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ABSTRACT

Searching for misplaced keys, phones, or wallets is a common
nuisance. Find My Stuff (FiMS) provides search support for
physical objects inside furniture, on room level, and in mul-
tiple locations, e.g., home and office. Stuff tags make ob-
jects searchable while all other localization components are
integrated into furniture. FiIMS requires minimal configura-
tion and automatically adapts to the user’s furniture arrange-
ment. Object search is supported with relative position cues,
such as “phone is inside top drawer” or “the wallet is between
couch and table,” which do not require exact object localiza-
tion. Functional evaluation of our prototype shows the ap-
proach’s practicality with sufficient accuracy in realistic en-
vironments and low energy consumption. We also conducted
two user studies, which showed that objects can be retrieved
significantly faster with FIMS than manual search and that
our relative position cues provide better support than map-
based cues. Combined with audiovisual feedback, FiMS also
outperforms spotlight-based cues.
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INTRODUCTION

An average person misplaces up to nine items per week, most
frequently mobile phones, keys, and sunglasses, and spends
about 15 minutes per day searching those objects [3]. Yet,
in contrast to searching information online, locating phys-
ical objects is rarely supported by technology. Simplistic
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key finders exist which emit acoustic or visual signals to aid
search. More advanced variants [18] use Bluetooth tags to lo-
cate objects with smartphone apps. However, search support
is limited to the user’s proximity in such approaches. Mo-
bile phones can be localized without physical proximity, but
require GPS and cellular network connectivity, which may
not be available indoors. As a result, indoor localization and
search support have received considerable attention in the re-
search community.

In general, a support system for physical-object search must
balance search range, feasibility, and ease of use, resulting in
a number of requirements. Localization of a sought-for ob-
ject should not require the user’s physical proximity in order
to also support search in remote places (user-independent lo-
calization). Localization of objects should be robust against
occlusion and inclusion to provide search cues that also aid
retrieval of covered objects, or objects placed inside furni-
ture. In general, intuitive search cues are required that effec-
tively guide users in retrieving sought-for objects efficiently,
and preferably faster than with manual searching. A search
system should be easy to setup, function without manual cali-
bration and making objects searchable with the system should
be easy and unobtrusive (seamless configuration). To ensure
practicality, components should have low energy consump-
tion and equipment costs, especially those attached to, or in-
tegrated into searchable objects (energy and cost efficiency).
Finally, objects should only be locatable and searchable by
their respective owners to prevent abuse (privacy and secu-
rity). At the end of the paper, we discuss how our system and
related work match up to these requirements.

In this paper, we propose the indoor search system Find My
Stuff (FiMS). Our main contribution is the concept of sup-
porting object retrieval with relative position cues instead of
highly accurate localization. In our system, search compo-
nents are integrated into furniture and objects are located in
relation to such smart furniture. The combination of multiple
equipped furniture pieces facilitates advanced relative posi-
tion cues, such as “the wallet is between couch and dresser,
near couch.” We envision that users purchase furniture al-
ready equipped with FiMS components, which can then be
setup in the home with minimal configuration. Our system
is robust against furniture rearrangement and further supports
object localization in multiple environments in a robust sys-
tem.



g (if outside furniture) )
M

- 2b searchRequest &
2 ™ Y ™~ WiFi
% — ‘ ‘ FP S (0
4 Zgpee
‘,L_; 24 StarterKit g5ee
¥
2 s (a
l 43 RFID
[
= <7 X
4 3 beacons I =
/) | 5] P
2a read
(if inside furniture) Stuff
Server SmartFurniture

Figure 1: FiMS architecture: When the client sends a search
request, the server starts the search process. SmartFurniture
components locate Stuff modules with RFID and ZigBee.
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Figure 2: Search interface providing a relative position cue.

We first describe the concepts and architecture of FiMS, be-
fore presenting our prototype system along with a functional
evaluation, showing the viability of our approach. We fur-
ther conducted two user experiments in which we analyzed
the effectiveness of FIMS’ search cues in comparison to man-
ual search, as well as to other cues proposed in related work,
which will be discussed afterwards. We conclude with a dis-
cussion of advantages, limitations, and potential extensions
of our approach.

PHYSICAL-OBJECT SEARCH WITH FIMS

Our system consists of multiple components (see Fig. 1). A
user’s objects are managed by a server, which provides a
Web-based search interface and coordinates the search pro-
cess. Figure 2 shows the FiMS search interface with the re-
sult of a search query for an object (“wallet”). The object’s
position is indicated by a relative position cue.

Physical objects are made searchable with FiIMS by equip-
ping them with a Stuff tag, which may be attached to or
integrated with the object. Figure 3 shows our Stuff proto-
type. Stuff tags consist of a ZigBee module, a passive RFID
transponder, marginal processing capabilities, and a battery.
Stuff tags must be small and have low energy consumption.

