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ABSTRACT
Autonomous vehicles carry the potential to greatly improve mobil-
ity and safety in traffic. However, this technology has to be accepted
and of value for the intended users. One challenge on this way is
the detection and recognition of pedestrians and their intentions.
While there are technological solutions to this problem, there seems
to be no research on how to make this information transparent to
the user in order to calibrate the user’s trust. Our work presents a
comparative study of 5 visualization techniques with Augmented
Reality or tablet-based visualization technology and two or three
information clarity states of pedestrian intention in the context of
highly automated driving. We investigated these in a user study
in Virtual Reality (N=15). We found that such a visualization was
rated reasonable, necessary, and that especially the Augmented
Reality-based version with three clarity states was preferred.

CCS CONCEPTS
• Human-centered computing → Human computer interac-
tion (HCI); Haptic devices; User studies.
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1 INTRODUCTION
Autonomous vehicles (AVs) are expected to change the interaction
between driver and vehicle profoundly [10]. However, public opin-
ion on AVs can be described as skeptical: Kyriakidis et al. found
that 65% of the participants were worried about the reliability of
automated cars [31]. Continental AG found in a survey conducted
in seven countries that between 43 and 74% of the participants
doubted that automated cars will function reliably (Chinese being
the most pessimistic with 74%) [1]. In their assessment of the Pedes-
trian Detection System, respondents were asked “Spontaneously,
how would you classify this system, which automatically brakes
your car if a pedestrian or cyclist unexpectedly and suddenly steps
in front of you on the road?” While convenience received a good
rating (M≈2; 1 = convenient to 5 = inconvenient), technical maturity
assessment was lower (e.g., Germany:M≈3.1; 1 = technically mature
- 5 = Not technically mature). Lack of trust in the automated features
could lead to decreased willingness to use these. Visualizing the
deducted intentions of other road users, especially very mobile
pedestrians, could increase trust and also enable better assessment
of technical maturity, providing system transparency.

Pedestrian intention recognition until now was investigated
mainly from a technological standpoint [3, 7, 48, 52]. Therefore,
we propose to include visualizations of pedestrian intention recog-
nition to calibrate trust for passengers of AVs and, therefore, to
increase usage [19]. High pedestrian-related accidents (≈ 21% of all
road accidents in the EU in 2016 [11]) indicate that the recognition
of the intention is even difficult for humans.While traffic-related ob-
jects such as other obfuscated cars were highlighted [65], pedestrian
intention visualization as an especially relevant factor influencing
the trajectory of the AVs was not yet evaluated.

The main contributions of this work are: (1) Unveiling the lack
of visualization techniques for pedestrian intention visualization
and its consequences on trust and cognitive load. (2) Proposal of
technology-dependent visualization techniques. (3) Findings of a
Virtual Reality (VR) study (N=15) show that an Augmented Real-
ity (AR) visualization helps to reduce cognitive load and that all
visualization concepts as well as the presentation of more informa-
tion positively affect trust. In this context, clarity states refers to
the granularity (higher equals more information content) of which
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pedestrian intention is shown. In general, participants claimed that
the visualization of the recognition of pedestrians and their inten-
tion is reasonable and necessary.

2 RELATEDWORK
This section presents an overview of trust and system transparency.
Additionally, we show visualization techniques both in academia
and industry in the automotive field with a focus on pedestrian
intention recognition.

2.1 Trust and System Transparency
Trust in an automated system plays an essential role in the deci-
sion to use it. Distrust can lead to an overly skeptical behavior
towards automated systems which makes them prone to be used
less [38], missing out on the beneficial effects of these systems [44].
Overtrust, on the other hand, can lead to fatal consequences [41].
Therefore, the aim should be calibrated trust [38] where the user’s
trust reflects the actual capabilities of the automated system. To
develop calibrated trust, distrust must be overcome and overtrust
must be prevented. This can be accomplished before, during, or
after interacting with an automated system [20]. Providing relevant
information such as system transparency or system reliability helps
to build and maintain trust in automated systems [12, 18, 26, 30].
Forster et al. [12] showed that participants who observed videos of
a driver interacting with a conditionally automated vehicle trusted
a system introduced as highly reliable significantly more than a
system introduced as little reliable. Kraus et al. [30], who conducted
a driving simulator experiment within a highly automated setting,
found that a system with low transparency led to a decrease in trust
after a malfunction while a highly transparent system prevented
this decline in trust.

