
Natural Posture Blending Using Deep Neural Networks
Felix Gaisbauer

Daimler AG
Ulm, Germany

Jannes Lehwald
Daimler AG

Ulm, Germany

Janis Sprenger
German Research Center for Artificial Intelligence (DFKI)

Saarbrücken, Germany

Enrico Rukzio
Ulm University
Ulm, Germany

𝑥0

…

𝑥135

𝑥270

…

𝑦0

…

𝑦134

Blending weight t

Start posture

End posture

Posture at t

Neural Network

Hidden Layer: 3 x 512

Figure 1: Visual representation of the neural network structure. Given a humanoid start and end posture, the network gener-
ates a blended posture according to the blending weight t .

ABSTRACT
Motion synthesis approaches are widely used throughout differ-
ent domains such as gaming, virtual crowds or simulation within
production industries. With ongoing digitization, these systems
are becoming increasingly indispensable. In general, the utilized
technologies can be subdivided in data-driven and model-based

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MIG ’19, October 28–30, 2019, Newcastle upon Tyne, United Kingdom
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6994-7/19/10. . . $15.00
https://doi.org/10.1145/3359566.3360052

approaches, whereas each category has its advantages and disad-
vantages. In the field of data-driven motion synthesis, recent works
present deep learning based approaches for full body motion syn-
thesis, which offer great potential for modeling natural motions,
while considering heterogeneous influence factors. In this paper,
we propose a novel deep blending approach for blending collision-
free and feasible postures between a humanoid start and target
posture. The network has been trained utilizing the CMU data-
base to generate feasible postures. The proposed approach can be
utilized for posture-blending, motion synthesis with known start
and end-posture or key-frame animation. A preliminary evaluation
indicates the validity and the potential of the novel approach.

https://doi.org/10.1145/3359566.3360052

MIG ’19, October 28–30, 2019, Newcastle upon Tyne, United Kingdom F. Gaisbauer et al.

CCS CONCEPTS
•Computingmethodologies→Animation;Model development
and analysis; Motion capture.

KEYWORDS
Posture Blending, Neural Network, Motion Synthesis, Animation,
Key-frame Animation, Deep Learning, In-Betweening

ACM Reference Format:
Felix Gaisbauer, Jannes Lehwald, Janis Sprenger, and Enrico Rukzio. 2019.
Natural Posture Blending Using Deep Neural Networks. In Motion, Inter-
action and Games (MIG ’19), October 28–30, 2019, Newcastle upon Tyne,
United Kingdom. ACM, New York, NY, USA, 6 pages. https://doi.org/10.
1145/3359566.3360052

1 INTRODUCTION
Nowadays, motion synthesis systems are an essential aspect of
many domains such as the entertainment or production industries.
While motion blending is a commonly used technique for motion
synthesis in the industry, there are many recent publications using
data-driven, model-driven or physics-driven approaches. Due to
increasing computational capabilities, deep learning approaches
receive growing attention. Recent approaches for character anima-
tion, such as [Holden et al. 2017; Zhou et al. 2018b], are powerful
alternatives to common motion blending systems and can consider
heterogeneous constraints. These systems, however, fail to reach
specific full body poses at the end of an animation. In addition,
they require a large amount of training data for each action. In
the case of highly specific and tailored movements, manual edit-
ing and motion generation using key-frame animations is still the
dominant approach. In order to combine these traditional motion
clips with novel data-driven approaches for character animation,
motion blending is required. Simple linear blending, however, is
not sufficient for all movements and can generate many artifacts
(e.g. pose-averaging, foot-sliding, etc.). Optimizing the blending
functions is time-intensive and not always feasible.

In this paper, we present a deep neural network (DNN) address-
ing motion blending. It synthesizes human postures based on a
given start and end posture as well as an interpolation weight. The
network was trained using the CMU motion capture database [cmu
2019] comprising heterogeneous motions of different subjects. The
proposed approach can be used for different application scenarios.
Beside the blending of feasible postures, the novel approach can be
utilized to improve key-frame animation and reduce the amount
of manually specified postures. Moreover, the novel approach can
be applied for motion synthesis in scenarios in which the desired
end posture is already known. Overall, the proposed approach can
be considered as a powerful and flexible alternative to common
posture blending approaches based on interpolation.

