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Abstract Digital human simulation is important for

various domains such as the entertainment, health care

and production industries. A variety of simulation tech-

niques and tools are available, ranging from motion-

capture based animation systems and deep learning to

physics-based motion synthesis. Each technology has its

advantages and disadvantages and is suited for particu-

lar use cases. Therefore, a combination of multiple tech-

nologies would result in more sophisticated simulations,

which can address heterogeneous aspects. However, the

different approaches are mostly tightly coupled with the

development environment, thus inducing high porting

efforts if being incorporated into different platforms. A

combination of separately developed simulation systems,

either for benchmarking or comprehensive simulation

is not possible yet. For the domain of plant simulation,
the Functional Mock-up Interface (FMI) standard has

already solved this problem. Initially being tailored to in-

dustrial needs, the standards allows exchanging dynamic

simulation approaches such as solvers for mechatronic

components. Inspired by the FMI standard, we present

a novel framework to incorporate multiple digital hu-

man simulation approaches from multiple domains. In

particular, the paper introduces the overall concept of

the so-called Motion Model Units, as well as its un-
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derlying technical architecture. As main contribution,

a novel co-simulation for the orchestration of multiple

digital human simulation approaches is presented. The

overall applicability is approved based on a quantitative

evaluation using motion capture data and a user study.

1 Introduction

For many branches such as the entertainment or manu-

facturing industry, digital human simulation has become

an essential technology. Whereas the entertainment sec-

tor relies on character animation algorithms to generate

naturally interacting avatars, manufacturing industries

use the approaches to plan and assess manual processes

in a digital way. During the last two decades, a vast

progress in character animations technologies has been

achieved, resulting in more natural, accurate and com-

putational efficient approaches. The available techniques

can be generally subdivided into data-driven and model-

based methods [26]. Data-driven systems synthesize mo-

tions based on underlying motion capture data and gen-

erate realistic motions with low computational efforts.

Model-based approaches, in contrast, model the princi-

ples of the motion generation itself and are thus more

generic [26]. In academia, both methods are important

subjects of research, whereas ground-breaking publica-

tions related to data-driven [19,22,23] and model-based

[32,11] approaches were presented.

Even though a large progress in these areas has been

achieved, currently no technique exists which accurately

covers the multitude of humanoid motion generation

scenarios for different use-cases. Moreover, the individ-

ual techniques are mostly realized in separate systems

and tailored to these platforms. For many use-cases, the

incorporation of these different technologies in a com-



2 Felix Gaisbauer et al.

mon system would enable great benefits. For instance,

academia could profit by the possibility to benchmark

different technologies in a common platform or examine

the interplay and its possibilities. On the other side,

industry could realize more comprehensive simulations

based on the combination of different approaches, ulti-

mately covering all aspects of the specific use-cases.

Presently, the incorporation of different technologies

induces high porting efforts and costs. Standardized com-

ponents, embedding heterogeneous approaches would

significantly reduce these efforts. In the domain of plant
simulation, the Functional Mock-up Interface (FMI) [6]

already solved this problem by encapsulating simulation

approaches using a common interface. Inspired by the

FMI standard, we present a modular framework incor-

porating arbitrary character animation algorithms using

so-called Motion Model Units (MMUs). Based on the

framework, a novel co-simulation being able to orches-

trate different units without explicit motion knowledge

is presented. In particular, the main contributions of

the presented work are the following:

a) Overall concept of a modular framework for digital

human simulation approaches (Section 3.1).

b) Technical framework for coupling heterogeneous dig-

ital human simulations (Section 3.2).

c) Co-simulation concept to generate feasible motions
from multiple MMUs (Section 4).

d) Exemplary implementation and validation of a sys-

tem combining the previous aspects (Section 5).

The remainder of the paper is structured as follows:

First, the state of the art regarding digital human simu-
lations is revisited. Second, the general concept of the

Motion Model Unit framework and its technical archi-
tecture is introduced (Section 3). A challenging problem

linked to the modular concepts, is the coordination and

co-simulation of the different units containing diverse

motions. Based on the imposed restrictions, in Section 4,

a novel co-simulation concept is proposed being able to

orchestrate multiple MMUs. In Section 5, the validity of

the co-simulation is examined within two different sce-

narios. Whereas the first scenario examines the general

validity of the co-simulation based on motion-capture
data, the second evaluation investigates the applicabil-

ity using exemplary motion synthesis algorithms. The

paper ends with a further conclusion and an outlook.

2 Related Work

The presented framework builds upon a large body of re-

lated work. In the following, an overview of related work

in the context of digital human simulation, exchange of

simulation approaches and co-simulation is provided.

2.1 Digital Human Simulation

Digital human simulations are nowadays increasingly

important for various branches. An exhaustive number

of technologies and tools for simulating human motion

have been developed for various scopes of application.

2.1.1 Motion synthesis technologies

Motion synthesis technologies build the base for digital

human simulation and are applied in heterogeneous

domains. In general, the technologies can be subdivided
into data-driven and model-based approaches [26].

The majority of the data-driven approaches use mo-

tion blending techniques and blending trees contained in

state machines. These methods provide naturally looking

motions while being computationally efficient. The exis-

tent approaches can be subdivided into Barycentric-, K-

Nearest-Neighbor-, Radial Basis Function-interpolation

and Inverse blending [12]. Based on automatic composi-

tions of segmented motion capture clips, motion graphs

generate sequences of natural motions without the need

to explicitly model state machines [22,25]. Furthermore,

based on unstructured motion capture data, the authors

of [23] organize motion data into a high-dimensional

generalization of a vector field, called a motion field,
whereas appropriate postures are determined for each

frame. Recently, an approach called motion matching

was presented in [9], efficiently searching in unstructured

motion capture databases. Due to the growing compu-

tational capabilities, moreover, deep learning based ap-

proaches received significant attention. Recent works
present deep learning based animation systems [19,24].

Besides the data-driven approaches, model-based sys-

tems are also intense subject of research. In this category

physics based character animations are frequently used.

The approaches can be subdivided into trajectory opti-

mization and reinforcement learning [26]. Approaches

like [31] model the locomotion behavior based on an

inverted pendulum. Others, such as [11] present compos-

able controller for physics based simulation. Moreover,

inverse kinematics (IK) approaches such as [4,7] are also
frequently used to compute postures of digital avatars.

In practice, IK is oftentimes utilized in combination with

data-driven approaches or path planning algorithms.

Whereas data-driven approaches rely on motion cap-

ture data, model-based systems generate motions based

on mathematical and physical models. Consequently,

the first only cover the range given by the underlying

data, however, generating naturally looking results. On

the other hand, the latter are more generic but also

more difficult to parameterize. The applicability of the

technologies therefore strongly depends on the use-case.
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2.1.2 Digital Human Simulation tools

Based on the available motion synthesis technologies,

various tools for simulating human motion have been

developed for different scopes of applications.

Tools like IPS IMMA, Santos and Siemens Jack focus

on the analysis and design of workplaces and products.

Since the addressed use-cases contain collision-afflicted

environments, the systems use model-based simulation

technologies. Musculoskeletal and bio-mechanical mod-

eling tools like AnyBody and OpenSim [10] use highly

detailed DHMs including a fine-grained representation of

musculoskeletal- or organ-system. These tools precisely

model motions of the human body, however, at the ex-

pense of real-time capability. Another cluster receiving

significant attention, is the group of game engines like

Unity3D, Unreal Engine and CryEngine. These applica-

tions provide gaming-related platforms including various

tools (e.g. retargeting, blending) to easily animate hu-

man motion. Even though achieving outstanding results

in terms of naturalness, difficult movements in collision-

afflicted settings can only be scarcely simulated.