2.2 Pedestrian Intention Recognition
Rasouli and Tsotsos [46] gave an overview of pedestrian inten-
tion recognition techniques. Some models base their estimation
solely on dynamic information (e.g., position and velocity [51]) or
include information about the scene such as traffic signalling [17].
Brouwer et al. [6] compared different information on pedestrian
motion models. The combination of the dynamics of pedestrians,
their 3D pose and awareness (meaning head orientation towards
the vehicle), and obstacles lead to the best prediction results. Other
factors were included as focusing on trajectories and dynamic fac-
tors alone is insufficient [48]: awareness [6], social forces [37] (i.e.,
repulsion and attraction), or structure of the street [49]. Rasouli
and Tsotsos [46] summarize: “intention estimation algorithms are
used in very limited traffic scenarios [...] Ideally, these algorithms
should be universal” [46, p. 915]. While most algorithms use tra-
jectories and scene dynamics, this is unreliable as “Just Motion Is
Not Enough” [46, p. 914]. Kong and Fu [24] presented a survey on
human action recognition and prediction. Various action prediction
methods were compared on 8 datasets. Performance varies greatly
both depending on the dataset as well as on the method. The best
performance in 2018 with 88.37% was by mem-LSTM [25] on the
UCF-101 dataset [54] with an observation ratio of 0.5, meaning that
half of the video was shown to the network. With an observation
ratio of 0.1, the performance dropped to 51.02%.

2.3 Visualization in Vehicles
In-vehicle visualization is a broad topic including safety critical but
also infotainment aspects. Wiegand et al. [63], for example, present
a design space that captures possible use cases for AR applications.
They categorize these into five clusters: Safety, Navigation, Conve-
nience, Entertainment & Communication, and Vehicle Monitoring.

Head-UpDisplays (HUDs) are researched as an approach to avoid
drivers of diverting their attention away from the street. Smith et al.
showed that performance measures are better when using this tech-
nology compared to traditional Head-Down Displays (HDDs) [53].
Windshield Displays (WSDs) take this one step further by creating
an HUD that covers the entire windshield. A view management
system for WSDs was already presented [15]. The ultimate goal
is to be able to show content at continuous depth [15]. Gabbard
et al. [13] highlighted advantages of such systems allowing AR
information visualization: no need to look down, spatial proximity,
and novel sources of available information. Also, challenges, which
are mainly of technical nature but also include visual clutter and
driver distraction, were discussed [13].

With AVs becoming reality, calibrating trust and improving sit-
uation awareness (SA) could increase acceptance of such novel
technology. Various work already included different information
visualization of the AV to the passenger.

Löcken et al. investigated the usage of ambient light to inform
the user of the decisions of their automated vehicle [36]. LED strips
between the A- to B-pillars were used to indicate accelerating, brak-
ing, and changing lanes [36]. BeingWork-in-Progress, the systems
were rated as intuitive but still had inconsistencies.

Lindemann et al. [35] used an AR WSD to display a variety of
information such as destination, regulations, and navigation. They
also highlighted threats such as pedestrians and provided a cube
over moving vehicles indicating their behavior (e.g., dangerous
or unusual). They showed higher SA in low and high visibility
scenarios compared to only having the basic elements speed and
navigation info.

Trust in automated vehicles was researched in various ways.
For semi-autonomous vehicles, Koo et al. [26] investigated which
type of message regarding the actions (“how” information) and
the reasons (“why” information) for these lead to increased trust.
Only providing why information led to highest trust. They argue
that additionally providing how information could lead to cogni-
tive overload [26]. Still, the combined messages resulted in the
safest driving behavior. While their focus was semi-autonomous
driving, the conclusion that why information causes no negative
emotional reaction could indicate that this information is relevant
in AVs. Häuslschmid et al. [18] showed the vehicle’s current situa-
tion interpretation via a world in miniature or a simulated chauffeur
avatar. The world in miniature increased trust most, however, par-
ticipants’ opinions varied considerably whether such a visualization
is needed.

