiple times with similar input parameters. For simulating human
walking, their scope of application includes, but is not limited to
crowd simulations [VDBSGM11], video games [ASK15] as well
as industrial walk path simulation [IPO17].

In general, the process of two-dimensional motion planning
can be modeled using different concepts: While approaches
like [HNR68] try to compute a collision-free path on a global level,
others navigate using local motion planners [Rey99]. In princi-
ple, algorithms which belong to the former category incorporate
the entire environment, hence generating global optimal solutions
(collision free trajectories). In contrast, the latter only guarantees
local optimality while inducing minor computational costs. Addi-
tionally, various hybrid solutions combine both approaches by uti-
lizing a global path planning algorithm to compute a collision-free
reference path, which is subsequently traversed using a local mo-
tion planner (see [LLA02,LCH03]). Since the local motion planner
might reshape the initially computed path, the parametrization or
motion model therefore essentially influences the spatio-temporal
properties of the resulting trajectory.

Literature presents several algorithms and approaches for lo-
cal as well as for global motion planning. In general, previ-
ous work in this area can be divided into approaches using cell
decomposition techniques (e.g., [HNR68, NKT10]) and poten-
tial fields [GBLV15]. Furthermore, Velocity Obstacle methods
(see [FS98,VDBSGM11]) have recently received significant atten-
tion for local motion planning. Other works present steering behav-
ior approaches [Rey99], genetic algorithms [HYXM04] or neural
networks [GKG95] in order to generate valid trajectories. Further-
more, Montemerlo et al. [MBB∗08] present a method to compute
a collision-free path while simultaneously considering motion con-
straints on a global level.

Even though multiple works present approaches for statisti-
cal path planning such as probabilistic roadmaps (see [LPW79,
oSY83]), Rapidly Exploring Random Trees (see [LaV98]) and ran-
domized models [HKLR02], none of these concepts introduce a
comparable probabilistic motion model or address the vagueness
of locomotion in general. Rather, the probabilistic principles are se-
lected in order to handle the complexity of the search problem and
are therefore and predominantly applied within high dimensional
spaces (e.g., within robotics). Consequently, phenomena related to
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the statistical nature of human motion - like spatio-temporal vari-
ations - and their implications on two-dimensional simulation of
single subjects are not in scope of literature yet.

Statistical motion synthesis: Unlike the mentioned determin-
istic approaches, statistical counterparts are based on the assump-
tion that the human locomotor system comprises an infinite num-
ber of styles and postures. Moreover, it is postulated that differ-
ent executions of one motion primitive show an intrinsic relation-
ship, which can be approximated using statistical models [MC12,
DMHF16]. Based on these assumptions, various approaches tar-
geting fully-articulated human motion have been presented rang-
ing from Hidden Markov Models [TH00,Bow00] to Gaussian Pro-
cess Dynamical Models [WFH08]. Furthermore, multiple works
(see [BH00, LWS02]) combine deterministic methods with statis-
tical models. More recently, Min and Chai [MC12] present an ap-
proach, probabilistically synthesizing fully-articulated human mo-
tion based on motion capture data. Their work is extended by
Du et al. [DMHF16] transferring the approach to scenarios re-
lated to assembly workshops. Furthermore, Manns et al. investi-
gate the influence of input data to the effectiveness of this ap-
proach [MOM16] and point out the considerable requirements in
both quality and quantity for adapting the methodology to common
shop-floor motions [MMM16].

Besides simulating the motion of each limb, others present var-
ious approaches for modeling and analyzing the stochasticity of
human motion in the context of crowds. Wang et al. [WOO17,
WOO16] propose a semantic metric to evaluate crowds and path
patterns using Bayesian models. Based on similar techniques, the
same authors automatically recognize activities and anomalies in
videos [WO16] , while Yi et al. [YLW15] estimate statistically dis-
tributed travel times. Furthermore, Musse et al. [MCJ12] present
an approach to quantitatively compare crowd using histograms,
which contain informations on the local velocity distribution. Fi-
nally, Yi et al. utilize Convolutional Neural Network [YLW16] to
predict pedestrian behaviors in crowded scenes.

This representative sample of works illustrates the capability to
cover all the full spectrum of the human locomotor system. How-
ever, current approaches are either limited to fully-articulated mo-
tions or to the use-case of two-dimensional crowd simulation. For
two-dimensional motion planning of single subjects, such models
are not in scope of literature so far. Therefore, this paper bridges
the gap between probabilistic approaches targeting fully-articulated
human motion and two-dimensional motion planning by statisti-
cally modeling steering parameters of arbitrary deterministic mo-
tion planners.

Steering parameter fitting: In order to establish a data-driven
motion model, adequate steering parameters have to be extracted
from motion capture data. For two-dimensional applications, pa-
rameter estimation through optimization is a commonly used tech-
nique. These approaches compare real-world observations of hu-
man motion with synthetically generated counterparts utilizing use-
case specific metrics. Subsequently, the simulation parameters are
modified until the respective metric converges to a minimum, thus
aligning simulation and reality. Literature presents multiple ap-
proaches (see [GvdBL∗12,POO∗09,LCL07]), comparing captured
and synthesized two-dimensional trajectories. Moreover, other pub-

lications such as [LJK∗12] and [SKFR09] offer the possibility to
calibrate and compare various algorithms based on experimental
datasets. In this context, Berseth et al. [BKHF14] investigate the
relationship between a steering algorithm’s parameters and its per-
formance. Finally, Wolinski et al. [WJGO∗14] propose a holistic
approach to automatically calibrate a given steering algorithm to a
given trajectory.

This paper incorporates the inspiring works of Wolinski et
al. [WJGO∗14] and Berseth et al. [BKHF14] to automatically ex-
tract steering parameters from real world observations, however,
the main idea is extended to further consider statistically distributed
variables.

