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Abstract—Many of the applications proposed for intelligent
transportation systems (ITS) need to process and communicate
detailed personal identifiable information. Examples are detailed
location traces or unique identifiers for authentication towards
paid services. Existing applications often run as monolithic black
boxes inside users’ cars. Hence, users cannot verify that appli-
cations behave as expected. We propose CANE, an application
sandboxing approach that enhances user control over privacy
properties while, at the same time, supporting common appli-
cation requirements. CANE makes privacy-relevant application
properties explicit and allows their analysis and enforcement
during application runtime. We evaluate CANE using a common
ITS use case and demonstrate feasibility with a proof-of-concept
implementation.

I. INTRODUCTION

In intelligent transportation systems (ITS), information and
communication technologies are added to traffic systems in
order to enhance traffic safety, traffic efficiency, and driver
comfort. To support novel applications, developers leverage
fine-grained sensor data from on-board sensors. Likewise,
applications are often marketed in premium segments and
require user authentication using unique identifiers. For in-
stance, current commercial car navigation systems leverage
fine-grained location and speed reporting of their users for
congestion analysis and traffic prediction.

Long-term success of such applications is dependent on how
they deal with user privacy. Recently, TomTom’s advanced
navigation service hit the news when collected data was sold
to the Dutch police to optimize speed camera placement.1 The
TomTom example emphasizes that clear contracts, but also
technical enforceability of privacy policies are quintessential.

The call for applying a privacy-by-design philosophy during
the design of distributed systems [1] is intended to address
the privacy problem by making privacy protection a first-
class citizen among design goals. However, the application
of privacy-by-design requires novel privacy-enhancing tech-
nologies (PETs) that help to fulfill privacy requirements. In
this paper, we propose such a PET: our Controlled Applica-
tioN Environment (CANE) allows fine-grained control of an
application’s behavior to enforce privacy properties.

Our proposal speeds up deployment of complex ITS appli-
cations while maintaining privacy protection. CANE provides

1See http://www.tomtom.com/page/facts for a commentary of Harold God-
dijn, TomTom CEO, on the issue.

Fig. 1. Online navigation example use case, including floating car data for
live traffic prognosis.

an application sandbox, which manages installed applications
augmented by descriptive properties, instantiates and termi-
nates them, and tightly controls communication between appli-
cation instances, as well as filesystem, network, and database
access.

A. Example application

The CANE approach is applicable to a wide range of
foreseen ITS applications. To foster easier understanding of
our concepts, we use an advanced navigation service as an ex-
ample, which uses live traffic information for routing decisions
and is only available to paying customers. Figure 1 illustrates
the information flows. The following processes characterize
our example application.

Registration. Users need to register in order to use the
advanced navigation service. Registration requires users to
enter a credit card number, which is billed monthly for service
usage. Consequently, each user is uniquely identifiable using
her payment details.

Traffic Updates. To offer routes that take into account live
traffic information, each user of the system periodically reports
current status information to the backend. Status information
contains the user id, current position, time, and velocity.

Route request and response. Users send their destination
address to the server to receive detailed navigation instructions.
Route calculation is performed on the server side, because the
server possesses the database with collected traffic updates,
which is used to optimize route proposals based on current
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traffic. Before returning the navigation instructions to the
users, the server authenticates the user with the credentials
obtained in the registration.

The example application operates on a number of privacy-
relevant information items, such as the user’s credit card data,
detailed location traces obtainable by collecting traffic updates,
and destination addresses. At the same time, these information
items only pose strong privacy issues if they can be correlated.
None of the navigation application components needs access
to all collected data items. In the following sections, we will
demonstrate step-by-step how CANE can be used to support
a privacy-friendly implementation.

In Section II, we derive common requirements of ITS
applications and resulting privacy issues that need to be
addressed. Then we introduce our controlled application envi-
ronment (CANE) in Section III. We evaluate our approach in
Section IV and conclude our paper with a review of related
work (Section V) followed by conclusions and an outlook on
future work in Section VI.

II. REQUIREMENTS ANALYSIS

Many ITS applications, including the example application
we described earlier, build on the same functionalities. In
this section, we first derive common application requirements.
We complement these requirements with privacy requirements
derived from common privacy principles [2], [3].

A. Functional ITS Requirements

Most ITS applications periodically acquire dynamic sensor
data. Using access network and possibly further infrastructure,
such as RSUs, the acquired data is sent to a service center in
the backend, for instance, a traffic management server. The
backend service may store or process received data together
with other information. For applications like the mentioned
advanced navigation service, the service provider sends a result
back to the vehicle. The following functions are sufficient to
reflect the needs of most ITS applications; therefore, an ITS
privacy middleware must support such functionality.