2.4 Pedestrian Intention Visualization
Waymo and Tesla are leading companies regarding AVs [32]. In
their dashboard, Tesla visualizes detected vehicles. The system is
capable of detecting even multiple cars ahead (see [58]). On high-
ways, vehicles behind the ego-vehicle and vehicles of the oncoming
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(a) Motorcycle visualization [9]. (b) Dog recognized as a
person in Tesla [47].

(c) Recognized & visualized per-
son in Tesla [59].

(d) Pedestrian visualization on ze-
bra crossing in Tesla [45].

(e) Pedestrian at curb not visualized in Tesla [43]. (f) Pedestrian at curb visualized by Waymo [57].

Figure 1: Visualizations of road users by Tesla and Waymo.

traffic are visualized. The vehicle also detects motorcycles, cyclists,
cones [34], people, and animals [47]. Vehicles and people are vi-
sualized with the direction they are going or looking at. However,
the dashboard visualizes people only if they are on the street [59],
but not on the curb [43] even with the “Full Self-Driving Sneak
Preview” [33]. This is insufficient as only reacting to pedestrians
standing on the street is risky. Drivers are already told to watch
out for pedestrians walking on the sidewalk [42]. Waymo presents
information on pedestrians as laser points for the passengers. These
visualizations are shown in Figure 1, showing the state-of-the-art
and highlighting the absence of pedestrian intention visualization
in the industry. So far, pedestrian intention was visualized in the
context of showing technical feasibility. Kooij et al. [27] proposed a
Dynamic Bayesian Network for pedestrian path prediction. Various
factors are included: Situation criticality, defined by the expected
closest distance between pedestrian and vehicle, pedestrian aware-
ness of the vehicle (measured via head orientation), and positioning
to the curbside. They visualize this as shown in Figure 2.

Figure 2: Pedestrian path prediction of Kooij et al. [27].
Tracking bounding boxes of aware pedestrians are visual-
ized green, head detection is visualized via a white box, and
the curb with a blue line. Red indicates that the pedestrian
is not aware of the oncoming vehicle.

Ghori et al. [14] differentiate between five intention classes:
crossing, stopping, starting, turning (based on [50]), and walking
along. For them, the most important classes from an Advanced
Driving Assistant System point of view are (1) pedestrian crossing
or (2) stopping at the curb (see Figure 3).
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(a) Orange: Crossing; Yellow: Starting; Blue: Stopping.

(b) Green: Waling-along; Purple: Turning.

Figure 3: Ghori et al.’s [14] proposed visualizations of the
intention classes.

Perceptive Automata [2] visualizes pedestrian Awareness of the
vehicle and Intention to cross (see Figure 4). Awareness is visualized
by a symbolized eye depicted as more or less opened depending on
the detected awareness level of the pedestrian (see Figure 4). The
intention to cross is depicted via the number of bars (more bars
equal higher intention to cross).

Figure 4: Explanation of the visualization by Perceptive Au-
tomata as shown in [66].

With regard to pedestrian collision warnings, Kim et al. pre-
sented HUD AR systems comparing (1) bounding boxes around
detected pedestrians with a virtual shadow, indicating where the
pedestrian is estimated to walk to [23] or (2) a “BRAKE” message

with the virtual shadow [22]. These systems were evaluated in a
high-fidelity driving simulator [23] or in an outdoor study [22].
Compared to the bounding boxes, the four questioned experts liked
the lower information density (i.e., lower number of graphics) and
reduced mental workload [23]. A possible improvement is more
closely connecting the animation with the relevant pedestrian [23].
In the outdoor study [22], the results showed that both systems sig-
nificantly improve the stopping distance (i.e., participants stopped
further away) while the “BRAKE” system resulted in unnecessary
hard braking.

3 PEDESTRIAN INTENTION RECOGNITION
VISUALIZATION

To systematically evaluate the influence of pedestrian intention
visualization on passengers’ trust and cognitive load in a highly
automated driving setting, we conceptualized possible implementa-
tions.