3. Simulating Statistically Distributed Human Motions Using
Deterministic Motion Planning Algorithms

This paper presents a data-driven motion model for arbitrary mo-
tion planning algorithms, which is built upon a database of cap-
tured walking trajectories. In general, the introduced model PProb
can be regarded as a probabilistic function between a set of depen-
dency parameter d j (e.g., height of person or length of a walk path)
and a motion planner’s steering parameters pi. Note that through-
out the paper, PProb is regarded as a black-box which can only be
controlled by means of manipulating the respective dependencies.
Using the introduced methodology, state of the art motion plan-
ning algorithms can be extended to consider the probabilistic na-
ture of the human locomotion - irrespective of their actual internal
implementation. As a consequence, the deviation between reality
and simulation can be reduced. This concept is described in the
following.

Fig. 2 illustrates the main idea of this novel approach: in con-
trast to well-established motion models consisting of n static steer-
ing parameters pi, this paper presents a data-driven motion model
PProb statistically manipulating these variables depending on var-
ious influence factors d j. Note that pi is subsequently utilized to
parametrize the deterministic motion planning algorithm A. The
paper’s main idea is derived from the fact, that, for instance, a
person’s maximum velocity varies widely conditioned by the cur-
vature of the walk path. Consequently, when applying fixed pi
for each locomotion task disregarding those influence parameters,
actual walk paths may deviate considerably from their simulated
counterparts [AOGR16]. Moreover, by incorporating the idea of
[WJGO∗14,BKHF14] of fitting motion models to real world obser-
vations, PProb can be precisely calibrated to actual human motions.

In order to further take into account the probabilistic nature of
the human locomotor system, this principle is extended to statisti-
cally steering parameter variations. In particular, it is assumed that
locomotion properties (such as velocity or acceleration) for multi-
ple executions of one walking task show an ambiguous behavior,
even when being performed by the same person. This circumstance
can be traced back to the fact that the human locomotor system
comprises an infinite number of different motion variants [MC12].
Consequently, the delta between a set of captured trajectories stem-
ming from one walking task and their artificial counterparts can be
further reduced by means of modeling pi statistically.

In order to develop an approach implementing both mentioned
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Figure 2: Left: concept of probabilistic motion model PProb. n arbitrary steering parameters pi are statistically manipulated depending on
m influence factors d j. Right: illustration of the probabilistic function between a pair of pi and d j.

aspects, a formal deduction of PProb is initially introduced. Accord-
ing to Wolinski et al. [WJGO∗14], a parametrized motion planning
algorithm can be denoted as a function mapping the current posi-
tions~x (t) of an agent to the following timestamp t +1 while taking
into account all steering parameters pi (see Equation 1). On this
basis, the definition is extended by introducing PProb describing the
statistical relationship which is specified in Equation 2. Using this
novel motion model, the initial definition ultimately results in 3.

~x (t +1) = A(~x (t) , pi) (1)

pi = PProb
(
d j
)

(2)

~x (t +1) = A
(
~x (t) ,PProb

(
d j
))

(3)

4. Generation of a Probabilistic Motion Model for
Deterministic Motion Planning Algorithms

In order to generate PProb from a comprehensive database of cap-
tured walking trajectories, the following gives a detailed overview
of the necessary steps, which are explained for the steering param-
eter velocity v, acceleration a and angular velocity ω. Moreover,
the dependencies length l and curvature c of the walk path and the
height h of the respective person are taken into account. Conse-
quently, Equation 2 results in:

(v,a,ω)T = PProb (l,c,h)
T (4)

Note that, the introduced principle is generic and can be easily
adapted to various parameters.

4.1. Deduction of an Experimental Setup

First of all, the characteristics of a representative workplace have to
be analyzed, in order to comply with automotive production plan-
ning. For this purpose, ≈ 3200 actual walk paths were initially
investigated with respect to their planned distance. Note that the
distances are clustered according to intervals being defined within
the Methods-Time Measurement system. Fig. 3 shows the resulting
frequencies. It can be seen, that 75% of all walk paths are below or
around 2 m. Assuming a cutoff-value of 5%, the maximal distance
to be consider for further investigation is 4 m. This circumstance
can be traced back to the fact, that routes between car and material

supply are optimized by the production planning departments in or-
der to reduce unproductive task times. Therefore routes usually do
not exceed distances of half the assembly station size - which is
approximately 6 m to 8 m for cars.

Figure 3: Frequency of distances for 3197 planned walk paths in
an actual automotive final assembly line.

4.2. Generation of a Database

Having determined the characteristics of a representative work-
place, next, a comprehensive database of walking motions is gener-
ated. In the context of this paper, walk paths stemming from 30 par-
ticipants serve as a baseline for the subsequent steps. In particular,
the full-body movements of a person are monitored using an Opti-
Track system (update rate 120 Hz). Based on the gathered datasets,
the skeleton’s center of mass (COM) is subsequently projected onto
the floor plane in order to be compatible with two-dimensional mo-
tion planning algorithms.

To cover a large motion variety and to consider, both intra- and
inter-subject variance, 30 participants were recruited for the exper-
iment. The group comprised 25 male and 5 female being aged from
19 to 59 (µ = 26.46, σ = 7.50) with a height ranging from 1.65 m
to 1.90 m (µ = 1.78 m, σ = .07 m) and an average body weight
of 75.15 kg (σ = 13.09 kg, min = 50 kg and max = 110 kg). Fur-
thermore, the group of participants consisted of 23 students and 7
production planning employees. In order to not obstruct the walk-
ing style, participants wore their own clothing and shoes. None of
the participants reported vision or balance disorders.