2 RELATEDWORK
The proposed approach in this paper relies on a base of different
technologies. Therefore, the state of the art regarding motion-,
posture blending, deep learning-based motion synthesis and in-
betweening is revisited.

2.1 Motion Blending & Posture Interpolation
Motion blending techniques are used throughout different domains
and can produce natural-looking results with low computational ef-
forts. In general, these interpolation approaches can be subdivided
into Barycentric-, K-Nearest-Neighbor- and Radial Basis Function-
interpolation [Feng et al. 2012]. Moreover, inverse blending [Huang
and Kallmann 2010] and inverse kinematics are frequently utilized
for solving various constraints. There is, however, no single blend-
ing techniques suited for every task [Feng et al. 2012]. In general, it
can be denoted that with an increasing amount of constraints these
systems tend to fail or require a vast amount of time to satisfy all
desired constraints.

In contrast to motion blending, posture blending approaches do
not interpolate entire motions, instead only individual postures
are generated based on given input postures. The simplest way to
perform a posture blend is to interpolate between the joint trans-
formations of different postures. However, linear or spline-based
interpolation only produces feasible results if the temporal and
spatial distance between the two postures is small. For instance,
if the input of the posture blend are two walk postures being in
different phases of the walk-cycle, foot sliding might occur, whereas
the walk-cycle might be entirely neglected in the blended posture.
Moreover, depending on the given input postures, self-collisions
might occur in the resulting posture. The authors of [Badler et al.
1994] presented a posture blending approach with collision avoid-
ance utilizing a finite state machine, where the states define the
overall primitives of postures like standing or squatting. Given the
approach, however, these states as well as the transitions in between
must be manually defined. More sophisticated approaches such as
[Wang et al. 2014] utilize motion planning algorithms to generate
feasible and collision free postures. These approaches allow cover-
ing large distances between consecutive postures, however at the
expense of computational time. With our novel approach, we want
to reduce the manual efforts, whereas an interpolation between
heterogeneous postures is provided in a lightweight manner.

2.2 Deep Learning based Motion Synthesis
Due to the growing computational capabilities and ongoing devel-
opment of software for machine learning, recently, deep learning
approaches received significant attention in various domains, in-
cluding character animation. The authors of [Holden et al. 2017]
proposed an approach to synthesize human walk motions based on
a phase-functioned neural network which has been trained using
unstructured motion capture data. Each walk phase is represented
by a distinct network, whereas each network models the transition
to the next phase utilizing given control input and the current pos-
ture. In [Gaisbauer et al. 2018] the approach has been extended to
synthesize natural reach motions given positional and rotational
constraints. Moreover, other approaches such as [Zhou et al. 2018b]
synthesize natural humanoidmotions based on recurrent neural net-
works or utilize convolutional auto-encoders [Holden et al. 2015].
The presented approach within the paper builds upon the recent
publications in this field and utilizes a feed-forward neural network
to synthesize body postures.

https://doi.org/10.1145/3359566.3360052
https://doi.org/10.1145/3359566.3360052

Natural Posture Blending Using Deep Neural Networks MIG ’19, October 28–30, 2019, Newcastle upon Tyne, United Kingdom

2.3 In-Betweening
Despite the previously addressed domains, posture interpolation
is also related to in-betweening. Similar to the data-driven motion
synthesis, recent publication focus on the use of artificial intelli-
gence for addressing the problem of generating data in between
frames. Recent works present an auto-completion approach based
on autoregressive two-layer recurrent neural network [Zhang and
van de Panne 2018], whereas the validity is approved based on a
hopping lamp animation stemming from a physics-based model.
[Yagi 2017] present a filter based approach for in-betweening in
which a convolutional neural network is used to generate inter-
mediate frames and smooth animation of line drawing. Moreover,
[Li et al. 2019] propose a novel approach for video in-betweening
based on 3D convolutions. The recent progress in this domain us-
ing artificial neural networks unveils the possibilities of applying
these techniques for other problems as well. Therewith, we consider
DNNs as a promising approach for the interpolation of humanoid
postures.