Create data. Acquiring sensor data such as location, road
condition, or speed to assemble floating car data and gathering
user input such as service requests.

Assemble messages. Assembling sensor data together with
static vehicle information to create floating car data and
assembling data to create service requests.

Send/receive messages Sending floating car data and event
information such as detected accidents to other vehicles or ser-
vice providers and sending requests such as route calculation
and traffic updates to service providers.

Store data Storing floating car data to perform traffic anal-
ysis, storing user information and location traces to calculate
insurance and road usage fees.

Perform custom data processing and transformation.
Creating customer-specific invoices; calculating routes, and
analyzing traffic information to predict traffic status.

B. ITS Privacy Requirements

CANE aims to protect user privacy by controlling operations
on collected information. Specifically, we focus on a number
of well-known privacy principles that guide the use of personal
information. In the following list, we describe the applied
privacy principles and resulting requirements.

Purpose specification. Applications explicitly specify the
purpose for which they process data. For instance, a naviga-
tion application should not process location data for another
purpose.

Requirement. Applications need to declare privacy metadata
such as purpose, role, or identifiers and their correctness needs
to be enforced.

Limited collection. The amount of collected data must
be limited to the minimum necessary for accomplishing the
specified purposes. Otherwise, an application could collect
additional or too detailed data outside the intended purpose.
For instance, it could generate unnecessary unique ids, which
may be used to track individuals, or a routing application may
create unnecessarily detailed tracks.

Requirement. Provide means to specify the amount of data
which may be collected and enforce this limitation. Prevent
covert channels and indirect data access.

Limited use. Execute only operations on the data that are
consistent with the purposes for which data was collected,
stored, and communicated. Otherwise, an application could
process data for purposes different from the agreed ones.
For instance, individualized advertising and recommendations
based on current location or driving behavior.

Requirement. Isolate data flow of different applications and
the data flow of different functionalities within one application.

Limited disclosure. Data must not be communicated out-
side the system for purposes other than those for which the
owner gave consent. For instance, data collected for navigation
purposes should not be used to issue speeding tickets or to
optimize speed camera placement.

Requirement. Guarantee the correctness of specified recip-
ients and limit the list of recipients to those necessary for
achieving the specified purpose.

Limited retention. Data will be retained by the system only
as long as necessary. For instance, the route request application
may not retain the start and destination location data over time
for creating long term profiles.

Requirement. Provide means to configure the lifetime of
data and application instances and enforce this limitation.

III. CONTROLLED APPLICATION ENVIRONMENT

We designed our controlled application environment
(CANE) to provide a privacy-aware application sandbox and
runtime environment for ITS. As shown in Figure 2, CANE
manages a set of applications. Such controlled applications can
either work alone, or several controlled applications can act
as components of a larger, complex service, such as enhanced
navigation services. For each controlled application, CANE
starts and terminates its instances. Instances of controlled
applications are isolated. No direct communication is allowed
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Fig. 2. Overview of CANE’s application control.

between instances and they cannot access the file system or
network stack directly. Instead, all requests to system resources
and stored data are made via CANE.

A. Application modularization support

Existing applications often make use of middleware to ease
development. As a result, applications are already modularized
into functional components. CANE supports such application
modularization, because CANE itself is built on top of an
OSGi2 framework and applications can be composed of OSGi
bundles. Moreover, application modularization helps CANE
to inspect and control information flow between different
components of a complex application. This approach shifts
away from classical firewall approaches that only control
inter-application communication. In contrast, we make all ex-
changes of personal information inside an application explicit
and controllable.

Example. The vehicle part of the navigation application
is composed of the following components, which reflect the
processes outlined in Section I-A.

1) Authentication – takes care of the authentication towards
the backend server and receives an authentication token.

2) Traffic update – sends periodic anonymous traffic up-
dates to the server.

3) Route request – sends route requests to the server and
receives the responses. Uses the authentication token
from the authentication component.

We can see that the different components require different
types of personal data to work. Most importantly, components
1 and 3 require identifiers, but don’t send frequent position
updates, whereas component 2 sends frequent updates but can
work anonymously. In the following, we will show how CANE
controls these components to achieve privacy protection.