As the proposed PProb models steering parameter as a function
of the trajectory length and curvature, the database has to further
contain multiple variants of walk paths lengths and turning angles.
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Consequently, walking was recorded in two independent scenarios:
linear walking along a straight line as well as non-linear around
a pole. The former consisted of 8 equally distributed distances be-
tween .5 m and 4.0 m (see Section 4.1) whereas the latter comprised
4 varying turning angles (i.e., 45◦−180◦). To further measure the
influence of the traveling distance on turning behavior, each of the
four configuration comprised two variants of 3 m and 4 m (see left
side of Fig. 4). All scenarios included 3 min of walking between
start and the target point at self-selected speed. Within both scenar-
ios, the order of walk path length and turning angle was random-
ized. Having reached the target, the participant returned to start af-
ter standing still for 5 s. This procedure was repeated before again
walking to the target. These two phases before and after each loco-
motion cycle subsequently served as distinctive landmarks to reli-
ably distinguish between walking towards the target and returning
to the initial position.

Figure 4: Setup of first experiment: (1) participants walked around
a pole for varying angles and distances. (2) the identical group
walked along a straight line in a range between .5m and 4.0m.

Having performed the described procedure, the 30 participants
generated a comprehensive database consisting of 1848 point-to-
point walk paths with a total length of over 4.97 km.

4.3. Generation of a Discrete Suitability Map

In order to statistically simulate human locomotion, the relation-
ship between different values of steering parameters and their suit-
ability to reproduce a given reference trajectory is modeled next.
The resulting function can be subsequently used to make predic-
tion about adequate pi configurations, when planning an unknown
motion. In particular, different values in a certain steering param-
eter configuration space (hereinafter also referred to as SPCS) are
utilized to re-simulate each captured walk path. For this purpose, an
arbitrary motion planning algorithm is initialized using a pi-vector
from the configuration space. Next, an artificial walk path is syn-
thesized, while taking into account all obstacles and constraints of
the scene. Having generated a valid path, the deviation from its cap-
tured counterpart is computed. Finally, this step is repeated using
varying steering parameters pi, until all possible combinations are
assessed. The outcome of this procedure is a discrete map, describ-
ing the suitability of the SPCS, to reproduce a certain walk path.

Within this paper, this step is implemented as follows: A vir-
tual representation of the captured scene is initially created, using
the knowledge about start and target position. A virtual agent com-
prising of a global and local motion planner is subsequently uti-
lized to simulate the motion between the two captured points. In

Figure 5: Exemplary three-dimensional discrete suitability map
for the steering parameters v, a and ω: The color yellow depicts ar-
eas with a high suitability to reproduce a given trajectory, whereas
blue represents error-prone regions.

particular, a LazyTheta* [NKT10] (cell size .01 m) in combina-
tion with [Rey99] was used to simulate walking motions. In or-
der to further consider acceleration, the rate of velocity change
is constrained. Same applies for angular velocity, whereas no
global threshold is used. In contrast, a linear relationship be-
tween velocity and maximum angular velocity is defined - as indi-
cated by [COMP13]. Following Berseth et al. and Wolinski et al.
[WJGO∗14, BKHF14], the resulting artificial walk path is com-
pared with the corresponding captured trajectory Tk by means of
the sum of absolute Euclidean distances between the reference and
the simulated walk path (normalized with the length of the refer-
ence path). Equation 5 depicts mEuclid . Note that other metrics can
be utilized as a measurement for assessing the quality of a certain
steering parameter vector.

mEuclid =
∑

∥∥∥Tk (t +1)−A
(
~x (t) ,PProb (l,c,h)

T
)∥∥∥

‖Tk‖
(5)

In order to obtain steering parameter combinations from the SPCS,
different algorithms such as greedy approach or simulated anneal-
ing can be utilized [WJGO∗14]. In this paper, those values are de-
termined by means of discretizing the space within a certain range.
These ranges are chosen to be v ∈ [.1,2.0]m

s , a ∈ [.1,2.0] m
s2 and

ω ∈ [.1,2.0]. The latter value describes the gradient of limiting an-
gular velocity line. Respectively, this procedure results in a three di-
mensional configuration space - according to following equations:

V ×A×Ω = {(v,a,ω)|v ∈V,a ∈ A,ω ∈Ω} (6)

V = {(.1+ i∗ .21)
m
s
|i ∈ 0,1,2, ...,9} (7)

A = {(.1+ i∗ .21)
m
s2 |i ∈ 0,1,2, ...,9} (8)

Ω = {(.1+ i∗ .21)|i ∈ 0,1,2, ...,9} (9)

Having simulated and assessed each combination, a n-
dimensional discrete map of similarity scores is obtained for a
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given trajectory. Note that the map may comprise different number
of dimensions, which correspond to the number of steering param-
eters pi. Fig. 5 shows an exemplary three dimensional suitability
map for one trajectory (values of mEuclid have been normalized to 1
and subtracted from 1 in order to better highlight suitable regions).
The color yellow represents areas with an overall high suitability
to reproduce the respective trajectory. This step can also be seen on
the top of Fig. 7 for a two dimensional SPCS.

4.4. Construction of a Dependency Blending Space

Third, the procedure of generating suitability maps is repeated for
each trajectory within the database (see Fig. 6). The outcome of this
step are 1848 discrete maps, modeling the individually suitability
to reproduce the respective trajectory. In general, the characteristics
of those maps vary vastly depending on the underling motion. For
instance, a map being generated for a route of 4 m will significantly
deviate from a counterpart, representing a rather short walk path
(e.g., .5 m). This is due to the fact, that participants reach higher
walking speeds when traveling longer distances. This circumstance
will also be reflected in the corresponding suitability map. Besides
the trajectory and its properties, the physical characteristics of the
respective participant may also have a systematic impact on the
resulting suitability distribution.

As a consequence, it is essential to preserve these informa-
tions about trajectory, respective person or other circumstances for
downstream processes. In the context of this paper, the dependen-
cies d j are chosen to be length l of the walk path and the height h
of the respective person. Moreover, the curvature c of the trajectory
is also considered, which is defined as the the sum of curvatures
at each point ci along the curve, being normalized by l: c = ∑

|ci|
l .