3 POSTURE BLENDING NETWORK
The basic idea of the proposed approach is to generate natural
human postures blended between a start and end posture based
on a deep neural network. Whereas traditional posture blending
might fail to produce feasible transitions between two postures
without further knowledge, the developed DNN has learned various
factors of motions such as velocity and motion phase. Therefore,
the network is capable of reproducing plausible postures which do
not contain self-collision and unnatural postures.

3.1 Input & Output Variables
The input and output variables are crucial parameters for neural
networks. As stated before, only the start h0 and end posture h1
together with the blending weight t are required to blend between
two human postures. Postures are defined by the configuration of a
kinematic skeleton of j = 22 joints in this work. The root position
p0 and rotation r0 are defined in the global Cartesian space, whereas
the joint rotations ri are defined in the local space w.r.t. the root
joint. The root position is defined as a vector in Cartesian space
and rotations ri ∈ R6 are described by the forward and up direction
vector of the joint i after rotation. This specific representation has
been selected to define rotations in the same space as positions
and proved to produce better results compared to Euler angles or
quaternions in our experiments. Our initial experiments are thus
confirming a recent finding by [Zhou et al. 2018a], who analyzed
different rotation representations for neural networks in a quan-
titative evaluation. One posture is the combination of the global
position and rotation of the root joint and the local rotations of all
21 subsequent joints in the skeleton of the utilized avatar. In total,
all rotations and positions sum up to one posture vector hi ∈ R135.
Therefore, the full input vector consists of X = {h0,h1, t} ∈ R271

with t ∈ R being the blending weight. The output vector y of the
system is the human posture Y = ht ∈ R135. Figure 1 schematically
describes these parameters.

3.2 Data Acquisition & Preprocessing
In order to cover a high variety of motions, the complete CMU
motion capture database was used for the generation of input and
output data. Overall, this database contains 2605 motion files in 6
categories.

Before processing, the animations were re-targeted to the Unity
Mecanim skeleton (finger joints excluded). Hereafter, the individual
motions were randomly separated to 80% training, 10% validation
and 10% test sets. In the next step, the motions were cut into clips
with random length between 0.1 and 1.0 seconds. Longer motions
sequences were considered as to inconsistent and diverse for the
network to learn. Afterwards the segmented motions were nor-
malized w.r.t. the initial frame. The clip was first translated such
that the projection of the root joint on the ground plane started at
zero. Afterwards the whole clip was rotated such that the forward
direction of the root joint pointed towards the global Z-axis.

Afterwards, the pre-processed clips were split into input- and
output-pairs for each frame. The start (h0) and end posture (h1)
were defined by the start and end posture of the clip. For each
frame, the blending weight t was defined by elapsed frame time
proportional to the whole duration of the clip. The output posture
ht was then defined by the specific posture at this frame. Hence,
for a motion clip with a length of 30 frames, 30 pairs are generated.
At the end, the input and output vectors were rescaled to a mean
of 0.0 and a standard deviation of 1.0.

3.3 Neural Network Structure
We propose a fully-connected feed-forward neural network for pos-
ture blending. The input vector x and output vector y are described
in 3.1. Given an input vector, the network generates an output
vector as follows:

Φ(x ;α) =W3 SELU (W2 SELU (W1 SELU (W0x + b0) + b1) + b2) + b3
(1)

The network α is defined by its weights and biases and are defined
by

α = {W0 ∈ Rh×n ;W1 ∈ Rh×h ;W2 ∈ Rh×h ;W3 ∈ Rm×h ;

b0 ∈ Rh ;b1 ∈ Rh ;b2 ∈ Rh ;b3 ∈ Rm }
(2)

Here n = 271 and m = 135 describe the dimensionality of the
input and output vector as described in section 3.1. The numbers
of units used in the hidden layer is described by h = 512. Scaled
exponential linear units (SELU) [Klambauer et al. 2017] were used as
an activation function. For network training, we utilized the Adam
algorithm [Kingma and Ba 2014] with a learning rate of 0.001.