3.1 Concept
We propose to visualize the recognition of the pedestrian and their
intention. Following Ghori et al. [14] with the most important in-
tention classes crossing or stopping at the curb (a subcategory of
staying on the sidewalk), we distinguish two levels of informa-
tion visualization (henceforth called clarity states): two clarity
states with the distinction between intention recognized and in-
tention not clearly recognized and three clarity states where the
recognition is further distinguished into remains on sidewalk and
crossing. Only visualizing, for example, intention recognized could
confuse passengers as a person could just not have been detected.
Therefore, two clarity stateswere chosen as minimal requirement.
Additionally, we propose to visualize the recognition of the person
even if no intention can be derived. This could be the case when
the person is still too far away to make predictions. Furthermore,
the visualization technique could be altered: Tablet-based in the
center stack, which is inspired by Tesla, and AR-based in which
the intention is directly visualized over the respective person. The
tablet represents the current state-of-the-art while AR represents
the ultimate goal of spatial information distribution. Therefore,
these two visualization technologies were chosen. This concept is
technology-independently depicted in Figure 5.

3.2 Implementation
To evaluate the concepts, we implemented a VR simulation includ-
ing traffic and pedestrians using Unity [60] and the asset Windridge
City [61]. People are standing in groups and cross the street on
crosswalks or via jaywalking. Participants sat in the driving simula-
tor displayed in Figure 7. A steering wheel was installed in front of
them. In the simulated world, the participant is seated in a model
of the Tesla X (see Figure 6). The car model incorporates a steering
wheel as this will likely have to be present until full autonomy is
reached.

Our system to visualize pedestrians’ intention recognition was
implemented as follows: In an area of r = 35 m, the system de-
tected every person. As we knew the trajectories, the intention
was always clear (relevant for the condition three intention clarity
states). Within a radius of r = 30 m, we displayed the intention of
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30m

35m

Ego
vehicle

Pedestrian recognized 
and intention clear – 
cross or stay

Pedestrian recognized 
and intention unclear

Pedestrian 
recognized

Ego
vehicle

Pedestrian recognized 
and intention clear - stay

Pedestrian recognized 
and intention unclear

Pedestrian 
recognized

Pedestrian recognized 
and intention clear - cross

a b

Figure 5: Schematic representation of the visualization. a) For the condition two system clarity states, b) for three system clarity
states with an oncoming vehicle as visualized in the tablet condition.

Figure 6: The interior of the simulated Tesla X alongside the visualizations: AR three clarity states (1), AR two clarity states (2),
tablet three clarity states (3), tablet two clarity states (4).
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the pedestrian depending on the certainty. We explicitly modeled
various encounters with pedestrians to indicate the uncertainty
of the vehicle. This was intended to simulate an imperfect system.
However, these encounters were rare and occurred equally often
per condition.

We implemented two visualizations: a tablet-based and an AR-
based one. In both systems, color coding was identical. In the tablet
version (see Figure 6 (3) and (4)), a graphical representation of
the upcoming street was given (in reference to Tesla’s Autopilot
visualizations). In the AR version, symbols were placed over the
recognized people’s heads (see Figure 6 (1) and (2)). Circles were
used as a consistent representation in both visualizations. In the
AR-based version, circles above the pedestrians were chosen to
keep spatial proximity while still using relatively small space. Col-
ored bounding boxes, as a different representation, would have
needed additional space, resulting in visual clutter. Additionally,
this allowed us to include a symbol for the pedestrian. This could be
useful if the visualization were to be enhanced for other road users
such as cyclists or vehicles. Depending on the study condition (see
Section Procedure), two or three intention clarity states were dis-
played. The visualization of two intention clarity states refers to
the information person recognized and its distinction between inten-
tion clear (visualized in purple) and intention unclear (visualized in
yellow). In the level three intention clarity states intention clear
is further distinguished into intention to cross clear (visualized in
blue) and intention to stay on sidewalk clear (visualized in babyblue).
These states are depicted in Figure 5. Shades of blue were selected as
colors such as yellow or orange carry a warning function, which is
unwanted in this case. Still, the colors were highly distinguishable.

4 STUDY
To evaluate the concepts, we designed and conducted a within-
subject study with N=15 participants. This exploratory study was
guided by the following research question:

What impact do the variables “visualization” and “clarity states”
have on passengers in an AV in terms of (1) affective state, (2) cognitive
load, (3) trust, (4) preference, and (5) capability assessment?