2.1.3 Modular Digital Human Simulation frameworks

Besides the mentioned tools, there are also systems avail-

able focusing on modular simulation. The HUMOSIM

framework [27] is an approach primarily utilized for

ergonomics simulation. The framework contains mod-

ules based on closed-form equations to control end-

effectors of a digital human. Further available systems

are ADAPT [29] and Real actor [8]. Whereas the first

is used for agent prototyping, Real actor represents a

behavior realization system for embodied conversational

agents. Most related to our approach, Smartbody [30]

provides an animation system focusing on the generation

of human motion using hierarchical motion controllers.

These controllers are embedded in the Smartbody plat-

form, thus being limited in their interoperability. More-

over, the authors explicitly state that they do not intent

to create a platform independent and modular architec-

ture for exchanging character animations systems, since

in their opinion those architectures either under-specify

the interface or restrict the capabilities [28].

The vision of the proposed work in this paper, first

published in [16], is to provide a modular simulation, in-

spired by the motion controllers of Smartbody. However,

compared to Smartbody, it is the explicit target to create

a platform and technology independent approach across

the boundaries of heterogeneous systems. Even though

this genericity induces increased manual efforts for the

parameterization, it is considered as more important

than easy parameterization in rather restricted environ-

ments as provided by other frameworks. To realize a

generic encapsulation, so called Motion Model Units

(MMUs) are used encapsulating the specific technologies

and algorithms [15] across different environments. The

novel method builds upon the core idea of hierarchical

motion controllers and significantly extends the concepts

based on the capabilities of the MMU framework.

2.2 Exchanging simulation approaches

For exchanging motions between different simulation
tools, there are various formats such as Biovision Hier-

archy (bvh) and Filmbox (fbx) available. Even though

being widely used, they are only capable of storing pre-

generated motions. Hence, it is not possible to integrate

motion generations algorithms within the files itself.

For exchanging simulation functionality in a different

domain, a widely used solution is available. Functional

Mock-up Interface (FMI) is a standard that supports the
exchange of dynamic simulation models as well as its co-

simulation while being tool independent [2]. An instance

of an FMI component is called a Functional Mock-up

Unit (FMU). Using the FMI standard, it is possible

to perform a simulation of different FMUs, containing

appropriate solvers, whereas only the simulation results
of the FMUs are exchanged after defined time steps.

This approach is referred as FMI for co-simulation [6].

The concept of modular motion units, which is also

referred as Motion Model Interface (MMI) approach,

builds upon the idea of the FMI concept to further

extend the standard to simulate human motion

2.3 Co-simulation

Orchestrating various sub-simulations as intended by the

FMI or MMI approach, requires a superior instance man-

aging the distributed sub-systems. In general, this or-

chestration process is named co-simulation, whereas the

co-simulator updates the components and incorporates
the results. Recently, in literature various co-simulation

approaches for the FMI standard have been proposed

[5,32,33], however, these systems predominantly focus

on signal flow modeling. Since the co-simulation of char-

acter animation systems has entirely different require-

ments, these solutions cannot be directly used.

Summarizing the state of the art, it can be stated

that no approach is currently available for the orchestra-

tion of heterogeneous character animation approaches.

To bridge this gap, in this paper, a novel co-simulation

concept is proposed which can be applied to the MMI

approach. The concept allows to orchestrate various

character animation systems in a common system.



4 Felix Gaisbauer et al.

3 The Motion Model Interface - Framework

Inspired by the FMI approach, we present a framework

for exchanging character animation systems based on

[16,17]. In the following, first, the overall concept is pre-

sented, whereas the technical architecture is addressed

subsequently. A detailed specification is available at [14].

3.1 Overall concept

With the FMI standard, complex systems like industrial

machines can be simulated using specialized approaches

such as solvers for pneumatic cylinders or kinematic

models. The respective sub-simulations are embedded

in standardized modules (FMUs) [6], whereas several of

these simulations are sequenced by a co-simulator. This

component communicates with the FMUs at discrete

points in time and incorporates the computed results

in a common simulation. Transferring this concept to

the domain of character animation, a so-called Motion

Model Interface (MMI) and its implementations called

Motion Model Units (MMUs) are presented which allow

to incorporate diverse character animation approaches

into a common framework. Fig. 1 shows the main idea

of the approach.

3.1.1 Motion Model Units

The proposed MMUs are the fundamental part of the
modular concept and provide the basic interface for en-

capsulating different character animation systems. These

units contain the actual animation approach, being im-

plemented in the required platform and programming

language. For instance, an actual MMU can comprise a

data-driven algorithm in Python, as well as model-based
approaches realized in C++. By utilizing a common in-

terface, and inter-process communication, the MMUs

can be accessed independent of the platform. Fig. 2

depicts the provided key functionality of the interface.

Fig. 1 Principle of the Motion Model Unit approach. By
using standardized units and a co-simulation, multiple systems
can be incorporated into a common platform.

Fig. 2 Illustration of the key functionality of the proposed
Motion Model Unit interface.

The individual MMUs are responsible for gener-

ating specific motions (e.g. walk or grasp). To exter-

nally specify the intended behavior, each MMU provides

the functionality to assign the motion instruction (as-

sign instruction). Furthermore, the prerequisites being

required to start the execution of the given instruction

can be validated (check prerequisites), whereas optional

boundary constraints are provided. The MMUs generally

compute individual postures on a frame basis. There-

fore, the interface of the MMUs comprises a do step

routine which is executed for each frame to be simu-
lated. In this context, the actual posture at the given

frame is computed by the simulation approach contained

in the MMU. For each frame, the MMU provides output

parameters describing the generated posture, its con-

straints, intended scene manipulations and events. Since

most motion generation approaches strongly rely on
spatial information of the environment, the communica-

tion with the scene is an important aspect for realizing

such an encapsulation. Thus, each MMU can access the

information provided by the scene through a defined

interface (see Fig. 2 scene access). In this way, the actual

scene representation can be embedded in diverse target

environments. Moreover, a common set of services (e.g.

IK) is accessible from the MMUs (Fig. 2 service access).

3.1.2 Co-simulation

Given distinct MMUs comprising specific approaches,

the separately generated postures must be merged and

further processed to obtain natural motions. The co-

simulation merges and overlaps the postures in each

frame, while considering its constraints. Figure 1 illus-

trates the input and output data of the co-simulation.

Generally, a sequence of instructions with optional

constraints is given as input to the co-simulation. The

co-simulation computes a feasible motion by executing

the inserted sequence, calling the respective MMUs and

incorporation of the results. Since the scope of the MMI

framework is to combine heterogeneous simulation ap-

proaches, the individual MMUs might comprise entirely

different skeleton structures and anthropometries. To

utilize these heterogeneous results in a common plat-

form, a retargeting to a reference skeleton as well as the



Co-Simulating Heterogeneous Digital Human Simulations 5

Fig. 3 Illustration of nested MMUs which co-simulate other
MMUs by a hierarchical decomposition.

consideration of different anthropometries is required.

Moreover, since two consecutive MMUs might start/end

with a different posture (e.g. MMU1 ends with t-pose,

MMU2 starts with idle pose), the transition between

the respective units must be explicitly modeled.

Using a co-simulation, a sequence of MMUs can

be principally orchestrated. Since the MMUs are real-

ized in a black box manner, they internally can con-

tain a vastly heterogeneous granularity. Whereas certain

MMUs might realize complex motions such as picking

up an object internally, others might utilize a subset

of finer grained MMUs. In this context, the MMUs act

again as a co-simulation. Fig. 3 visualizes the basic con-

cept of nested MMUs based on a pick-up object motion.