The hyperparameters were found by an optimization explained
in section 3.4. A visual representation of the utilized feed-forward
network structure is shown in figure 1. Since the network is a
compact representation of learned motions, all training motions fit
into the total disk space of the weights which is around 3 MB.

3.4 Hyperparameter optimization
A genetic algorithm as described in [Man et al. 1996] was used
to find the optimal hyperparameter set z = {nh ,nn ,ah ,ao ,o, l}

MIG ’19, October 28–30, 2019, Newcastle upon Tyne, United Kingdom F. Gaisbauer et al.

for the network, where nh = {0, 1, 2, 3, 4, 5} is the number of hid-
den layers, nn = {32, 64, 128, 256, 512, 1024} the number of neu-
rons in the hidden layers, ah ,ao = {Linear , Siдmoid, tanh,ELU ,
LeakyReLU , SELU } the activation function of the hidden and out-
put layer respectively, o = {Adam, SGD,RMSProp,Adaдrad,
Adadelta} is the optimizer and l = {0.01, 0.001, 0.0001} its learning
rate. Both, the genetic algorithm as well as the neural networks,
were implemented in python whereas keras 2.2.4 with tensorflow
backend (gpu) was utilized for the neural network.

The population size of 12 was optimized over 8 generations. The
fitness of the trained networks were defined by their performance
against the generated validation data described in section 3.2. The
training process for each neural network was composed of two
subsequent phases with different batch sizes. In the initial training
step amini-batch size of 32 was utilized whereas in the second phase
the size was raised to 30,000 to fine-tune the network parameters.
To ensure optimal trained networks the early-stopping strategy was
used in both cases. Additionally, a checkpoint of each model was
created once and overwritten after each epoch, if the validation loss
had decreased. Therefore, the models with the best validation losses
were utilized for the performance evaluation. Furthermore, batch
normalization between each hidden layer was utilized to improve
the overall training speed. As loss function the mean squared error
was used. The training of one network took around five hours on a
NVIDIA Quadro M6000, which resulted in a total training time of
around 960 hours or 20 days for all generations.

3.5 Post Processing
The postures generated by the model are approximations of the real
motion. Moreover, the training data might contain multiple motions
with similar start and end postures, whereas the specific motion
in between varies. Those ambiguities result in over-smoothed and
averaged results produced by the network. Therefore, the output
near to the start and end postures are not calculated exact and small
jumps between the blended and real pose are inevitable. To remove
this inconsistency, further post processing steps are performed.

First, the posture ht is calculated by the neural network with the
weight t . Additionally, a posture hi through linear blending with
the same weight t between the start and end posture is determined.
Afterwards, an additional linear blending from ht to hi with the
weight f = (2t − 1)4 is performed and the generated posture hf is
used as the final posture. As a function for determining the blending
weight different polynomials have been considered. However, the
selected polynomial ensures that the start/end postures arematched,
whereas the output of the neural network is not manipulated too
much (natural poses are expected to be similar if getting close to
start /end). The function of f ensures that the start and end posture
arematched perfectly, since its value is 1 and any sudden jumps near
it is removed with the linear blending. Without the applied post-
processing, we encountered occasionally sudden jumps between
start/end postures.

Since no environment information is added during blending,
the collision of the feet in uneven terrain is a common problem,
especially if the input postures require a walking motion in be-
tween. This problem is avoided, by applying foot grounding to the
produced posture hf .

Figure 2: Illustration of the postures generated by the novel
approach at different blending weights t . The start and end
postures stem from a forward walking (1st row), backward
ball dribbling (2nd row) and a knee-to-elbow motion (3rd
row).