4.1 Apparatus

Figure 7: Study setup: camera (1), Vive base station (2), HTC
Vive Pro (3) & speaker (4). While this participant holds on
to the provided steering wheel, no manual driving was in-
volved.

The study apparatus is shown in Figure 7. We used a simulator for
realistic driving especially for the seat to increase immersion. A
camera and the HTC Vive base station were put directly in front, a
Bluetooth speaker (see Figure 7 (4)) directly behind the participant.

4.2 Procedure
Each participant experienced five conditions, a baseline with no
visualization of the pedestrian intention and a 2 x 2 design (visual-
ization with two levels: tablet vs. AR and system transparency with
two levels: two vs. three intention clarity states; the independent
variables). The latter resulted in four systems.

Each session started with a brief introduction, signing of the
consent form, and a demographic questionnaire. The five conditions
were then presented in counterbalanced order. The introduction to
the capabilities was given as follows: You will drive through a city
in a Virtual Reality (VR) environment in a highly automated vehicle.
The vehicle takes over the transverse and longitudinal guidance. The
vehicle tries to determine the intention of nearby passers-by. If this
is not finally possible, it will be visualized differently depending on
the session. Participants sat in the simulated vehicle for 5 min per
condition and then answered the questionnaires described below.
At the end, participants were asked about general feedback. On
average, a session lasted 75 min. Participants were compensated
with e12.
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4.3 Measurements
Objective dependent variables: During each session, the system
logged the angles of the view (lateral 0◦ meaning straight ahead)
and the current duration with 10 Hz.

Subjective dependent variables: After each condition, we mea-
sured affective state on a 7-point semantic scale using the self-
assessment manikin (SAM) [4], cognitive load using the raw NASA-
TLX [16] on a 20-point scale, usability with the system usability
scale (SUS) [5], and trust in automation using the German version
of the Trust in Automation scale of Jian et al. [21] developed by
Kraus et al. [30].

Participants were also asked with self-developed single items
on 6-point Likert scales how they assessed the capabilities of the
system: detection of passers-by, recognition of the intention of
passers-by, longitudinal, and lateral guidance. Participants were
asked up to what distance passers-by and their intention are de-
tected (< 15 m to > 40 m in steps of 5 m). Additionally, we asked
participants after each trial: How were passers-by visualized who
recognized the intention to stay on the sidewalk?. This served as a
manipulation check variable to make sure participants understood
the system in this trial correctly. This check revealed that no par-
ticipants had difficulties in assessing the different colors correctly.

After all five conditions, participants rated their preferences re-
garding the systems from greatest (ranking = 1) to lowest (ranking
= 5). Open questions regarding feedback and improvement propos-
als were also asked. Participants rated their immersion using the
Immersion subscale of the Technology Usage Inventory (TUI) [29].
The usefulness and necessity of both the visualization of detected
pedestrians and their intention were measured using single-item
ratings on 7-point Likert scales.

4.4 Participants
N=15 participants (4 female, 11 male) were recruited for the experi-
ment. They were on average M=25.33 (SD=8.17) years old and all
hold a driving licence, most of them for at least 3 years (14 par-
ticipants). 12 are students and 3 employees. On a 5-point Likert
scale (1=strongly disagree, 5=strongly agree), participants reported a
high interest in AVs (M=4.40, SD=.74) but were not sure whether
such a system would ease their lives (M=3.53, SD=1.25). The par-
ticipants believed AVs to become reality by 2029 (10 years from
today;M=4.07, SD=.88). The Propensity to Trust subscale of the Trust
in Automation questionnaire [28] was administered once before
and once after all conditions. Propensity to Trust was relatively low
(M=2.40, SD=.67) prior to the experiment. A Wilcoxon signed-rank
test revealed that, after the simulation, the values for Propensity to
Trust did not significantly change (M=2.40, SD=.73). Participants
rated their Immersion in a range from 7 to 27, with a mean of
M=16.47 (SD=6.35; min possible is 4, max possible 28). None of the
participants had to be excluded from analysis since none reported
very low immersion (i.e., <7).