In this way, a basic set of fundamental motion primitives

could be utilized for the aggregation of more complex

motions. Given the overall MMU approach, recurrent

MMU structures with internal co-simulation are consid-

ered as a promising measure to simplify development

and increase re-usability of motion primitives.

3.2 Technical framework

For the realization of the aforementioned MMU concept,

a technical architecture fulfilling the heterogeneous re-

quirements, is necessary. The detailed specification of

the architecture is available at [14]. Figure 4 visualizes

the proposed technical architecture for the MMI frame-

work. The system can be subdivided into individual

components which are addressed in the following.

Motion Model Units To incorporate heterogeneous

motion synthesis approaches, it is indispensable to pro-

vide compatibility for many platforms. Therefore, the

MMUs can be realized in multiple programming lan-

guages, whereas each MMU is accessed by the platform-

independent interface (see Figure 2). Each MMU pro-

vides a description file in which the motion type, specific

parameters and the name of the unit are specified. The

MMUs themselves have a programming language specific

format: For languages such as C#, or C++, the MMUs

are represented as dll.files and can be instantiated dur-

ing runtime. It is noteworthy, that the co-simulation and

MMU have identical interfaces to allow nested MMUs.

Adapters If the MMUs are realized as separate stan-

dalone applications, each MMU must implement the

communication by itself which induces potential error

sources and an implementation overhead. To avoid this,

the so-called adapters are proposed. The adapters imple-

ment the communication functionality and are responsi-

ble for managing the MMUs. In particular, the adapters

are provided for each compatible programming language

(e.g. C#, C++, Python). The components contain a

session handling to allow multiple consumers use the

same adapter instance. Moreover, the adapters buffer

the scene and provide access to the available services.

Target Engine The target engine acts as central ac-

cessing point for the end-users and is responsible for the

visualization of the scene and the digital human model.

The component provides the ground truth scene and is

realized in a specific programming language.

Abstraction Closely linked to the target engine, the ab-

straction encapsulates the communication to the MMUs.
The layer provides accessing functionalities of the MMUs

as they were on the local machine. The layer is provided

as implementation for each programming language.

Middleware As an essential component for connecting

different modules of the framework, the middleware is a

crucial aspect. To ease cross-platform implementation

Apache Thrift is utilized. The overall communication-

formats and services are defined using the Thrift inter-

face description language, whereas the source-code for

the different platforms can be automatically generated.

Services To further increase the usability and shrink

implementation efforts, functionality which is oftentimes

required by MMUs is provided by services. In particular,

methods such as path planning, retargeting and collision-

detection are available, accessible via middleware.

Fig. 4 Technical architecture of the MMI framework. A more
detailed specification is available at [14].
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4 A Co-Simulation Approach for orchestrating

heterogeneous MMUs

In principle, the above described framework allows tech-

nically to incorporate heterogeneous character anima-

tion systems in a common environment. However, sev-

eral questions are left open. In particular, it is unclear

how the gathered results of different MMUs can be

combined to generate feasible postures. Moreover, the

handling of concurrent motions using distinct MMUs

has not been addressed yet. In the following, we present

a novel co-simulation concept which is able to orches-

trate various MMUs while producing feasible results.

The co-simulation works independently of the utilized

animation technology within the respective MMUs. Fur-

thermore, the concurrent behavior of motions is modeled.

The initial concept was first presented in [17].

4.1 Restrictions based on the MMI concept

The proposed co-simulation in this work is strongly

restricted by the underlying MMI concept and archi-

tecture. The main target of the MMI approach is to

create a standard for integrating arbitrary technologies

in a common framework. Even though this flexibility in-

duces increased manual efforts for the parameterization,

the integration of arbitrary technologies is considered

as more important than an easy parameterization in

rather restricted environments like [29,30]. Therefore, a

potential co-simulation must be compatible to any kind

of MMU, instead of being optimized to only work with

specific approaches.

Due to the targeted genericity and black box realiza-

tion, the specific content of the MMUs is not known by

default. As a consequence, there is no common scheme

for defining the motion types available. Thus, each MMU

developer can specify custom motion types (e.g. “walk”,

“sidestep”, “run”) resulting in ambiguous MMUs. More-

over, the embedded skeleton and manipulated joints

might vary strongly within each MMU. This lacking

restrictiveness is required to provide a maximum com-

patibility to different application scenarios and tech-

nologies. On the other hand, the omitted availability

of semantic motion descriptions strongly influences the

design of a potential co-simulation. Consequently, the co-

simulation must be able to orchestrate the approaches

without explicit semantic knowledge of the contained

motions. Therefore, a major difficulty addressed within

the novel approach is the coordination of heterogeneous

approaches without knowing the specific semantics. The

presented co-simulation has been designed with the im-

posed restrictions in mind, hence differing from other

available orchestration approaches.

4.2 Overall concept

Based on manually specified motion instructions such

as “walk to table” and “pick up object from table”, the

co-simulation must incorporate and overlap different

humanoid postures generated by the MMUs. In the fol-

lowing, the core concepts of the proposed co-simulation,

ranging from hierarchical modeling to constraint han-

dling and the actual workflow are proposed.

4.2.1 Hierarchical MMU modeling

The proposed co-simulation builds upon the concept

of hierarchical motion controllers first introduced by

Kallmann et al. [21]. As described in [13], the state

of the character is manipulated by a series of stacked

controllers. The output of the previous controller is set

as input of the subsequent one. Fig. 5 visualizes the

concept transferred to the MMUs.

Each controller knows the character state of the

previous step, as well as the state during the current

phase. The controller can either override, modify or

ignore the state of the virtual character. In [13], the

authors propose to utilize a generalization-specialization

hierarchy, which means that lower priority controllers

typically control a greater number of body parts, while

higher-priority controllers control fewer. In this context,

a full body motion (e.g. idle) is executed first, while more

specific motions such as grasping are executed later/

with a higher priority. Fig. 6 gives an overview of the

newly proposed co-simulation model and its workflow.

4.2.2 Priority Estimation

In the newly proposed co-simulation, each MMU has a

specific priority in analogy to the aforementioned con-

cept. The priorities of the respective MMUs are generally

Fig. 5 Concept of hierarchical motion-controllers as proposed
by [13] applied to the Motion Model Units.
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Fig. 6 Illustration of the proposed co-simulation model. The MMUs are executed for each frame according to their priority.
The results which comprise the actual character posture, body constraints as well as scene manipulations are stored in a register
within the co-simulator. These results are later on merged to a single feasible posture by an optimization algorithm.

assigned based on the characteristics and involved body

regions of the given motion instruction (e.g. walking =

low priority, grasping = high priority). More complex

motion might involve multiple MMUs interacting at the

same time-frame. Therewith, the priority assignment

depicts a fundamental aspect of the co-simulation.

MMUs can contain entirely different approaches in-

fluencing varying body-parts. The priority assignment

thus can be only carried out properly if the exact behav-
ior of the MMU is known. Since the co-simulation has no

in-build semantic knowledge of the motion contained in

the MMUs, the priorities cannot be determined within

the co-simulation itself. Therefore, the instructions must

be annotated with a priority by the user/superior in-

stance. A generalization of the priority assignment is

currently not an intense subject of research since it

would rather impose additional restrictions resulting in

decreased compatibility of the overall framework.

4.2.3 Constraint definition

If the above illustrated concept of hierarchical MMUs is

strictly applied, the MMUs with higher priorities might

completely overwrite the results of the previous ones,

thus neglecting relevant criteria of the preceding pos-

ture. To prevent this, each MMU can define specific

body constraints being essential for preserving the main

features of the posture. For instance, an MMU which

focuses on locomotion can set the foot and hip position

as essential constraints of the posture. On the other

hand, a grasp MMU marks the hand position and fin-

ger transformations as crucial constraints. The set of

available constraint types in the proposed framework is

limited to a finite amount (see [14]). In particular, the

position and rotation of end-effectors (e.g. hand or foot)

or properties such as joint rotations can be specified.