B. Application descriptors

We use application descriptors to explicitly describe ap-
plication properties, which configure application sandboxes.
These properties configure and enforce the CANE mechanisms

2http://www.osgi.org/

described in the following sections. Namely, CANE supports
the following enforced properties.

1) identifier— a globally unique identifier for the
controlled application.

2) lifecycle— the application lifecycle type and pa-
rameters; explained in Section III-C.

3) communication-endpoints— all external entities
that the application communicates with; explained in
Section III-D.

During runtime, CANE enforces that applications operate
according to their specified properties. When new applications
are deployed, installation can be denied depending on doubtful
application properties.

Besides such enforced properties, CANE supports certified
properties. These properties describe privacy aspects, such as
the purpose of an application or its role, which cannot be
extracted from runtime behavior. Certified properties can be
added to the application descriptor, but need to be signed by a
trusted third party. This is required because it is infeasible for
CANE to verify that application behavior at runtime matches a
certified purpose. However, CANE enforces that an application
cannot alter the certified properties during runtime.

C. Lifecycle control

We use lifecycle control to reset an application’s state, that
is, its caches and collected data. Thereby, we reduce the risk of
aggregating information over time. Without lifecycle control,
the traffic information component might accumulate detailed
location traces over long periods of time. CANE supports three
different lifecycle patterns.

1) Stateless periodic — stateless periodic applications are
terminated each time they fulfilled their purpose once.
Different instances cannot directly exchange data.

2) Stateless event-driven — event-driven applications are
invoked whenever relevant data is received from a re-
mote entity. Again, it is not possible to directly exchange
and aggregate information between instances.

3) Stateful — stateful applications may run indefinitely and
could accumulate a large amount of data. This pattern
should only be used if an application needs to perform
calculations on data over a longer period of time.

These lifecycle patterns support both separation in time and
between data subjects. Periodic applications in the vehicle
cannot aggregate personal information, such as location traces.
Event-driven applications on the server side cannot correlate
data of different data subjects, because each incoming request
is handled by a different application instance.

Example. The traffic update component does not need to
keep state between invocations, but it should run periodically
to keep the traffic information in the backend up to date. There-
fore, the component runs with a stateless periodic lifecycle.

D. Communication endpoint control

We require that controlled applications explicitly declare all
their external communication endpoints. Instead of specifying
a simple list of addresses as possible endpoints, we introduce
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an abstraction level. Applications specify identifiers for com-
munication endpoints ei and how they map to IP addresses or
URLs as tuples:

ei := < ID i(↔ PK i), IP i > .

Here, ID i uniquely identifies a communication endpoint and
IP i specifies a network endpoint, such as a TCP/IP address
and port. Inside application code, remote connections can
only be initiated using the identifiers ID i. CANE then maps
the identifier to the corresponding network endpoint. This
prevents malicious application providers from communicating
with entities that are not explicitly specified.

To avoid malicious mapping entries, identifiers are bound
to corresponding cryptographic public keys PK i, which are
used to encrypt any communication. PK i is signed by a TTP,
attesting the key’s identifier. This mechanism prevents covert
communication with arbitrary communication partners.

Thus, collected personal information can only be sent to
remote entities that are explicitly stated. Moreover, users
can inspect the stated remote entities and selectively forbid
communication if they suspect that certain remote entities
should not receive their information.

Example. The authentication component should only com-
municate with the navigation server in the backend. To pre-
vent any personal information, possibly including credit card
numbers, to a third party, the navigation server is the only
configured remote endpoint. All other remote communication
is forbidden for the navigation application.

E. Controlled data processing

ITS applications often collect and assemble data to form
outgoing messages (see Section II-A). To enable privacy eval-
uation, we need to infer the contents of the data. Otherwise,
information could leak through covert channels. In general,
this is hard, because there are endless possibilities to introduce
covert channels. The worst case assumption is that all previ-
ously requested data is potentially contained in every outgoing
packet. However, working with that assumption would result
in most communication being blocked by CANE. Therefore,
we introduce an additional mechanism for applications that
want to send information but do not need to process it.

Example. In the navigation application, the traffic updates
component periodically sends location information to the
central server. However, it does so independently of actual

data values. Thus, we can use controlled data processing to
enhance user privacy. Figure 3 shows the information flow for
this example. A controlled application requests latitude (lat)
and longitude (lon), but it declares that it does not need to
access the values. CANE intercepts the data items {lat, lon}
and replaces them with a placeholder #1. Internally, CANE
stores a mapping #1 := {lat, lon}. When the application wants
to send a data item corresponding to a placeholder, it includes
the placeholder in the outgoing data packet. CANE then looks
up the placeholder and replaces it with the actual data item.
As a result, CANE can enforce that the data item in the
outgoing packet has not been abused as a covert channel.
For the example application, CANE enforces that the status
field added by the application does not contain any encoded
form of the requested latitude and longitude. Together with a
stateless lifecycle (see Section III-C), this mechanism allows
to make detailed assumptions about the information contained
in outgoing packets.