5 RESULTS
Descriptive and inferential statistics are reported. We use Fried-
man’s ANOVAs to compare the five systems as the data is non-
parametric [55]. To investigate interaction effects of visualization x
clarity states (both within-group), we disregard the baseline and use

non-parametric variance analysis (nparLD in R), a robust method
even for small sample sizes [40]. ANOVA-type statistics are reported.
For post-hoc tests, we used Bonferroni corrections.

5.1 Affective State
Participants’ affective state in terms of arousal was low (range:
M=2.67, SD=1.35 AR three clarity states toM=3.67, SD=1.72 baseline),
in terms of valence was high (range: M=4.33, SD=1.59 tablet two
clarity states to M=5.13, SD=1.30 AR three clarity states), and in
terms of dominance was low (range: M=2.27, SD=1.62 baseline to
M=2.80, SD=1.86 AR two clarity states).

Friedman’s ANOVAs showed no significant difference in the
mean ratings in dominance, valence, or arousal.

5.2 Cognitive Load

0

5

10

15

AR Tablet
Visualization

T
LX

 S
co

re

Three clarity states

Two clarity states

Figure 8: Main effects on TLX score of visualization. AR re-
duces cognitive load.

Cognitive load was measured using the raw NASA-TLX. Overall
scores were low for all conditions (range:M=2.99, SD=2.70 AR three
clarity states to M=5.51, SD=3.93 tablet two clarity states).

A Friedman’s ANOVA showed a significant difference in the
mean overall scores (𝜒2 (4)=20.7, p<.001). Post-hoc tests showed
that the AR three clarity states system received significantly lower
TLX scores compared to the tablet two clarity states and the tablet
three clarity states systems. The non-parametric variance analysis
showed a significant main effect on the overall score of visualization
(F=13.03, df=1, p<.001; see Figure 8).

5.3 Trust in Automation
The reported trust [21] was in the range of M=3.86 (SD=1.46, base-
line) to M=5.33 (SD=1.68, AR three clarity states).

A Friedman’s ANOVA showed a significant difference in the
mean rankings for the participants (𝜒2 (4)=14.0, p=.007). Post-hoc
tests showed that the AR three clarity states system received sig-
nificantly higher hyratings compared to the baseline. The non-
parametric variance analysis showed a significant main effect on
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Figure 9: Main effects on Trust score of (1) visualization (AR increases Trust) and of (2) clarity states (three clarity states
increases Trust).

the trust score of visualization (F=3.86, df=1, p=.049; see Figure 9
(1)) and clarity states (F=4.43, df=1, p=.04; see Figure 9 (2)).

5.4 Capability Assessment
The capabilities of the simulated AV were rated with respect to de-
tection of pedestrians, recognition of pedestrians’ intention, and lat-
eral and longitudinal control. The assessment of detection of pedes-
trians went from M=4.13 (SD=1.77; baseline) to M=5.67 (SD=.62; AR
three clarity states). Intention recognition was also rated lowest for
the baseline (M=3.13, SD=1.17) and highest for the AR three clarity
states system (M=5.00, SD=1.13). Values for lateral and longitudinal
control were all relatively high (the mean being ≈5.00).

Asked about the pedestrian recognition capabilities in terms
of distance (i.e., m), participants rated the baseline lower (M=2.80,
SD=1.97) than the visualized systems (tablet two clarity states being
rated the highest; M=4.53, SD=1.77). The same is true for the in-
tention recognition (baseline M=1.67, SD=1.11 compared to M=2.87,
SD=1.64 for tablet two clarity states). The correct value for pedestrian
recognition is 5 (equalizing 35 m) and for the intention recognition
4 (equalizing 30 m; see Section Implementation).

A Friedman’s ANOVA showed a significant difference in the
mean rankings for the participants in terms of detection of pedes-
trians (𝜒2 (4)=21.2, p<.001). Post-hoc tests showed that the baseline
received significantly lower ratings than the AR three clarity states
system. The same holds true for the intention recognition assess-
ment (𝜒2 (4)=14.3, p=.006) with post-hoc tests showing significantly
lower ratings for the baseline compared to the AR three clarity
states system. No significant differences were found for lateral and
longitudinal control. Friedman’s ANOVA showed significant differ-
ences for the distance of pedestrian recognition (𝜒2 (4)=16.6, p=.002)
and the distance of pedestrians’ intention recognition (𝜒2 (4)=12.8,
p=.01). Post-hoc tests only showed significant differences for the
distance of pedestrian recognition between the baseline and the
tablet two clarity states system, the latter being rated as having
significantly higher recognition capabilities.