The co-simulator stores the constraints of the respec-

tive MMUs (see Fig. 6 Body Constraints) for further

considerations and processing in subsequent stages.

4.2.4 Co-simulation workflow

In general, the input of the co-simulation is a set of

given motion instructions with dependencies between

each other (e.g. put-down starts after walk is finished).

The co-simulator evaluates the provided conditions for

each frame until being fulfilled or aborted. In case of

success, the get prerequisites function of the MMU is

executed, indicating whether all internal conditions for

starting the instruction of the MMU are met. If the

MMU returns true, the co-simulator starts the respec-

tive instruction via assign instruction. Moreover, bound-

ary constraints of subsequent MMUs (e.g. required start

posture) are provided as input along with the motion

instruction. After the assignment of the instruction, the

started MMU is marked as active. Analogously, termi-

nation criteria are also handled by the co-simulation

(e.g. terminate MMU2 after 2 seconds). The overall ap-

proach of scheduling the different instructions is strongly

related to the BML realizer [34] concept.

As illustrated in Fig. 6, in every simulation step, the

co-simulator executes each active MMU according to its

priority, starting with the lowest. At the beginning of

the frame, the initial state is provided as input which

corresponds to the merged result of the last frame. Next,

the respective MMU is executed by calling the do step

function, whereas the computed results of the current

frame are obtained. The results comprise the generated

posture, body constraints, as well as intended scene

manipulations and events occurred during the current

frame within the MMU. The MMU can actively modify,

set or remove the constraints and scene-manipulations.
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Therewith MMUs with higher priorities can always over-

write specified constraints and scene-manipulations by

MMUs with less priorities.

All gathered results of the MMUs are stored by the

co-simulator and are further integrated into the current

state of the character, which is provided as input for the

subsequent MMU. The currently available constraints

are utilized to generate a state which represents a pre-

view of the constrained posture at the present evaluation

stage. In total, there are three different states accessible

from the MMU: initial, current state and current state

constrained. In particular, it is up to the specific MMU

implementation of how to consider and incorporate these

states into the respective model (see 4.2.5). However,

all constraints, available at the end of the frame are

processed by the optimization stage.

Depending on the available MMUs and configura-

tions, the merging and processing of the postures might

be already established by the hierarchical execution of

the MMUs. However, to generate optimized results fulfill-

ing all constraints and use-case dependent requirements,

a separate optimization stage (see Fig. 6 Optimizer)

might be necessary. Moreover, the available body con-

straints defined by the MMUs need to be incorporated

into the final posture of the character.

4.2.5 Combination of postures

Different to other available animation frameworks such

as [29], the combination of postures is not carried out on

a global level. Since the co-simulation has no semantic

knowledge of the contained motion, the MMUs internally

perform the merging of different postures using a specific

merge function fmerge (see equation 1). Generally, the
MMU have access to the different states: constrained

preview (pconstr), initial (pinit) and current (pcur), which

contain the full posture of the avatar. Moreover, a list

of constraints (ccur), scene manipulations (scur) and

events (ecur) of the previous MMUs in hierarchy are
provided to the MMU as input. As output, the MMUs

returns the computed posture (pres), a list of constraints

(cres), scene manipulations (sres) and events (eres).

fmerge : {pinit, pconstr, pcur, ccur, scur, ecur} →
{pres, cres, sres, eres}

(1)

The MMUs have full control of the actual merging

process. For instance, a grasping MMU can utilize the

current posture and just overwrite the upper body joints,

while specifying additional constraints to preserve the

grasping posture. On the other hand, a purely motion

capture based MMU might overwrite the entire postures

and constraints.

4.2.6 Posture optimization & constraint solving

The main task of the optimization stage is to apply

the body constraints specified by the MMUs, as well

as performing additional use-case dependent operations,

such as foot-grounding or ergonomic optimizations like

proposed in [18]. As outlined in 4.2.4, a set of specified

constraints and all generated results by the MMUs are

the input of the optimization stage. The constraints

are generally limited to finite amount of different types

such as inverse kinematics constraints for end-effectors

like the hands or specified joint rotations. For applying
these constraints, an inverse kinematics solver is manda-

tory. However, other solvers, such as foot-grounding or

inter-frame blending, can be additionally added to the

framework. The solvers are executed for every frame

and consequently have a significant influence on the

generated postures. It is therefore crucial to carefully

select appropriate solvers regarding the computational

performance and produced results.

4.3 Modeling the transitions between postures

Despite the scheduling and posture merging process, the

modeling of the transition between postures of different

frames is an essential aspect to obtain feasible motions. If

no further transition modeling is applied, unnatural gaps

between consecutive frames might occur. In most ani-

mation systems, motion blending is commonly used for

this purpose. By applying crossfading between different

motions, the transitions can be smoothly interpolated.

However, in contrast to animation clips, the content

of the specific MMU is not known and dynamically
generated. Moreover, each MMU might have specific

parameters for the transition between different postures.

Therefore, a simple, globally performed crossfading is

not possible, without possibly violating constraints. To

establish a smooth transition between various postures

generated by different MMUs, the novel co-simulation

approach builds upon two concepts.

First, in the framework, the constraints defined by

the MMUs are not actively removed by the co-simulator.

Fig. 7 Illustration of the transition modeling for the first
scenario, in which a MMU finishes its motion and actively
specifies constraints.
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Thus, if an MMU finishes the motion and has end con-

straints preserving the posture such as “keep hand po-

sition”, the constraints remain to be considered by the

posture optimization and the MMUs until being actively

removed or overwritten. Consequently, unnatural transi-

tions with gaps between the postures can be avoided if

end constraints are specified. Fig. 7 schematically visu-

alizes this scenario. Since the constraints are still active

after the lifetime of the MMU, the constraints must

be explicitly considered by subsequent MMUs for the

transition modeling. Therewith the subsequent MMU
needs to overwrite/remove the constraints and perform

a posture blending to generate a smooth motion.

Second, if an MMU finishes its motion and has no ac-

tive constraints specified, it must ensure that the ending

posture matches the posture of the current state, which

corresponds to the resulting posture of the previous

MMU in hierarchy. The transition modeling is therefore

internally performed by the MMU, whereas the specific

parameterization and knowledge of the MMU can be

used. The process can be principally considered as a

distributed modeling of the transitions which contrasts

with commonly performed global motion blending. In

this way, it is ensured that smooth transitions between

the previous MMU in hierarchy and the respective MMU

are obtained, after the MMU is finished. As illustrated

by Fig. 8 (top), the first MMU blends to the under-

lying MMU until the motion is finished, whereas the

subsequent MMU blends from the underlying state to

the internal motion. Some technologies might be not

flexible enough to produce postures or motions which

can be incorporated in this way. Thus, optionally an

end-posture can be defined for the MMU (see Fig. 8

bottom). If a specific end-posture is assigned, the end-

posture must be used for blending instead of the posture

of the current sate at the present frame.

Fig. 8 Illustration of the transition modeling for the second
scenario, in which the currently active MMU is responsible
for blending to the underlying posture (top) or to a defined
end posture (bottom).