For this purpose, interpolating splines (function UnivariateSpline,
k = 5 [JOPo01]) are utilized. Note that the captured COM trajec-
tory is smoothed using a Gaussian filter (function gaussian_filter1d,
sigma = 2 [JOPo01]) in order to minimize the influence of gait in-
duced jerks. Having determined the respective d j-parameter, each
of the 1848 maps is linked to its corresponding dependency vector.

Finally, a so-called dependency blending space (DBS) is con-
structed, which aligns the 1848 d j-vectors according to their re-
spective values. As each entry is linked to its corresponding suit-
ability map, grids stemming from, for example, tall and smaller
persons are thus clustered. Fig. 6 shows such an exemplary DBS
comprising 100 suitability maps. It can be seen, that the data-points
in the DBS are defined by their d j-values. Moreover, Fig. 6 il-
lustrates that each element is linked its individual suitability map,
which vary statistically with respect to their position in the DBS.

The main benefit of utilizing a dependency blending space, is
that it allows an efficient interpolation, using nearest neighbor
search operations (i.e., k-nearest neighbors). Consequently, it is
possible to efficiently obtain a desired number of similar suitability
maps for a given d j-vector. Since the accuracy of the KNN inter-
polation strongly relies on the density of the reference datasets, the
method proposed by Kovar and Gleicher [KG04] is further applied.
As a result, a homogenized DBS comprising 5000 entities is uti-
lized throughout the paper.

Figure 6: Exemplary three dimensional dependency blending
space for d j = (l,c,h)T , containing 100 suitability maps, which
are aligned according to their d j-value.

Figure 7: Principle to generate PProb: 1) a n-dimensional suitabil-
ity map is generated for each trajectory within a given database.
2) Each of the suitability maps is linked to its corresponding d j-
vector. 3) These linked maps are finally utilized to construct a m-
dimensional dependency blending space.

5. Usage of a Probabilistic Motion Model During Run-Time

Having generated the DBS, this model can be used to generate sta-
tistically distributed steering parameters during run-time. In order
to obtain plausible steering parameter samples, a two-staged inter-
polation process is proposed. Fig. 9 depicts this procedure. In a
first step, the k-nearest neighbors in the DBS are obtained for a de-
sired d j (function KDTree [PVG∗11]). Based on the distances in
the DBS, the simultaneously obtained k maps are hence weighted
linearly and interpolated. The outcome of this process is one novel
suitability map for a given d j.

Fig. 8 shows the outcome of this procedure in form of eight 3D-
grids. The color yellow represents areas with an overall high suit-
ability to reproduce the underlying trajectories. In contrast to the
assumption of previous work concerning steering parameter fitting,
it can be seen that all maps do not show one single global optimum
but ambiguous results. Moreover, these models further contain the
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initially captured variance since the sweet spots show a blurred be-
havior with no sharp borders.

Next, this discrete grid is further interpolated using radial basis
functions [JOPo01]. After applying the RBF-interpolation, a given
map shows a continuous behavior in terms of v, a and ω. Finally,
the normalized suitability function is interpreted as a probability
density function f . This enables the utilization of an acceptance-
rejection algorithm to draw random observations from the distri-
bution. Acceptance-rejection sampling is a type of Monte Carlo
method and is performed by uniformly sampling a point ~xrand =
(vrand ,arand ,ωrand) in the 3-dimensional parameter space of the
proposal distribution. Additionally, a value r in the range from zero
to the maximum of the probability density function is sampled uni-
formly: r ∼ U(0,max( f ))). If the obtained value r is less than or
equal to the value of the distribution function evaluated at ~xrand
(i.e., if r ≤ f (~xrand)), the point is accepted, otherwise rejected. In
this case, the whole procedure is repeated until one point is finally
accepted. Consequently, areas with high suitability scores show a
higher likelihood to be drawn from the statistical model than those
with lower values.

The main advantage of using a sampling-based method to obtain
steering parameter from a continuous suitability function is, that
it reproduces the ambiguous nature of human locomotion. For in-
stance, a function being constructed using 100 maps comprises sev-
eral local maximums and areas with an overall-high suitability (see
Fig 8). These areas might potentially lead to enhanced results for a
given trajectory, compared to the function’s global maximum. The
acceptance-rejection approach allows to draw samples from these
areas being rated marginally lower. Please note, that it is neverthe-
less possible to utilize the interpolated function’s global maximum
for use-cases, which do not consider stochastic effects.

Performed on an Intel i7-6820HQ with 2.70 GHz, the two-
staged interpolation algorithm in combination with the acceptance-
rejection sampling algorithms allows the generation of novel steer-
ing parameter samples in approximately 100 ms (100 neighbors).
This value can be regarded to be sufficient when simulating one
or two assembly operators. Note that it is possible to significantly
reduce computation time by means of parallelization.

6. Further Possible Areas of Application for the Proposed
Approach

In general, besides modeling two-dimensional trajectories of sin-
gle subjects, the presented approach can be applied to a wide range
of use-cases. The only prerequisite is, that the utilized motion gen-
eration algorithms can be externally controlled via a set of scalar
parameters.

For two-dimensional motion planning, a second prominent area
of application is the domain of crowd simulation - as discussed in
Section 2. In contrast to the presented approach, here, the similar-
ity of motions has to be analyzed using metrics, being more ade-
quate for this respective use-case (such as vorticity or fundamen-
tal diagram [WJGO∗14]). Furthermore, varying motion planning
approaches (e.g., [VDBSGM11]) comprising different steering pa-
rameter have to be utilized.