5.5 System Preferences
The AR three clarity states system received rankings indicating the
highest preference, i.e., the lowest mean (M=.83, SD=1.20). The re-
maining ranking was as follows: tablet two clarity states (M=4.07,
SD=.70), no visualization (baseline; M=4.00, SD=1.36), tablet three
clarity states (M=3.27, SD=1.16),AR two clarity states (M=2.47, SD=.83).

A Friedman’s ANOVA showed a significant difference in the
mean rankings for the participants (𝜒2 (4)=34.4, p<.001). Post-hoc
tests showed that, compared to the AR three clarity states system,
all other systems except the AR two clarity states system were rated
significantly worse.

5.6 Reasonability and Necessity
The mean value for the single item rating the visualization of the
intention as reasonable on a 7-Likert scale was very high (M=6.40,
SD=1.18) and high for the rating as necessary (M=5.40, SD=1.64).
The mean ratings for the visualization of the recognition were
lower, however, still high. M=5.73 (SD=1.53) for being reasonable
and M=5.20 (SD=2.01) for being necessary.

5.7 Open Feedback
In general, participants highlighted the need for and benefits of
such a visualization ([P3]: “So in most cases, where the intention
has been recognized, he [the user] does not have to worry about the
pedestrian.”). [P11] also emphasized the visualization with three
clarity states: “that 3 different states were displayed, you knew ex-
actly what the system detected, you could easily focus on the states,
especially when people were crossing the street”. Most negative
associations were mentioned with the tablet ([P2]: “The visualiza-
tions on the display are difficult to comprehend as the pedestrian in
the real world must always be searched for to make comparisons,
but there is sometimes not enough time for this”) and the baseline
([P8]: “No visualization creates uncertainty”). [P14] also criticized
the visualization with two clarity states as “The solution without
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visualization of the pedestrian intention (i.e., only purple, yellow,
and unfilled circle) does not provide any information about what
the pedestrians want to do. So this information is useless from my
point of view, because if the intention is wrongly recognized (which
can always happen) a driver might not be able to intervene fast
enough.”. Regarding improvements, participants suggested to “Hide
pedestrians behind the vehicle on the tablet” [P1] and to reduce the
visualizations for when “a dangerous situation (intention not rec-
ognized) exists” [P15]. Regarding the need for such a visualization,
[P14] mentioned:

“From my point of view, a visualization of the pedes-
trian intention makes sense, especially with the intro-
duction of the first autonomous vehicles. With this,
the fear of the vehicle can be taken away from the
driver/user and the feeling of being in control can be
transmitted.”

6 DISCUSSION
Overall, the AR three clarity states system had the lowest cognitive
load ratings, highest trust and capability ratings concerning pedes-
trian detection and pedestrians’ intention detection, and was the
most preferred option. This is in line with studies that show that
transparent systems [8, 26] as well as AR systems [18, 65] lead to
increased trust, acceptance, and perceived safety among drivers.
Participants also rated the visualization of pedestrians’ intentions
as highly necessary and reasonable at least in the introductory
phase while, in previous studies, participants did not always agree
on the need for visualizations [18]. Still, there are some points to
discuss.

6.1 Visual Aesthetics
Regarding the visual aesthetics of the concepts, various alterations
are possible. [P8] stated that “Possibly rethink the color scheme,
e.g., people crossing the street in a signal colour”. However, this
was explicitly omitted to avoid the notion of good or bad signals,
which should be reserved for critical incidents. In our simulation,
all symbols were of equal size. Depending on the certainty of the
vehicle of their pedestrian (intention) recognition, this size could
vary. Additionally, groups of people could be combined into a single
symbol to avoid visual cluttering and to, therefore, reduce cognitive
load. This would be possible, for example, for people standing and
chatting. A single person leaving the group to cross a street would
be even more highlighted with such an approach.