4.4 Modeling concurrent motions

Given the presented architecture, it is possible to execute

arbitrary MMUs based on their priority and generate

a merged posture for each frame. In general, the se-

quence of motions to be executed must be provided as

an input to the co-simulation. Using formats like the

Behavior Markup Language (BML) [13], a basic sce-
nario such as walk to, pick-up and put-down can be

formulated. In this case, the pick-up motion starts after

the walk motion has been finished. Analogously, the

put-down motion has the prerequisites, that walk, and

pick-up must be finished. With BML, these conditional

constraints depending on other instructions can be for-

mulated, whereas it is also possible to model timing

constraints. However, given the language it is difficult to

express constraints strongly related to the scene context,

or which are not known at the time the instructions are

created. Since the MMUs might comprise completely

different animation technologies, the prerequisites can

only be defined by the MMU itself. Therefore, each

MMU provides the functionality to check the required

prerequisites for executing a specific motion.

Examining humanoid motions, it can be encountered
that most of the performed motions are commonly exe-

cuted in parallel. For instance, a grasp motion might be

performed during walking, the specific time and location

when the grasping starts, however, strongly depends on

spatial constraints and prerequisites of the actual grasp

motion. Thus, it is not a straightforward task to de-

fine the exact timing and all constraints in before. To

nevertheless cover the concurrent modeling in a generic

manner within the co-simulation, the check prerequisites

method of the MMU interface can be utilized. This

method validates whether all constraints are fulfilled in

order to start the specific motion. Depending on the

implementation and motion, the constraints can address

vastly heterogeneous aspects such as the distance to a

target object or the maximum velocity of the avatar.

For modeling concurrent behavior, the co-simulation

initially checks if all external conditions for starting

the MMU are fulfilled. If this is the case, next, the

prerequisites of the specific MMU instance are verified.

If the prerequisites of the instruction are fulfilled, the

respective motion can be started. Applied to the afore-

mentioned walking and grasping example, the grasp

motion can be automatically started during walking if

the required constraints such as distance to the target

object are fulfilled (see Fig. 9). By modeling the runtime

specific constraints in this way, the exact timing does

not have to be explicitly specified in before. Moreover,

each MMU implementation can adjust the constraints

dynamically according to the used model.
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Fig. 9 Exemplary scenario generated by the novel co-
simulation. The grasping is automatically started during walk-
ing, once the prerequisites of the grasp MMU are fulfilled.

For more complex examples such as feedback loops

between gazing and hand movement, grasping and ges-

turing or lip syncing and emotion, the concurrency mod-

eling can be likewise addressed in the proposed way.

The MMUs can principally monitor the state of the

avatar/scene and can dynamically react to it by chang-

ing the prerequisites and simulation outcome. Therewith,

feedback loops between gazing and hand movement can

be realized by analyzing the present hand state within

the gaze MMU. Given an input sequence with timing

restrictions (e.g. gaze starts after 1s), the gaze MMU

could evaluate the pointing vector of the respective hand

and adjust the gaze target correspondingly.

With growing complexity of the scenarios, the im-
plementation effort and error proneness for the coor-

dination and prerequisite handling generally increases.

However, given the MMI approach it is also possible

to realize these behaviors at a different granularity. For

instance, gazing and hand movement could be realized

within a single MMU without requiring external coordi-

nation. Furthermore, complex behaviors can be realized

within nested MMUs, internally coordinating the other

required MMUs (acting as co-simulator). For complex

and rather use-case specific interactions, a realization

in a dedicated/nested MMU is considered as a good

trade-off between implementation effort and usability.

4.5 Conflict handling

Given the framework comprising multiple heterogeneous

MMUs, the input must be carefully specified to eliminate

potential conflicts and achieve the desired motions. How-

ever, in practice, different types of conflicts might occur

during the co-simulation. Generally, it is assumed that
technical errors are handled by the surrounding MMI

framework. Therefore, in the following, only conflicts on

a content-related level are discussed.

Behavior plan violation A first potential problem

occurs if a given sequence of instructions, also referred

as behavior plan, cannot be fulfilled. For instance, an

MMU cannot be started due to unfulfilled prerequisites

(e.g. waiting for the termination of a previous MMU)

or unsupported input. In this case, the overall behavior

plan might get stuck or corrupted. The co-simulator

propagates the information back, whereas the behavior

plan must be adjusted by the superior instance.

Constraint related errors Further potential conflicts

are related to constraints being not fulfilled/realizable.

The first group of constraint-related errors occurs if

desired constraints cannot be fulfilled given the avatar

and scene (e.g. IK is not able to reach desired goal).

Generally, the co-simulator solves the constraints in the

optimization stage and provides the result as entry state

for the next frame. It is up to the specific MMU to

evaluate the constraint and react to it.

A second conflict scenario occurs if constraints of

an MMU are accidentally manipulated by a subsequent

MMU with higher priority. In this context, the con-
straints can be either actively removed or overwritten

by contradicting constraints. For instance, a grasp MMU

forces an end-effector constraint of the hand, whereas

the subsequent MMU overwrites it. Thus, the constraint

of the grasp MMU is never fulfilled, if the subsequent

MMU is active. In most cases, this behavior might be
desired, since the user specified the hierarchy and se-

quence. However, the co-simulation cannot distinguish

whether the behavior is desired or not since it has no

semantic understanding of the behavior plan.

For both cases holds, the MMUs can internally mon-

itor the state changes of the avatar and scene. Moreover,

the MMUs internally know the semantics and charac-

teristics of the motion to be simulated best. Therefore,

the idea of the co-simulation approach is to perform the

constraint-related conflict-management in a distributed

manner inside the MMUs. The actual reaction depends

on the MMU implementations. For instance, if an MMU

encounters that the constraint is ignored, it could pro-

vide an exception message to be handled by the superior

instance. On the other hand, the MMU could also apply

a different policy by waiting until the constraints are

applied or providing an alternative motion planning.

Unfeasible postures Further potential outcomes of

the co-simulation might be unfeasible postures gener-

ated by the MMUs. Generally, the detection and def-

inition of unfeasible posture strongly depends on the

use-case (e.g. bio-mechanical correctness vs. natural-

ness). The optimization stage allows to incorporate sev-

eral post-processing components and solvers. Therefore,

approaches for the detection of unfeasible posture and

post-processing methods such as foot-grounding, foot-

skating avoidance can be incorporated by the user.
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5 Evaluation

After having outlined the novel co-simulation concept

and the underlying framework, in this section, the valid-

ity of the co-simulation approach is examined in detail.

Moreover, the applicability of the approach given differ-

ent MMU implementations is investigated.

5.1 Validation of the co-simulation approach

Summarizing the role of the co-simulation, the main task

is to incorporate different postures obtained from any

heterogeneous MMUs, while generating feasible results.

To validate the functionality, it is crucial to perform

an evaluation in a controlled environment without any
further error sources. Therefore, the co-simulation is

validated separately using predefined motion capture

recordings as ground truth data. In this way, it can
be ensured that only the quality of the co-simulation

approach itself is measured, instead of the characteristics

of the algorithms contained in the MMUs.

5.1.1 Experimental design

As base for the evaluation, the Carnegie-Mellon Univer-

sity Motion Capture (CMU) library [1] has been utilized,

which contains in total 2534 different motion capture

clips. These clips were temporally and hierarchically

segmented into smaller sections and embedded inside

MMUs. Overall, it should be examined whether the

co-simulation is able to reproduce the original motion

based on the segmented motion capture data contained

in the MMUs. Fig. 10 illustrates the evaluation concept.

In particular, the temporal orchestration of multiple

MMUs, as well as the hierarchical orchestration (seg-

mentation based on involved body parts) is analyzed.

The similarity is measured in terms of joint rotation dif-

ference between the individual postures occurring in the

co-simulated and original motion. Generally, the validity

of the co-simulation can be approved if no significant

error can be encountered. The tested co-simulation was

realized in Unity3D, whereas the update rate was set to

100 frames per second.

In practical use, the co-simulation will be utilized to

combine heterogeneous character animation approaches.