4 EVALUATION
The validity of the network was evaluated based on the test data,
as described in 3.2. The used data comprises in total around 600,000
entries. The total mean squared error over all test motions was 5.4∗
10−3 and the generation of one blended posture needed 5.4 ∗ 10−4
seconds on average. However, since the quantified values give only
limited impression of the quality of the generated results, a further
evaluation was carried out.

4.1 Validation of Example Motions
To examine the generated results of the novel approach, three
different motions from the test set have been utilized for visual-
ization. Random motion clips from the whole motions with the
duration of 1.0s were chosen since these represent the outer border
of the trained data sets. Figure 2 visualizes the resulting postures
at weights t = {0.0, 0.25, 0.5, 0.75, 1.0} after post processing was
applied.

The first postures (Figure 2, 1st row) originate from a forward
walking motion clip during a right gait cycle. From a start posture
which shows the initial contact of the right foot with the ground,
the motion ends with the toe off posture of the right foot. The
blending model produces postures in between, where the left foot
is raised according to its walking phase. The swing motions of both
arms are modeled and fit to the walking state. In the second case,
a backwards ball dribbling clip was used to extract the start and
end posture (Figure 2, 2nd row). Similar to the first motion, the

Natural Posture Blending Using Deep Neural Networks MIG ’19, October 28–30, 2019, Newcastle upon Tyne, United Kingdom

backward walking cycle is well represented by the network. The
ball dribbling left hand moves slightly up and down like in a real
dribbling movement. The last postures represent a knee-to-elbow
motion (Figure 2, 3rd row). It can be seen that the network has
learned to first set the right foot to the ground before the left foot
can be lifted into the air to perform the movement.

In comparison, generated motions through linear blending in-
clude unnatural looking foot sliding for the first two and a hovering
human in the third motion. Therefore, for the examined scenarios,
it can be concluded that the novel network produces more natural
results compared to linear blending. For the comparison, further
blending approaches were not considered since the only informa-
tion that is available are the start and end posture. For spline based
interpolation approaches (e.g., Catmull Rom, Bézier) further key-
frames such as provided by preceding or subsequent frames would
be required.

4.2 Self-Collisions
A common problem of applying linear blending to interpolate be-
tween two postures are self-collisions. For instance, if a start posture
comprises an arm in front of a person and the arm is positioned
side-wards to the body in the target posture, a straight interpolation
would result in a trajectory crossing the own body and induce a self-
collision. Given the novel deep learning based blending approach,
it is expected that the occurrence of self-collisions can be reduced,
since the network has learned the characteristics of the underlying
datasets. Therefore, besides the previously examined motions, the
generated postures by the novel approach are further compared to
linear blending in terms of self-collisions. In this context, 921 mo-
tions of the test data set were used to validate whether the amount
of self-collisions can be reduced by applying the neural network,
compared to linear posture blending. A humanoid rig consisting of
15 box-colliders was set up to test for self-collisions. As illustrated
in Figure 3, the arms and legs were each modeled by three box-
colliders. Moreover, the torso is represented by two box colliders,
whereas the head is additionally approximated by a box-collider. A
self-collision is registered if two box-colliders intersect with each
other. The overlapping is determined using the Physics.OverlapBox
functionality of the Unity Engine.

In particular, collisions between colliders in the same segment
(e.g. arm, legs or torso) were ignored. The amount of self-collisions
was examined for different blending durations, to determine the
overall capability of the novel approach. In this context, ten different
blending times ranging from 0.1 s to 1.0s were examined. Figure 4

Figure 3: Illustration of the utilized approximation for de-
termining self-collisions.

visualize the gathered results of the evaluation. Each bar depicts the
relative amount of self-collisions rs compared to linear blending.
Values below 100% denote less self-collisions for the novel approach
compared to linear blending. The ground-truth data stemming from
the CMU library contains occasionally self-collisions. Therewith,
test-data containing self-collisions was excluded from the analysis.