Increasing the motion’s dimensionality, the animation of a digital

human model along a multidimensional path is a second possible
field, which could directly benefit from the proposed approach. For
instance, a reach motion of a three-dimensional character and its
spatio-temporal characteristics, can be calibrated to a given set of
captured data. For this purpose, the hand’s velocity can be varied
in order to analogously generate suitability maps. Note that the uti-
lized metrics, on the one hand, can address one single limb (e.g.,
wrist). On the other hand, it is also possible to evaluate the pose of
the fully-articulated character or the naturalness of its trajectories
(e.g., smoothness).

Regardless of the application, the presented generic principle en-
ables a calibration of a probabilistic parameter model to a given
dataset of real world observations. Consequently, a deterministic,
state of the art algorithm can be extended to consider the intrinsic
stochasticity of human motion, without adapting its implementa-
tion. The utilized metric, comparing artificial and captured motion
has to be chosen with respect to the simulation’s scope. For in-
stance, motion execution time, smoothness of trajectory, natural-
ness of pose or shape similarity can be thus enhanced.

7. Evaluation of Prediction Quality

In order to measure the performance of the proposed probabilistic
motion model, both the novel and a state of art approach are com-
pared with captured human motions. In the context of this evalu-
ation, the prediction quality is measured by means of travel time
differences. In particular, ∆t is used due to the significant impor-
tance of task durations for manufacturing and production planning.
In particular, when assessing the efficiency of an assembly line, the
ratio of value-adding and non-value-adding task times is regarded.
The non-value-adding portion is usually comprised to a large extent
by walking. Thus, when optimizing an assembly line, minimizing
travel times is essential.

7.1. Participants

For this experiment 10 participants, differing from the population
of the first experiment (see section 4.2) were recruited. This group
comprised 9 male and 1 female being aged from 21 to 40 (µ =
27.80, σ = 6.08) with a height ranging from 1.60 m to 1.98 m (µ =
1.79 m, σ = .12 m) whereas the mean weight was 76.20 kg (σ =
14.18 kg, min = 60 kg and max = 105 kg). None of the participants
reported vision or balance disorders.

7.2. Apparatus

In order to obtain a representative test case, two setups inspired
by a workplace within an assembly line were chosen. As depicted
in Fig. 10, scenario 1 comprised one car body and three racks be-
ing positioned on one side, whereas the latter included two shelves
(height of 1.0 m and .6 m), each containing a single screw. The first
rack (number 3) had a distance of .7 m to the interaction point 1,
whereas the other two racks had an offset of 2.2 m and 2.9 m,
spanning an angle of approximately 90◦. Furthermore, within sce-
nario 2, the car was placed between two racks. Moreover, the point
of assembly was defined to be at the car’s bonnet (distances 2.0 m
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Figure 8: Eight resulting three-dimensional suitability maps for l ∈ [.5 m, . . . ,3.0 m], c = 0 and h = 1.80m. The color yellow depicts areas
with an overall high suitability to reproduce the corresponding trajectories.

for rack 1 and 2.4 m for rack 2). Using these setups, the predomi-
nant proportion of walk paths occurring in a final assembly work-
place, including obstacle avoidance, could be covered (see Sec-
tion 4.1).

In order to observe the motion of each participant, the center of
mass was monitored using an HTC Vive tracking system (update
rate 60 Hz) [ABT∗02]. For this purpose, a controller was placed
on the front side in center of the participant’s hip (i.e., umbilicus)
with the help of an elastic belt. The COM was subsequently derived
for each participant as the extension of the controller’s z-axis while

Figure 9: Procedure to generate statistically distributed pi-
samples: 1) the d j-vector is utilized to determine k similar suit-
ability maps in the dependency blending space. 2) a novel map is
generated by means of KKN interpolation. 3) the discrete map is
further interpolated using radial basis functions. 4) an adequate
pi- sample is obtained by means of acceptance-rejection sampling.

taking into account half of the torso depth and the distance between
controller and skin. By analogy with section 4.2, the gathered data-
sets were identically processed and segmented.

7.3. Procedure

During both scenarios, a representative list of assembly tasks was
carried out 10 times. For scenario 1, each set included 11 walk paths
between the three racks and the final assembly point: first, each
participant was asked to start at rack 2 and successively carry and
fasten the two screws to the car at a self-selected speed. Next, the
same procedure was repeated for number 3 and finally for rack 1.
Note that each of the six screws had to be assembled individually in
order to maximize the amount of walking. Analogously, scenario 2
comprised 6 walk paths: 2 between rack 1/2 and assembly point 3
and 2 between both racks while avoiding the car.

Having captured and extracted all COM trajectories in both sce-
narios, the set of assembly tasks were simulated while taking into
account the knowledge about captured start and end point including
position and dimension of all obstacles. Subsequently, three motion
models were utilized to independently simulate the identical walk
paths.

PStat : In order to allow a direct comparison between the pro-
posed probabilistic approach PProb and an equivalent static mo-
tion model PStat , the global optimum in terms of pi = (v,a,ω)T

was determined according to [WJGO∗14]. For this purpose, the
1848 point-to-point walk paths being captured in Section 4.2
were utilized. Moreover, Equation 5 was chosen to compare cap-
tured and synthetic walk paths whereas simulated annealing was
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Figure 10: Setup of second experiment: a participant had to suc-
cessively fetch and tighten six screws which were stored in three
racks on a car body-in-white for 10 times.

utilized to determine the optimal steering parameter configura-
tion [WJGO∗14]. As the database for the static motion model and
the proposed probabilistic approach is identical, PStat represents the
static counterpart of PProb. Using the captured trajectories, the op-
timization process determined an optimal steering parameter con-
figuration of v = .94 m/s, a = 1.58 m/s2 and ω = 1.79 for PStat .