Since these approaches are rather based on dynamic sim-

ulation algorithms than just playback of motion-capture

data, the contained approaches utilize constraints and

model the transitions internally. Both aspects tend to

affect the quality of the generated motions. Therefore,

a further error estimation for applying the constraints

and the transition modeling is carried out.

Fig. 10 Sequential evaluation. A motion capture clip is
randomly cut into different sub-motions. These motions are
embedded within MMUs.

5.1.2 Validity of temporal orchestration

Generally, the co-simulator schedules multiple MMUs

based on given instructions and timings such as “start

MMU2 after MMU1 is finished”. For the validation of

this functionality, the CMU library is used, whereas each

individual clip is randomly split into multiple segments

having a duration d ∈ [0.50s; 5.00s]. For short motion

capture clips, it is ensured that at least two different

segments are generated. A time frame between 0.50s

and 5.00s is considered as a realistic assumption for

common activities contained in MMUs (e.g. grasping,
walking). Longer motions (d > 5.00s) were excluded

since the number of test-data segments would be signif-

icantly reduced. Shorter time-frames (d < 0.50s) were

skipped, because these would rather result in highly

split motions with less semantics. In total, all 2535 clips

of the CMU library were segmented according to the
illustrated principle. A limitation imposed by the ran-

domized splitting is that it is not known, at which state

the transition takes place (e.g. during different phases in

walk cycle). However, this is not considered as a major

drawback since the target of the evaluation is to validate

the co-simulation for generic motions.

Each segment is realized as a separate MMU and

is started after the previous MMU has been finished.

Figure 10 visualizes the decomposition of the overall

motion capture clips into individual MMUs.

Results Overall, in every tested scenario, no difference

with respect to the joint rotations of the individual

postures compared to the original motion capture clip

could have been encountered (difference below floating-

point accuracy), resulting in a median and mean error

of 0.00 degree. Therewith, it can be concluded that

the temporal orchestration of the MMUs induces no

additional error. Consequently, the validity of the co-

simulation for the temporal orchestration of different

MMUs is approved for the tested dataset.
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Fig. 11 Hierarchical evaluation. A motion capture clip is
randomly cut into different sub-motions. The motions are
furthermore split according the involved body parts.

5.1.3 Validity of hierarchical orchestration

For validating the hierarchical orchestration, the ref-

erence motions (CMU library) are additionally split

according to the involved body parts, resulting in a

total amount of four MMUs for each temporal segment.

Fig. 11 (left) illustrates the MMU assignment based on

the body parts. In particular, MMUs for the lower body,

upper body and arms have been used. The priorities

of the MMUs are constant and increase according to

the generalization specialization scheme, as illustrated

in Fig. 11. Within each MMU, the body parts which

are not directly set by the MMU are modeled using a

default idle posture. Generally, the MMUs with higher

priorities (e.g. left arm) overwrite the generated pos-

tures of the ones with lower priorities (e.g. upper body).

In the merging function fmerge contained in each MMU,

the resulting posture presult is generated as follows:

presult = fBlend(pn−1, pn,mn, 1) (2)

pn represents the generated posture of the nth MMU and

pn−1 of the previous MMU in hierarchy, whereas mn is

the blending mask of the nth MMU (e.g. setting upper

body joints to 1). fBlend describes a linear blending

function between two postures, with a blending mask

and a specified weight.

Analogously to the previous evaluation, a limitation

imposed by the segmentation is that the specific phase of

the motion might vary. However, within the evaluation

the validity of the hierarchical merging is focused which

requires no semantic knowledge of the motions.

Results Similar to the temporal orchestration, the ob-

tained motions by performing a hierarchical co-simulation

showed no measurable difference compared to the origi-

nal motion capture data, thus resulting in a mean and

median error of 0.00◦. Therefore it can be approved,

that the co-simulation is able to orchestrate multiple

MMUs without any further induced systematic errors.

Fig. 12 Results of the evaluation for the inverse kinematics
solver and linear blending. The linear blending was tested for
three different blending windows ranging from 0.50 s to 1.50 s.
The angular differences induced by the IK solver are further
split into arms and legs.

5.1.4 Error estimation - transition modeling &

constraint solving

As outlined in section 4, the transition modeling between

consecutive MMUs and utilization of body constraints

are essential aspects of the co-simulation. If the MMU

uses constraints and performs no further transition mod-

eling, the quality of the generated posture depends on

the IK solving algorithm contained in the co-simulation.

On the other hand, if the transitions are explicitly mod-

elled internally by the MMU, the results strongly rely

on the utilized blending approach. Therefore, in the

following, an error estimation for a state-of-the-art IK

solver and linear posture blending is carried out.

Inverse Kinematics constraints To analyze the in-

fluence of the constraint utilization on the generated

results, inverse kinematics constraints are set for each

frame by the MMUs. In particular, each MMU sets a

constraint for a specific bone (end-effector position and

rotation) based on the current posture of the motion

capture clip. Whereas, the lower body MMU sets the

feet and hip constraints, the left arm MMU sets the

left-hand posture, same applies for the right arm. For

the evaluation, the FABRIK implementation of [3] and

the clips contained in the CMU database have been used.

Overall, the generated postures utilizing the IK solver

are compared to the original motion capture data.

Analyzing the gathered results (see Fig. 12), it can

be denoted that the use of inverse kinematic constraints

evidently influences the results in terms of joint rota-

tion difference. The differences between the solved and

original postures deviate from frame to frame. Overall,

a mean (µ) of 4.45◦, median (θ) 3.73◦ and standard

deviation (σ) of 2.51◦ can be denoted. In particular, the

joint angle differences of the arm chains are consider-

ably higher with µ = 28.13◦, θ = 21.95◦ and σ = 20.41◦.

The angle differences of the legs are slightly reduced
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with µ = 9.96◦, θ = 8.40◦ and σ = 7.28◦. The affected

joint values for the arms chains led in several cases to

self-collisions being visible in the generated motions.

Summarizing the findings, it can be concluded that

the IK solver in the optimization stage of the co-simulation

strongly affects the overall postures. It is therefore cru-

cial to select an IK solver minimizing the differences.

Posture blending Besides constraint solving, posture

blending is a further aspect influencing the results of

the co-simulation. For the evaluation, linear blending

was used to model the transitions between consecutive

MMUs. Here-again the CMU database served as ground

truth data. Similarly to the previous validation, the

differences between the co-simulated results with posture

blending and the original motion are analyzed. For the

validation, each MMU gets the starting posture of the

subsequent MMU as boundary constraint. The MMUs

internally use linear blending to match the posture. The

blend time was set to 0.50s, 1.00s and 1.50s.

Analyzing the results, it can be concluded, that lin-

ear blending between MMUs affects the motion quality.

As indicated by Fig. 12, the mean angular difference

increases with a growing blend window. With a blending

duration of 0.50 s, a median value of 0.00◦, µ = 0.17◦

and σ of 0.52◦ can be denoted. Moreover, a blend du-

ration of 1.00 s resulted in µ = 0.47◦, θ = 0.00◦ and

σ = 1.02◦. A longer blend window of 1.50 s led to

µ = 0.80◦, θ = 0.00◦ and σ of 1.41◦. By visually in-

specting the generated motions, especially for long time

frames, foot-sliding was encountered. Generally, these

artifacts increase with growing blending duration. For

optimal co-simulation results, it is therefore crucial to

utilize appropriate interpolation approaches for blending

to specified end-postures. However, the performed eval-

uation already indicates, that especially for the upper

body smooth transitions can be obtained.

5.1.5 Discussion

Considering the individually examined properties of the

co-simulation, the overall validity can be approved. For

the tested motion-capture scenario, the co-simulation is

able to reconstruct the original data without any mea-

surable error. However, in practice, the MMUs will not

be fed with motion capture clips, instead simulation

algorithms will be contained. Therefore, the use of con-

straints and linear blending for modeling the transitions

is an important aspect. As outlined by the validation,

the IK solver and the linear blending affect the results.