Examining the analyzed motions of the given test data, it can be
encountered that the novel approach produces less self-collisions
in every tested scenario. In trend, the amount of self-collisions is
reduced with growing blending times, leading to a minimum of
rs = 51.75% at a blending duration of 1.0s. Overall, aggregating all
ten results, a mean value of 76.13%, median of 81.80% and a standard
deviation of 10.94% can be denoted. For each tested scenario, in av-
erage 249.70 self-collisions occurred using linear blending, whereas
the amount can be reduced to 190.70 using the novel posture blend-
ing approach. Summarizing the results, it can be concluded that
the novel approach outperforms the linear blending in terms of
self-collision reduction. The network has learned the characteristics
of the natural training-data and thus produces less self-collisions.

4.3 End-Effector Accuracy
In some cases, the joint positions of end-effectors are more impor-
tant than the actual posture. We compared the positional accuracy
of the hand and feet joints between our method and linear blend-
ing on a per-frame basis for different interpolation steps. Using
the test dataset, we performed interpolation in 0.1 steps with both
methods and compared the positions of end-effectors in Cartesian
space with the ground truth. The positional error of our approach
was subtracted from the positional error of the linear blending.
Thus positive values denote a higher positional error for the linear
blending, negative values a higher positional error for our method.
The differential error was summed over all end-effectors for the
interpolated frame. We computed the mean and standard deviation
of these differential end-effector errors for all frames and present
them in figure 5. As all differential errors are within two standard
deviations, our approach does not perform significantly different
from the linear posture blending, but with comparable accuracy.

5 LIMITATIONS
Even though the functionality of the novel approach could be illus-
trated, there are still several limitations. The whole CMU database
contains heterogeneous actions with different coverage. As all of
these actions have been used in an unstructured way, our method
produces undesired behavior (e.g. fast hand-movements between
two close postures) and does not solve foot sliding in some cases.
We expect the usage of prior knowledge of actions to further im-
prove the performance of our method, as well as with respect on
the positional accuracy of end-effectors. In particular, the suitability
of the network for specific motion types (e.g. grasping, walking)
must be examined in more detail. Ignoring further parameters like
motion type or style, the training data can contain ambiguous mo-
tions being represented by the same start/end posture. As a result,
the neural network might average the motions, which results in
over-smoothed results that can be encountered in the test scenarios.

Furthermore, the duration of motions is not explicitly annotated.
Instead, only the static start and end posture are used as input.

MIG ’19, October 28–30, 2019, Newcastle upon Tyne, United Kingdom F. Gaisbauer et al.

Figure 4: Overview of the relative amount of self-collisions of the novel approach compared to linear blending.

Hence, temporal parameters with impact to the acceleration and
velocity of the motion can not be externally specified. On the other
hand, no velocity information are contained in the output. For
instance if two identical key-frames with different duration are
inserted, in every case the identical results are generated. Consid-
ering the temporal relation of motion clips including acceleration
and velocity will most likely improve the performance of our model
and its applicability.

Currently, the network generates a full posture as output. A
further measure which might improve the overall results is to utilize
the residual of the blended postures. In this context, it is expected
that the positional error compared to linear blending can be reduced.

Finally, the evaluation indicated that the identification of a suit-
able metric for a comparison of the generated motions to the ground
truth data is difficult. To overcome these difficulties, Generative
Adversarial Networks (GANs) could be utilized in future work. The
network (generator) could create postures, whereas the discrimina-
tor intrinsically learns the characteristics of feasible postures.

6 CONCLUSION
In this paper, we presented a novel approach to generate feasible hu-
manoid postures from given input postures and a blending weight.
The proposed approach incorporates unstructured data of the CMU
library within a neural network and can generate intermediate

Figure 5: Mean differential error of end-effectors between
our approach and linear posture blending for different
blending steps. Error bars denote one standard deviation.

postures which preserve the characteristics of the trained input
motions. The evaluation indicates that our approach can generate
postures with fewer self-collisions while retaining the positional
accuracy of linear interpolation.

ACKNOWLEDGMENTS
The authors acknowledge the financial support by the Federal Min-
istry of Education and Research of Germany within the MOSIM
research project (grant number 01IS18060A-H).