PProb : Furthermore, PProb was set up as described above using
the database from Section 4.2. Afterwards, PProb was utilized to in-
dividually draw one parameter vector for each walk path. For this
purpose, the distance and curvature of the LazyTheta* algorithm
(smoothed, function gaussian_filter1d, sigma = 2 [JOPo01]) was
utilized in order to approximate the expected dependency parame-
ters. Moreover, the height of the respective person was loaded from
the annotated dataset. Next, d j = (l,c,h)T was used to interpolate
the probability density function for the expected walk path as de-
scribed above (k = 100 for KNN). One parameter sample was after-
wards generated from this function using the acceptance-rejection
sampling algorithm. Finally, the sampled pi-vector initialized the
motion planner for simulating this particular walk path.

PAdapt : With regard to PStat , the proposed approach comprises
two significant modifications: the d j-dependent generation of a
suitability function and the probabilistic sampling. In order to dif-
ferentiate and to quantify their respective influence on the overall-
performance, a third intermediate motion model (i.e., PAdapt ) is set
up. PAdapt represents the deterministic counterpart of PProb. In par-
ticular, no acceptance-rejection sampling is utilized to generate ad-
equate pi-values from the interpolated suitability function. Instead,
steering parameter vectors are obtained by means of determining
the global maximum.

7.4. Results

Scenario 1: During scenario 1, more than 1984 point-to-point walk
paths with an overall-length of 4.06 km could be gathered. Fig. 11
depicts the delta of the overall walking duration ∆t between the cap-
tured and the simulated walk paths using the tested motion models.
In particular, boxplots and their corresponding histograms give an
overview of the temporal deviation between the simulated and cap-
tured walk paths. It can be seen that none of the measurements
shows a normal distribution. Instead, a positive skew is observed.
A performed shapiro-wilk test (SPSS) underlines these finding,
scoring low p-values, which converge to zero. The mid-section of
Fig. 11 lists the outcome of this test and further descriptive statis-
tics.

It can be seen, that PStat , representing the static state of art mo-
tion model, shows a median ∆t value of .514 s. Moreover, the 25th

and 75th percentiles account for .262 s / .838 s, which corresponds
to an interquartile range of .576 s. The 5th and 95th percentiles are
at .052 s and 1.464 s. Furthermore, the deterministic PAdapt motion
model, comprising a d j-dependent steering parameter generation,
points out an improved prediction quality. As listed in Fig. 11, the
median error decreases to .475 s, while the 25th and 5th percentiles
are .235 s / .046 s. The 75th and 95th percentile show a reduced er-
ror of .772 s / 1.350 s. Finally, the probabilistic motion model PProb
points out a further reduced deviation between simulation and real-
ity. It can be seen, that the median error accounts for .453 s, while
the 25th and 75th percentiles are .231 s and .747 s. The 5th and 95th

percentile lay at .040 s and 1.212 s.

In order to further statistically compare the non-normal datasets,
a parametric wilcoxon signed-rank test is chosen (SPSS) compris-
ing a confidence level of 95%. The bottom of Fig. 11 gives an
overview of the obtained results. It becomes apparent, that each
tested pair of motion models (PStat ↔ PAdapt , PAdapt ↔ PProb and
PStat↔ PProb) indicate a statistically significant difference between
both measurements (i.e., p = .000 to .015). Moreover, each test’s
power is calculated using G*Power [FELB07], pointing out suf-
ficient values (i.e., 1− β = .951 to 1.000) in all cases - except
PAdapt ↔ PProb.

Scenario 2: Furthermore, the group of participants generated
3.26 km of walk paths in the context of scenario 2. As shown in
Fig. 12, the ∆t error distribution for each tested motion model is
non-normal (p = .000). Regarding PStat , it can be seen, that the
median of is .850 s, while the 25th and 75th percentiles are at
.462 s / 1.247 s. Furthermore, the results being obtained using
PAdapt , indicate an improved resemblance to the baseline. In partic-
ular, the median deviation is reduced to .771 s, whereas both quar-
tiles lay at .436 s and 1.138 s. Analogous to scenario 1, the proba-
bilistic motion model PProb scores the lowest ∆t values. Similar to
the previous scenario, the performed statistical analysis reveals sig-
nificant differences for each pair of motion models. As the archived
power is above the desired level of .800 (except PAdapt ↔ PProb) ,
again, the all thus obtained outcomes are significant.

7.5. Discussion

PStat vs. PAdapt: Comparing the deterministic motion models,
which only differ in terms of d j-adaptive steering parameter gen-
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eration, in both scenarios, it can be seen that PAdapt shows a sig-
nificantly improved resemblance to reality (p = .002 , 1− β =
.951 / .953). For scenario 1, the median error is reduced by 8%,
while the 75th and 95th percentiles are decreased by 10% and 8%.
Scenario 2 indicates a similar enhancement. In particular, the delta
for the median error is 9%, while the 75th and 95th percentiles are
lowered by 6% and 9%. Summarizing these findings, it can be con-
firmed, that a adaptive pi-approximation significantly improves the
prediction quality (i.e., temporal deviations) of deterministic mo-
tion models.

As the training datasets for PStat and PAdapt are identical, this
circumstance can be traced back to the fact, that the DBS sorts the
database of suitability maps according to their dependency parame-
ters. Consequently, it is ensured that only adequate datasets are uti-
lized, when generating a novel suitability map. For instance, the in-
terpolation of a suitability function for a long walk path would lead
to inferior results, if maps are used, which were generated using
shorter distances (e.g., .5 m). As the d j-adaptive steering parame-
ter generation rules out such unwanted effects, it can be concluded,
that exclusively the presented technique reduces the deviation from
reality.

PAdapt vs. PProb: As mentioned above, the difference between
motion models PAdapt and PProb is the utilization of differing tech-
niques to obtain pi from the interpolated suitability function. In
particular, the global optimum is determined for PAdapt , whereas
PProb uses probabilistic acceptance-rejection sampling. The find-

Figure 11: Scenario 1: resulting statistics of ∆t for the tested mo-
tion models: histogram and boxplots (top) . Descriptive statistics
(center) and outcomes of performed statistical analysis (bottom).