For further validation of simulation algorithms within

MMUs this should be taken into account. If the transi-

tion modeling is done by MMUs internally, the overall

error depends on the respective MMU implementation. If

the constraints are handled by the co-simulation, the ac-

curacy is currently limited by the IK solver. Transferring

the results to practical use-cases, this means that the

applied IK solver must be carefully chosen to minimize

potential errors and self-collisions. For the transition

modeling, linear blending should be preferably applied

for short time windows only, or explicit measures such

as foot-skating avoidance should be utilized.

5.2 Validation using an exemplary implementation

Even though the isolated evaluation approved the valid-

ity of the co-simulation, the practical applicability of the

approach must be further investigated. For this purpose,

the system was tested using an exemplary implementa-

tion incorporating different animation technologies.

5.2.1 Experimental design

Similar to the evaluation in 5.1, the validity of the co-

simulation was investigated, however, instead of using

pre-recorded motion capture data, different character

animation algorithms were used. Therewith, a differ-

ent experimental design must be chosen. The overall

evaluation was built upon a scenario containing in to-

tal ten individual sub-tasks, each being modeled by a

separate MMU (see Fig. 13). For the validation, three

different configurations were tested. Within configura-

tion A (concurrent), the individual tasks were handled

in a concurrent way (hierarchical modeling) using the

proposed co-simulator. In scenario B (sequential), the

novel co-simulation was utilized, whereas the sub-tasks

were modeled strictly sequentially (temporal modeling)

with transition modeling. Within scenario C (no co-

simulation), the MMUs were sequentially executed with-

out any co-simulation. Overall, the applicability of the

co-simulation with different character animation tech-

nologies was investigated. For measuring the quality of

the generated motions, a user study was carried out.

In particular, the co-simulated sub-motions and single

motions generated by the MMUs were compared and

rated by the participants. The participants rated the

naturalness in a pairwise comparison (e.g. AB, AC, BC)

and chose the preferred motion or rated both as equal.

Furthermore, the overall clip containing the co-simulated

sequence of the comprehensive scenario was compared to

the MMUs sequence without applied co-simulation. The

validity of the co-simulation can be principally approved

if the quality of the individual clips is not decreased com-

pared to the original motions contained in the MMUs.

Moreover, the co-simulated sequence must be rated bet-

ter than the sequence without applied co-simulation.
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5.3 Apparatus

The utilized co-simulation was implemented in the Unity

engine and comprised multiple heterogeneous MMUs. In

particular, MMUs for idle, walk, grasp, carry, position

and release were incorporated. The idle MMU is based

on the Unity Mecanim animation system, looping an

idle animation. For the walk MMU, two different im-

plementations were used: The first implementation is

based on the recent publication of [19] which models the

locomotion behavior using deep neural networks (Table

1 AI). The second implementation uses the Mecanim

animation system of Unity, a set of motion capture clips

and motion blending to generate walk motions (Table 1

Blending). The grasp MMU is realized by a data-driven

statistical motion synthesis approach in Python (Table

1 Statistical). The release and position MMUs are based

on a model based algorithm utilizing path planning and

full body inverse kinematics (Table 1 Model-based). For

the concurrent co-simulation, the MMUs for grasp and

position (put-down) have the prerequisites that the root

position of the avatar must be in range [0.2m; 1.2m]

to start the motion. The MMUs internally model the

transition by using linear blending with a time frame of

0.50s. Moreover, a full body inverse kinematics solver
[3] was used to apply the body constraints. All external

MMUs were accessed via the proposed MMI framework

using the defined MMU interface and Apache Thrift.

The time accuracy of the simulation was set to 10ms. All

skeletons contained within the MMU were re-targeted

to the Unity Mecanim skeleton using the retargeting
functionality of the Unity engine. The priorities of the

MMUs have been set according to the generalization-

specification approach proposed in [13]. As illustrated

in Figure 13, the experimental scene contained three

main interaction points (1-3). In total, ten sub-tasks

were modeled by the different MMUs. Table 1 gives a

detailed overview of the individual tasks and the utilized

simulation techniques.

Technical setup process Within the utilized test envi-

ronment, MMUs originating from different programming

languages are used. Given the proposed framework, the

setup process of the respective MMUs is similar across

the different platforms. First, the MMU project is set

up using the desired language (currently supported: C#,

C++, Java, Python). For each language, the respective

MMU interface and base classes are provided within a

dedicated software library. The actual motion synthe-

sis implementation is contained and executed within

the MMU class. However, external code can be called

from the MMUs as well (e.g. model-based MMU uses

external library for path planning). For the incorporated

Table 1 Table illustrating the simulated task-sequence, as
well as the utilized simulation techniques of the MMUs.

Task Technique
Walk from start to 1 AI
Grasp large object Statistical
Walk to 2 while carrying large object AI
Put down large object on table Model-based
Release large object Model-based
Walk to small object Blending
Grasp small object Statistical
Walk to 3 while carrying small object Blending
Grasp large object (support grasp) Statistical
Position drill on large object Model-based

approaches within this work, the main difficulty and

effort was the adaption of the utilized models to the

exchange formats and mechanisms of the MMI frame-

work. In particular, it is important to ensure that the

embedded methods allow accessing the joint values of

the skeleton on a frame-based level. For reactive simula-

tions, it is moreover important to set the model’s joint

values. Although the core part of the motion synthesis

technologies can be reused, the functionality for convert-

ing, accessing and setting the embedded model needs

to be manually implemented in the MMU. Moreover,

events, constraints and scene-manipulations provided

by the MMUs must be additionally specified. It is im-

portant to note, that the MMUs must be aware that
the transmitted skeleton structure might differ from

the internally used one. Thus, the MMU might require

a retargeting from/to the internal skeleton using the

available retargeting service. The MMUs are deployed

as artifacts comprising the MMU binary, a description

file and optional dependencies.

For setting up the scene in the target engine, first all
relevant objects within the scene are marked as scene ob-

jects, being actively synchronized within the framework.

Next, connections to the available Adapters are estab-

lished and the desired MMUs are instantiated based on

their description. Afterwards, the co-simulation is setup

with the selected MMU instances and priorities. The

individual tasks are defined based on BML sequences

and are assigned to the co-simulation.

Fig. 13 Visualization of the utilized example scene. The
environment comprises in total three interaction points.
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5.4 Procedure

For validating the quality of the co-simulation, a user

study was carried out in which the participants select the

preferred motion in a pairwise video comparison. The

order of the videos was randomized. In total 30 different

pairwise comparisons were shown to the participants

for the sub-motions and three pairwise comparisons for

the full motion sequence. At the start of the user-study,
the procedure of the survey was explained, and the

participants had the possibility to do a test question.

Afterwards, a form with the age and gender was filled

out. Then, the 30 pairs, each depicting the same sub-

motions were presented to the participants in a random

order. The participants could watch the video multiple

times before selecting the answer. Finally, the full clips

were also randomly shown to the participants. For the

sub-motions the participants were asked to select which

video is better in terms of naturalness. A neutral selec-

tion (identical) was also possible. For the full clips, the

participant rated the naturalness of the overall motion.

5.5 Results

Overall, the survey was conducted with 20 participants

(5 females, 15 males, age: µ = 29.10, σ = 8.35). The

results for the sub-motions and the full motion sequence

are separately described within the following.