As another example, consider the route request component.
It needs to authenticate towards the backend before using
the navigation service. However, the component does not
need to know the payment details. Therefore, controlled data
processing is used to add the authentication token acquired
by the authentication component to outgoing communication.
As a result, the route request component does not learn the
identity of the user.

In combination, CANE’s mechanisms allow to minimize in-
teraction between application components, inspect the data that
is exchanged, and guarantee that data is only communicated
to known, trusted external components.

IV. ANALYSIS AND IMPLEMENTATION

In the following, we discuss how CANE fulfills the privacy
requirements identified in Section II and describe the imple-
mentation of our CANE prototype.

A. Privacy analysis

The goal of CANE is to guarantee that personal informa-
tion is processed in a way that is transparent to the user
and adheres to the principles listed in Section II-B. Using
the advanced navigation application, we outline how CANE
mitigates privacy issues and implements the introduced privacy
requirements.

If the purpose of an application is unknown, we may not de-
cide whether an application performs arbitrary actions on data.
CANE implements application descriptors (Section III-B),
which are authenticated using digital signatures. Therefore,
the purpose of an action performed by an application is always
reproducible. The application purpose becomes verifiable for
the user and, for instance, location data cannot be abused for
unknown purposes.

If the collection of data is not limited, applications may
collect more data than necessary for accomplishing their
purpose. CANE prevents such misuse using lifecycle control
and controlled data processing (Sections III-C and III-E).
Lifecycle control ensures that applications cannot collect large



sets of data. For instance, the route request component’s state
is reset after each invocation. Therefore, the application cannot
accumulate profiles of common user destinations. Likewise,
controlled data processing ensures that the application, which
needs to authenticate the user as a paying customer, still cannot
gain access to the stored credit card information.

If the use of data is not limited, application providers
may use personal information for different services they offer.
CANE implements an approach for modularizing applications
(Section III-A). Thereby, developers must explicitly separate
information flows within one application. CANE isolates these
information flows by controlling the involved modules. For
instance, if the provider of the advanced navigation service
wants to offer targeted advertising, it needs to be implemented
as a separate application module. In consequence, location data
that is collected within the traffic updates module cannot be
reused directly in another module which realizes personalized
advertisements.

If the disclosure of data is not limited, application providers
may transfer collected data to external entities without
the user’s consent. To prevent such arbitrary communica-
tion, CANE supports communication endpoint control (Sec-
tion III-D). In our example, both the traffic updates and route
request modules cannot communicate to any servers except
those explicitly specified in their application descriptors. In
this case, the server of the navigation service provider.

If the retention of data is not limited, applications may
collect large sets of data for longer periods of time. Such
data collection is prevented by CANE’s lifecycle control
(Section III-C). For instance, the route request module is
terminated after each route request and its state is reset.
Therefore, the application cannot collect sets of different
destinations to build user profiles.

In summary, CANE make information flow between dif-
ferent applications and application components in the vehicle
explicit due to modularization. CANE minimizes exchange
of information between application parts as much as pos-
sible. Due to the controlled data processing concept based
on placeholders, we enable applications to use information
in communication without actually accessing the information
themselves. For example, when information is only relevant
in the backend. Beyond vehicle borders, we tightly control all
communication endpoints of applications to ensure that they
only exchange information with authenticated and authorized
backends.

B. Prototype implementation

We implemented CANE based on OSGi and the Apache
Felix3 OSGi implementation. CANE, as well as all managed
applications, are provided as OSGi application bundles. Using
OSGi as a basis enables us to extend and reuse existing
functionality. We use permissions to ensure that application
bundles can only directly interact with CANE and not with
the filesystem, network, or any other installed OSGi bundles.

3http://felix.apache.org/

Likewise, we extend Java manifest files to support application
descriptors. We integrated CANE with a trusted platform
module to ensure the integrity of the CANE framework [4].