Figure 12: Scenario 2: resulting statistics of ∆t for the tested mo-
tion models.

ings for both scenarios point out, that the latter increases the predic-
tion quality, even though the power of .687 and .629 (i.e., < .800)
does not allow to draw statistically significant conclusions. In par-
ticular, a reduced median error of 5% / 6% can be observed. Same
applies for the 25th and 75th percentiles, ranging between 3% and
11% - for both scenarios.

On the one hand, the evident improvements can be exclusiv-
ity attributed to the different sampling strategy, which allows the
generation of statistically distributed parameter variations. Conse-
quently, the consideration of inter- and intra-subject variability out-
performs its deterministic counterpart. The main reason for this is,
that for PAdapt , motion executions which deviate from the mean are
inevitably leading to a discrepancy between simulation and real-
ity. On the other hand, a possible reason for the test’s low power
is, that highly inadequate areas of the multidimensional suitability
function, possess values, which are marginally greater than zero.
As a consequence, the probability of drawing pi from those unsuit-
able areas is unequal to zero. Such sampled outliers are inevitably
affecting the resulting error distribution. One possible countermea-
sure is the utilization of a threshold or to adapt the suitability func-
tion (e.g., exponentiation). Nevertheless, it can be concluded that
the novel motion model increases the prediction quality.

PStat vs. PProb: Unifying both preceding comparison, it can be
concluded that PProb outperforms the state of the art motion model
in both test-scenarios. In particular, statistically significant differ-
ences are found (p= .000 , 1−β= 1.000 / .992), which correspond
to a decreased median deviation from reality by 12% / 15%. The re-
maining percentiles range between 10% and 16% for both scenar-
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ios. Consequently, the combination of adaptive steering parameter
estimation and probabilistic sampling is leading to a superior de-
gree of realism. This circumstance can be exclusively attributed to
the proposed approach, as the underlying training datasets are iden-
tical for each model.

Summarizing it is to be noted, that the presented evaluation con-
veys a consistent picture for both associated scenarios. In particular,
the relative delta between the compared motion models is nearly
constant. This circumstance leads to the conclusion, that neither the
setup, nor the shape of the walk paths or the presence of obstacles
(see Fig.10) correlate with the overall-performance. Consequently,
the presented probabilistic approach is proven to be applicable to
varying environments.

Finally, the obtained findings are transferred to the use-case of
automotive production planning. Assuming an exemplary assem-
bly workplace with a cycle time of 100 s and a proportion of 20%
walking, the proposed approach would reduce the error between
simulation and reality by approx. 2−3 s - per car being produced.
This underlines the potential of utilizing probabilistic motion mod-
els for industrial applications.

8. Analysis of Model and Influence Parameters

Having assessed the overall-performance of the approach, finally,
the underlying techniques and the different influence parameters
are investigated in detail.

8.1. Analysis of Model Parameters

First, the contribution of all six dependency and steering param-
eters is investigated. For this purpose, each parameter is individu-
ally removed, thus resulting in six independent sub-models: PProb,l ,
PProb,c, PProb,h, PProb,v, PProb,a and PProb,w. For instance, PProb,l
comprises two dependency (i.e., curvature and height of partici-
pant) and all three steering parameters. Compared to PProb, how-
ever, PProb,l does not take the length of the planned walk path into
account. PProb,v, in turn, solely models acceleration and angular ve-
locity as a function of all three dependencies. Having constructed
six sub-models, the trajectories being captured in the context of sce-
nario 1 are subsequently used to analyze the individual contribution
of each parameter.

Fig. 13 illustrates the results of this analysis. Analogous to the
previous section (see Fig. 11), PProb scores a median ∆t error of
.453 s. The sub-model PProb,l , neglecting the length of the planned
walk paths, increases this error to .506 s. Furthermore, the individ-
ual removal of curvature and height of the assembly operator leads
to an inferior prediction quality: .542 s and .471 s. With regard to
the steering parameters, similar results can be observed. In partic-
ular, neglecting velocity, acceleration or angular velocity increases
∆t: .545 s, .507 s and .495 s.

Summarizing the findings, the results point out, that curvature
has the largest contribution to the model’s prediction quality. A
possible reason for this circumstance is, that the assembly related
character of scenario 1 leads to walk paths with a predominantly
curved form. Furthermore, the rather short routes inhibit a stronger

Figure 13: Analysis of influence of each steering and dependency
parameter on the overall-result.

impact of l and h on the overall-results. With regard to the steer-
ing parameters it is to be noted, that the consideration of velocity
leads to the highest reduction in terms of ∆t. Even though showing
a varying contribution, it can be concluded, that each introduced
parameter improves the overall-results

8.2. Analysis of Dependency Blending Space

Second, the appropriateness of both chosen interpolation methods
is investigated. First, the KNN technique is compared to existing
suitability maps (ground truth). For this purpose, one respective en-
tity is removed from the DBS. Afterwards, the proposed KNN ap-
proach is utilized to mimic this suitability map for the correspond-
ing d j. The outcome of the interpolation process is subsequently
compared with the excluded ground truth by means of subtract-
ing the suitability scores (median). This process is successively re-
peated for each of the 5000 entries. In total, the KNN-interpolation
is able to reproduce suitability scores with following statistics:
µ = −.434% and σ = 5.104%. Given the wide range of variabil-
ity in terms of human motion, an error of < 5% is regarded to be
acceptable. However, more advanced interpolation techniques, as
discussed in [FHKS12], could potentially lead to further improved
results.

Additionally, the utilized radial basis functions are analyzed.
Analogous to the previous evaluation, one entry is removed from
the suitability map, and subsequently regarded as ground truth. Af-
terwards, the RBF interpolation is applied to the remaining data-
points, in order to reconstruct the removed baseline. As the out-
come of this process might vary depending on the position in the
grid, this procedure is repeated for 100 randomized indices. The
outcome of this step are 100 measurement points, whose median is
subsequently analyzed. Being repeated for each of the 5000 maps,
a neglectful mean deviation of −.048% (σ = .172%) can be ob-
served. Consequently, the RBD interpolation can be regarded as
well suited.