The Halo Effect [39] is a widely known cognitive bias based on
which positive impressions of system attributes lead to positive
impressions of other attributes. This Halo Effect seems to be not at
work: with the more sophisticated looking AR systems, the ratings
for the pedestrian and intention recognition were high but the
ratings for lateral and longitudinal control remained about the
same.

Tablet-based systems were rated significantly worse. The ques-
tion ariseswhether the visualization is the reason for this orwhether
the need for a mental mapping between dots on the simulated tablet
and the real-world is the cause for the dislike. While this cannot
be answered for sure, such a mapping is necessary even if the
visualization changed.

Adding additional crossing-behavior related properties of pedes-
trians such as age [46] were discarded with regard to cognitive
overload. While these properties must be included in the pedestrian-
assessment by the AV, we hypothesize that this information is less
relevant for the passenger.

Compared to the virtual shadow [23], our visualization intro-
duces a higher number of graphics which could lead to higher visual
clutter [13] and a less accurate estimation of where the pedestrian
is headed to. However, it is not clear that such an estimation is accu-
rately possible. Additionally, our visualization is intended for AVs,
therefore, intervention by the human passenger is not necessary.
Our system is intended to convey the capabilities of the AV instead
of aiding the driver to perform the driving task.

6.2 Pedestrian Intention Visualization for
Takeovers

While the described system is intended for highly automated vehi-
cles, benefits for situation awareness could be applied to handovers
in lower automation levels (e.g., SA Level 3 [56]). The visualization
for this could vary depending on the technical capabilities of the
system (see [62]). With lower capabilities, the current visualization
of all recognized pedestrians and their intention could be visualized.
In higher sophisticated systems, only potential threats could be
(and then more prominent) visualized. For this, lingering arrows
could be used. Another possible approach could be to include an
attention-grabbing mechanism to alert the user.

6.3 Practical Implications
For the introduction of AVs, it seems beneficial to display relevant
information to the user of the vehicle to increase trust. While the
AR systems were favored, the technical feasibility of this technique
is (today) questionable. The tablet three clarity states system was,
however, also preferred to the baseline. This could indicate that
visualizing pedestrians and their intentions in a center stack or
a HUD could increase trust. Tesla already shows pedestrians on
the street and most likely uses algorithms to recognize intention.
Therefore, the step towards visualizing the intention of pedestrians
on sidewalks seems feasible and desirable. The tablet two clarity
states system was preferred less than the baseline (i.e., no visualiza-
tion). One reason could be that the aforementioned mapping is too
arduous for the additional information gained (as the tablet three
clarity states system was ranked higher). However, we assume most
of the dislike for tablet-based systems comes from the needed map-
ping. Such visualized information should, therefore, be presented
as close to the object as possible (e.g., via a HUD).

7 LIMITATIONS
The number of participants in the studywas of moderate size (N=15).
Transferability to a real-world scenario is restricted due to the us-
age of a VR simulation. In the simulated drives, all pedestrians
are recognized up to a distance of 35 m. However, errors such as
pedestrians not being detected correctly or with an incorrect in-
tention can occur. In case of failure of the system or a (perceived)
error, overtrust in technology can lead to over-distrust. Therefore,
this experiment should be repeated with failure of the presented
visualization to investigate this effect. In addition to system errors,
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situational factors such as distracted or blind pedestrians can in-
duce uncertainty in the passenger. The impact of these factors on
passengers’ perception and trust should, therefore, be examined
in future studies. Also, subjective ratings were the sole dependent
measures.

8 CONCLUSION AND FUTUREWORK
This work showed the lack of visualization in the context of pedes-
trian (intention) recognition in current vehicles (e.g., Tesla orWaymo).
Afterwards, technology-dependent solutionswere proposed: a tablet
version that seems possible for current vehicle models and an AR
system that could be possible in the future. A controlled experiment
in VR (N=15) showed that the AR three clarity states system was
rated best. Almost all models were rated better than the baseline,
which is the current standard. In the future, the tested systems
should be investigated under other conditions: failure of the detec-
tion system should be investigated and a comparison to light-band
systems [64] should be undergone.
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