We tested our CANE implementation using a number of
common ITS application tasks as defined in Section II-B to
verify that no substantial delays in data processing are in-
troduced. After 500 runs of a stateless application, an average
delay of 463±4ms per run is introduced by CANE.4 However,
encryption and remote communication make up the largest
part of this delay (411 ± 5ms). Of the remaining 52 ± 3ms,
which are introduced by the CANE core mechanisms, lifecycle
control is responsible for the largest share. This is because
we use the stock OSGi lifecycle management in our prototype
implementation. To improve scalability, the Java reflection API
could be used to clear application state (i.e., object instance
variables) without completely re-loading the corresponding
OSGi bundle.

V. RELATED WORK

Application control environments based on the general
concept of application isolation have been developed for
different domains. For example, the Java security architecture
and sandbox [5] or sandboxes for native code execution
by web applications [6]. The Capsicum framework [7] sup-
ports modularization of UNIX applications to achieve fine-
grained application control based on sandboxing and access
capabilities for application components. These approaches are
primarily focused on security and do not explicitly consider
privacy aspects.

However, there is active research on privacy protection
and privacy enhanced execution for mobile applications on
smartphones. Android introduced a declarative permission
model [8], which informs users about required resource access
and has been extended to support selective permissions [9].
However, in contrast to CANE, once an application gains
access to a resource, the use of acquired data is not controlled
further. Thus privacy consequences are especially unclear
for location-based services that require location and Internet
access [10]. AppFence [11] supports substitution of sensi-
tive information with falsified data or tracking what data
an application requested and subsequently blocking outgoing
communication. Our controlled data processing provides more
flexibility as applications can also use information without
accessing the specific values. The privacy guaranteeing exe-
cution container (PGEC) [12] restricts data access locally and
limits communication with external entities according to an
agreement between user and provider.

In contrast, privacy approaches in the ITS domain have
mostly been proposed for specific applications so far. For
example, PriPAYD [13], [14] enables privacy-friendly pay-
as-you-drive insurance by keeping location traces locally and
using a commitment scheme to proof accuracy of calculated
fees. PrETP [15] is a similar approach for road charging
that uses additional spot checks to validate completeness of

4Tests were performed on a 2.66 GHz CPU; 1 GB of RAM.



fee calculations. Milo [16] extends PrETP with secure two-
party computation to prevent drivers from learning where
spot checks are located. VPriv [17] generalizes aggregated
reports, commitments and spot check mechanisms for such
location-based ITS in a kind of toolbox. However, these
approaches do not provide explicit privacy control for drivers
and vehicle owners and cannot handle multiple different
applications simultaneously. Ginger [18] is a more generic
access control framework for telematics applications based on
isolated execution, different trust levels for applications, and
support for generic privacy policies.

CANE also uses application isolation and builds on ideas
from mobile application control. However, CANE extends
existing concepts by focusing on controlling application life-
cycle and behavior with an emphasis on explicit declaration of
communication endpoints and enabling applications to process
data without learning specific values.

The PRECIOSA project developed a privacy architecture
based on trusted computing for the enforcement of dynamic
privacy policies in distributed ITS [19], [4]. Such a system can
be used to prevent tampering with the CANE environment and
was considered in the CANE implementation.

VI. CONCLUSION

The proposed controlled application environment (CANE)
has been tailored specifically to support privacy in ITS applica-
tions. Following a declarative approach, privacy properties of
applications can be evaluated without requiring dynamic user
interaction during operation. In the application descriptor, we
support definition of an application’s execution requirements
(e.g., statefulness) as well as privacy semantics (e.g., applica-
tion purpose). Applications must also declare communication
endpoints explicitly to prevent data leakage to undesired third
parties. CANE further employs controlled data processing
with placeholders to enable application components to include
certain data in outgoing messages without learning specific
values (e.g. location data). In combination with application
modularization, CANE and its features can reduce the risk
of potential privacy leaks in distributed ITS applications.
Therefore, CANE can be used to support, and be integrated
with, a privacy-aware design process for ITS applications [20],
[21].

We showed how CANE can be utilized in advanced nav-
igation systems to enforce privacy properties while making
this enforcement verifiable and demonstrated the effectiveness
of our CANE implementation. We are confident that CANE
is versatile enough to provide privacy benefits for a wider
range of ITS applications and plan to study this in future
work. However, CANE is currently limited in its ability to
introspect application behavior. In oder to enhance privacy
analysis capabilities of CANE, we are working on integrat-
ing static analysis of application components at installation
time. We are also investigating the potential of expressing
certain controlled applications as semantically interpretable
statements to facilitate comprehensive privacy analysis.
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