Sub-motions Fig. 14 visualizes the results for the sub-

motions generated by the MMUs. In particular, each

whisker plot aggregates the results of the ten sub-tasks

as illustrated in table 1. Comparing the individual mo-

tions of the sequential and no applied co-simulation, in

µ = 47.37% of the cases both motions were rated as

identical (θ = 50.00%, σ = 21.73%). In µ = 42.35% of

the cases, the motion of the sequential co-simulation was

considered as more natural (θ = 40.00%, σ = 15.86%).

In µ = 11.58% cases, the original motion was regarded as

more natural (θ = 10.00%, σ = 10.40%). For the concur-

rent co-simulation, µ = 48.95% (θ = 50.00%, σ = 7.28%)

rated it better compared to the original, µ = 33.68%

(θ = 30.00%, σ = 22.30) as equal and µ = 17.37%,

θ = 20.00%, σ = 11.62% preferred the original motion.

Comparing the sequential and concurrent co-simulation,

it can be encountered that the majority rated both ap-

proaches equal with respect to the naturalness of the

sub-motions (µ = 52.63%, θ = 50.00%, σ = 14.81%).

The concurrent sub-motions were preferred in 31.10%

(θ = 30.00%, σ = 14.83%) of the cases, whereas the se-

quential ones were preferred by µ = 16.31% (θ = 20.00%,

σ = 13.50%) of the participants.

Overall, aggregating the results of all three indepen-

dent comparisons, the most frequent answer was “equal”

(44.60%). The concurrent co-simulation was selected in

26.67% of the cases, followed by the sequential (19.12%)

and no applied co-simulation (9.65%).

Full motion sequence With regard to the full mo-

tion sequences, the results strengthen the tendency that

the co-simulated results are perceived as more natural

(see Fig. 15). Generally, the co-simulated approaches

achieved better scores than the non-co-simulated mo-

tions. Comparing the sequential co-simulation with no

applied co-simulation, the sequential approach received

a mean of 84.21% of the votes (θ = 100.00%, σ =

36.46%). µ = 17.65% rated both approaches as equal,
whereas zero persons preferred the sequence with no

co-simulation applied. Analyzing the results for the

comparison of the concurrent co-simulation and no ap-

plied co-simulation, the discrepancy between the co-
simulated and non-co-simulated motion further increases.

The concurrent motions were chosen in 89.247% (θ =

100.00%, σ = 30.69%), whereas a mean of 10.52%

of the participants rated both as equal (θ = 0.00%,

σ = 30.69%). No participant preferred the version with

no co-simulation. Comparing the sequential to the con-

current co-simulation, most of the participants preferred

the concurrent version (µ = 73.68%, θ = 100.00%,

σ = 44.03%), whereas 21.05% (θ = 0.00%, σ = 40.79%)

rated both as equal and 5.26% (θ = 0.00%, σ = 22.33%)

preferred the sequential one.

Combining the results of the three independent com-

parisons, the concurrent co-simulation achieved the high-

est overall rating of 50.88%, whereas the sequential co-

simulation achieved 29.82%. No clear tendency (equal)

was selected by 19.30%. The full clip with no applied

co-simulation was selected by no participant at all.

5.6 Discussion

Analyzing the gathered results for the individual sub-

motions, the co-simulated motions achieved constantly

a higher percentage compared to the non-co-simulation

motions. For the sequential co-simulation, less differ-

ences can be encountered, since the majority considered

both approaches as equal. In the trend, the concurrent

modeling achieved higher results than the sequential

co-simulation if compared to the non-co-simulated ver-

sion. Possible reasons for this are that the tasks itself

are strongly affected by the concurrent modeling. For

instance, the walk motion in the concurrent scenario ad-

ditionally contains a grasp motion, since the grasp MMU

is automatically started if the avatar is in range of the

target object. According to the results, the participants
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Fig. 14 Results of the performed survey for the naturalness rating of the individual motions.

Fig. 15 Results of the performed survey for the naturalness rating of the full motions sequences. The bar charts visualize the
mean percentage for each comparison and answer possibility.

perceived those motions as more natural. The difference

between the sequential and non-co-simulated motions

can be traced back to the different starting/ending pos-

tures if no co-simulation is applied. Given the obtained
results, it can be summarized that the quality of the

individual motions is not decreased by the co-simulation.

Examining the results of the full motion-sequence,

it can be denoted that the full motion is rated con-

sistently better compared to the concatenated MMUs

without any co-simulation. As outlined by the gathered

data, the non-co-simulated motion was preferred by no

participant at all, whereas most participants preferred

the co-simulated versions in both cases. These results

approve the validity of the co-simulation for the given

motion sequence. Comparing the concurrent and sequen-

tial co-simulation, it can be uncovered that the majority

preferred the concurrent co-simulation. Possible reasons

are, that the concurrent motions were perceived as more

natural since human motions comprise concurrent be-

havior to a large extent. In contrast purely, sequential

motions are performed rather seldom.

Summarizing the findings, the performed user study

shows, that the novel co-simulation approach can be

applied to generate feasible human motion based on

distinct MMUs. In particular, the co-simulation is able

to handle the execution of concurrent motions which

especially leads to increased naturalness scores. From a

use-case perspective, this means that the co-simulation

and the underlying framework can be principally used to

combine and benchmark multiple approaches, which de-

picts a major step towards an open modular framework

for digital human simulations.

6 Conclusion and Outlook

Within the paper, a novel co-simulation for orchestrat-

ing different character animation systems is presented.

The validity of the novel concept was evaluated by two

different evaluations. First, the overall applicability was

examined using motion capture data. Second, a user

study was conducted investigating the naturalness of

the generated motions. Overall, the novel co-simulation

approach can preserve the quality of the original motions

contained within the MMUs, while generating feasible

results. Therefore, the proposed co-simulation and the

framework can be utilized to incorporate heterogeneous

simulation approaches in future.

Limitations and future work Even though the generic

problem of orchestrating heterogeneous MMUs is ad-

dressed by the novel approach, there are still several

limitations. Currently, the priorities of the MMUs must

be manually assigned. If a system comprises multiple

MMUs being active at the same time, the priority assign-

ment might depict a complex and error-prone process. A

possible overcome is to integrate more functionality into

a single or nested MMU, thus avoiding external coordina-

tion of complex sequences. To simplify the coordination,
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on the other hand, a scheme/priority assignment could

be defined for a subset of compatible MMUs as an ex-

tension to the proposed co-simulation. A generic scheme

for arbitrary MMU and motions, however, is currently

considered as rather unfeasible, imposing additional re-

strictions on the framework and reducing compatibility.

Given the proposed co-simulation, multiple MMUs

can be combined in real-time. However, since the input

of each MMU contains the result of the previous MMU,

there is a strong sequential dependency. Scaling up the

amount of MMUs therefore leads to a performance bot-

tleneck, since each MMU must wait for the result of the

previous MMU in hierarchy. The available frame time

for each MMU is therefore reduced with each additional

MMU. To nevertheless allow real-time systems incorpo-

rating a large amount of MMUs, a parallel co-simulation
in which the input state is predicted is a possible solu-

tion. In this context, the future state of an MMU could

be either predicted, by the MMU itself or externally via
approaches like Kalman filters.

Despite the discussed limitations, there are further

consecutive topics which can be addressed in future

work. In this context, novel posture interpolation and

improved inverse kinematics approaches should be ex-
amined. In addition, aspects like the modeling of the

influence of previous and subsequent actions on the

current motions can be analyzed. For instance, it is ex-

pected, that the specific parameterization of a put-down

motion is strongly influenced by the previous pick-up

motion. Furthermore, building upon heterogeneous sim-
ulations embedded in MMUs, Monte-Carlo simulations

which vary the input parameters could be investigated.

Finally, the MMU concept will be further developed in

the international ITEA 3 research project MOSIM [20]
and provided as open source standard after the project.
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