As k - i.e., number of suitability maps, being used for interpo-
lation - is known to have a considerable impact on the outcome of
KNN-approaches, this parameter is further investigated. In partic-
ular, scenario 1 is evaluated using different numbers of neighbors,
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while the temporal deviation from the captured reference motions is
measured. Fig. 14 shows the result for k ∈ 10,20,50,100,200,500.
Most notably, a negative correlation between k and ∆t can be ob-
served. While k = 10 points out a large deviation from the baseline
(i.e., median of 1.425 s), this error is reduced by 27% for k = 20.
For 50 neighbors the results point out a reduction to .609 s, whereas
the mean time needed to interpolate the suitability maps nearly dou-
bles. This trend continues for k = 100, which results in ∆t = .453 s
(see previous section) coupled with a processing time of 38.4 ms.
For higher k-value a slight improvement in terms of ∆t can be ob-
served (i.e., 17% and 3%), however, at the expense of computa-
tional efforts. In particular, this value rises to 184.7 ms for k = 500.

The results demonstrate, that the model’s prediction quality is
considerably affected by k, as is converges. Consequently, it is ad-
visable to chose high k-values since this procedure apparently in-
hibits the influence of local outliers. Moreover, the number of uti-
lized suitability maps increases the inherited motion variance of the
interpolated function. The evaluation reveals, that given the utilized
DBS (i.e., 5000 up-sampled entities), k > 50 generates reasonable
results. However, considering the exponentially rising interpolation
times, k = 100 is the optimal compromise between ∆t and compu-
tational efforts.

8.3. Analysis of Suitability for Simulating Longer Distances

In order to further underline the generality of the proposed ap-
proach, third, an independent probabilistic model is constructed to
simulate long distances. Similar to the previous sections, a group of
10 individuals was recruited. This group showed following proper-
ties: age between 21 to 40 (µ = 26.30, σ = 5.01) with a height
ranging from 1.75 m to 1.90 m (µ = 1.81 m, σ = .05 m). This
group walked distances of 10, 25 and 50 meters, while being video
recorded. For this purpose a Panasonic Lumix DMC-G6 was used
resulting in a frame rate of 25 Hz and in a resolution of 1920x1080.
Using this apparatus, it was possible to precisely determine travel
times using the video footage. In particular, the exact frames of
the double-stance posture before and after locomotion were used.
The group of participants performed each of the three walk paths in
a randomized order. This procedure was repeated four times, thus
leading to four walk paths for each distance. Subsequently, the data-
set was split-up into to halves. One half was used to train a prob-

Figure 14: Analysis of correlation between number of neighbors k
and the overall-result / interpolation time.

Figure 15: Comparison of PProb and PStat in the context of 10 m,
25 m and 50 m walk paths.

abilistic motion model, whereas the other part served as test data.
Furthermore, PProb models acceleration and velocity as a function
of participant height and distance.

Fig 15 summarizes the travel times distributes for 10 m, 25 m
and 50 m. Re f illustrates the captured durations of the test data-
set, while PProb and PStat represent the simulated counterparts. For
10 m, the reference median travel time is 6.310 s, while its in-
terquartile range (IQR) is .538 s. The probabilistic model matches
this behavior by predicting a median duration of 6.317 s (IQR
.475 s). The global optimum results in 6.400 s. For 25 m, a sim-
ilar situation can be observed. The baseline points out a median
travel time of 15.685 s (IQR 1.428 s), which is reproduced by
PProb: median 15.100 and IQR 1.183. PStat predicts a duration of
14.833 s. For the longest distance, the participants’ median travel
time is 29.260 s (IQR 2.395 s). The artificial walk paths account
for 28.750 s (IQR 2.208 s) and 28.833 s.

The results mainly demonstrate, that on the one hand, both mod-
els predict the median travel time with a low deviation < 5%. On
the other hand, however, the comparable IQR of PProb underlines,
that the proposed approach precisely reproduces the vagueness in
human motion - even in the context of long distances. This behav-
ior, however, is neglected when using PStat . Please note that this
preliminary evaluation does not allow to draw statistically signif-
icant conclusions due to the limited number of test data. Never-
theless the results can be interpreted as a strong indicator of the
model’s suitability to adequately simulate long distances. This fur-
ther underlines the generality of the proposed approach.

9. Conclusion

This paper introduced an approach to generate a probabilistic mo-
tion model from real-world observations to simulate variant-rich
motion trajectories using arbitrary state of art motion planning al-
gorithms. The generic principle can be applied to any steering pa-
rameter and any influence factor. Furthermore, this approach is not
solely limited to the field of two-dimensional walking simulation
but can be transferred to a wide range of even higher dimensional
problems, which are related to the simulation of human motion
(e.g., grasping trajectories for human limbs).

Using this methodology, a model is implemented, which manip-
ulates velocity, acceleration and angular velocity depending on the
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walk path length, curvature and height of the respective person.
Based on two assembly-related experimental setups, this approach
is compared with two deterministic motion models. The evaluation
reveals two main advantages which contribute to an increased pre-
diction quality:

1. The consideration of dependencies without probabilistic sam-
pling for generating steering parameter significantly increases
the resemblance to real world observations.

2. The enhanced prediction quality can be further improved by
means of probabilistically sampling steering parameters.

Even though the novel approach offers several evident benefits,
the current implementation can still be optimized and extended. For
instance, the consideration of other influence factors such as cog-
nitive load, gaze or distractions could potentially lead to enhanced
results. Moreover, future work will also prove that the generic prin-
ciple can be adopted to other use-cases such as three-dimensional
grasping simulation while taking into account a larger number of
steering and influence parameters.
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