REFERENCES
Norman I Badler, Ramamani Bindiganavale, John P Granieri, Susanna Wei, and Xinmin

Zhao. 1994. Posture interpolation with collision avoidance. Center for Human
Modeling and Simulation (1994), 58.

cmu. 2019. CMU Graphics Lab Motion Capture Database. http://mocap.cs.cmu.edu/.
Andrew Feng, Yazhou Huang, Marcelo Kallmann, and Ari Shapiro. 2012. An analysis

of motion blending techniques. In International Conference on Motion in Games.
Springer, 232–243.

Felix Gaisbauer, Philipp Froehlich, Jannes Lehwald, Philipp Agethen, and Enrico Rukzio.
2018. Presenting a Deep Motion Blending Approach for Simulating Natural Reach
Motions. In EG 2018 - Posters, Eakta Jain and Jirí Kosinka (Eds.). The Eurographics
Association.

Daniel Holden, Taku Komura, and Jun Saito. 2017. Phase-functioned neural networks
for character control. ACM Transactions on Graphics (TOG) 36, 4 (2017), 42.

Daniel Holden, Jun Saito, Taku Komura, and Thomas Joyce. 2015. Learning motion
manifolds with convolutional autoencoders. In SIGGRAPH Asia 2015 Technical
Briefs. ACM, 18.

Yazhou Huang and Marcelo Kallmann. 2010. Motion parameterization with inverse
blending. In International Conference on Motion in Games. Springer, 242–253.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980 (2014). https://arxiv.org/abs/1412.6980

Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. 2017.
Self-Normalizing Neural Networks. CoRR abs/1706.02515 (2017). arXiv:1706.02515

Yunpeng Li, Dominik Roblek, and Marco Tagliasacchi. 2019. From Here to There:
Video Inbetweening Using Direct 3D Convolutions. arXiv preprint arXiv:1905.10240
(2019).

K. F. Man, K. S. Tang, and S. Kwong. 1996. Genetic algorithms: concepts and applications
[in engineering design]. IEEE Transactions on Industrial Electronics 43, 5 (Oct 1996),
519–534.

He Wang, Edmond Ho, and Taku Komura. 2014. An Energy-Driven Motion Planning
Method for Two Distant Postures. IEEE Transactions on Visualization and Computer
Graphics (06 2014).

Yuichi Yagi. 2017. A filter based approach for inbetweening. ArXiv abs/1706.03497
(2017).

Xinyi Zhang and Michiel van de Panne. 2018. Data-driven Autocompletion for
Keyframe Animation. In Proceedings of the 11th Annual International Conference
on Motion, Interaction, and Games (MIG ’18). ACM, New York, NY, USA, Article 10,
11 pages. https://doi.org/10.1145/3274247.3274502

Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, andHao Li. 2018a. On the Continuity
of Rotation Representations in Neural Networks. arXiv preprint arXiv:1812.07035
(2018).

Yi Zhou, Zimo Li, Shuangjiu Xiao, Chong He, Zeng Huang, and Hao Li. 2018b. Auto-
Conditioned Recurrent Networks for Extended Complex Human Motion Synthesis.
In International Conference on Learning Representations. https://openreview.net/
forum?id=r11Q2SlRW

http://mocap.cs.cmu.edu/
https://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1706.02515
https://doi.org/10.1145/3274247.3274502
https://openreview.net/forum?id=r11Q2SlRW
https://openreview.net/forum?id=r11Q2SlRW

	Abstract
	1 Introduction
	2 Related Work
	2.1 Motion Blending & Posture Interpolation
	2.2 Deep Learning based Motion Synthesis
	2.3 In-Betweening

	3 Posture Blending Network
	3.1 Input & Output Variables
	3.2 Data Acquisition & Preprocessing
	3.3 Neural Network Structure
	3.4 Hyperparameter optimization
	3.5 Post Processing

	4 Evaluation
	4.1 Validation of Example Motions
	4.2 Self-Collisions
	4.3 End-Effector Accuracy

	5 Limitations
	6 Conclusion
	Acknowledgments
	References