FiMS locates objects with specifically equipped furniture
pieces, called SmartFurniture. Our SmartFurniture supports
localization inside itself and in its proximity. Inside furni-
ture, passive RFID is used to locate objects on a compart-
mental level corresponding to the furniture’s layout, e.g., in-
side different drawers to enable drawer-specific localization
(see Fig. 4). Outside furniture, FiMs provides relative posi-
tion cues in relation to furniture. For this purpose, all Smart-
Furniture pieces in a FIMS environment form a ZigBee mesh
network and each SmartFurniture measures a Stuff’s Zig-
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Figure 3: Stuff prototype based on Arduino.
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Figure 4: SmartFurniture prototype with three directed Zig-
Bee antennas and Arduino controllers in the middle drawer.

Bee signal strength with up to four directed antennas (front,
left, right, behind). Each FiMS environment has a privileged
SmartFurniture, called StarterKit, that additionally coordi-
nates the local mesh network and supports registration of new
objects. A FiMS environment can range from a single room
with one StarterKit to a large apartment with lots of Smart-
Furniture. Server and SmartFurniture communicate via WiFi,
which has the advantage that existing communication infras-
tructure can be leveraged. While the server could also reside
locally, Internet access is required to enable users to search
for objects when not at home or in other authorized environ-
ments, e.g., the office or a friend’s house. Next, we explain
the search process in more detail, before outlining registration
of new furniture and searchable objects.

Hierarchical Search

Energy and privacy implications prohibit continuous track-
ing of objects. Instead, FiMS employs a hierarchical search
model to process a search query for a specific object. The
server sequentially triggers different search layers until the
sought-for object has been located, at which point the search
process is stopped and the user is presented with a retrieval
cue provided by this layer. Search layers are ordered to fa-
vor localization methods that provide quick results with no
or little energy consumption. Localization methods consum-
ing more time and energy are only used if previous layers re-
turned no result. As layers are independent from each other,
the hierarchical model can be easily extended by adding ad-
ditional localization methods as new layers.

Our current search model supports four layers. First, the
server tries to contact the object’s Stuff at a cached position.
If a cache entry exists, the server tries to locate the Stuff with
the same localization method. If unsuccessful, the search is
extended to the insides of SmartFurniture near the last known
position, using RFID. If the object cannot be located in this
manner, SmartFurniture is used to locate the object in the en-
vironment with ZigBee. If also unsuccessful, the search is ex-
tended to other environments associated with the user, such as



other rooms in the apartment, the user’s office, or authorized
environments of friends. In external environments, the search
process follows the same steps as described above. Search
order of external environments could be prioritized based on
heuristic models of the user’s previous searches to reduce en-
ergy consumption. Here, we focus on search in one environ-
ment and leave extensive consideration of external environ-
ments for future work.

As mentioned above, localization within SmartFurniture is
based on RFID. Each SmartFurniture is equipped with a num-
ber of low-range RFID readers, corresponding to a furni-
ture’s shape and function, e.g., to distinguish between mul-
tiple drawers or locate objects placed on top of surfaces in the
case of tables or shelves. The server sends an RFID search re-
quest with the Stuff’s identifier to a specific SmartFurniture, if
a cached position exists, or sequentially to all SmartFurniture
in an environment. As Stuff modules have a passive RFID
transponder, answering the request consumes no energy of
the Stuff and is fast. When using RFID, SmartFurniture de-
tect all Stuff inside them, and their position is cached by the
server. Therefore, the server likely already has a cached posi-
tion of an object if it is inside any SmartFurniture. The search
is terminated as soon as the sought-for Stuff is located with
RFID by a SmartFurniture.

On the next layer, ZigBee is used to locate the object in the
environment. In contrast to RFID search, the server addresses
the sought-for Stuff directly. The request is sent out by all
SmartFurniture in the specific environment. If the sought-for
Stuff receives the request, it sends a beacon sequence, which
is received by one or more SmartFurniture in proximity. All
other Stuff in the environment remain in sleep mode to con-
serve energy. The relative positioning algorithm for ZigBee
localization is detailed below.

Relative Positioning with ZigBee RSSI

Localization with ZigBee encompasses SmartFurniture mea-
suring the received signal strength from sought-for Stuff and
the server estimating the Stuff’s relative position, as shown in
Figure 1 (steps 1, 2b, 3 & 4). First, the StarterKit receives
a search request for the sought-for Stuff from the server via
WiFi. The request is disseminated in the local ZigBee mesh
network by the StarterKit, other SmartFurniture, and other
Stuff modules, to the sought-for Stuff module. If the sought-
for Stuff receives the request, it broadcasts a sequence of bea-
cons. Each SmartFurniture that receives one or more beacons,
measures the RSSI of each received message with all its di-
rected ZigBee antennas, e.g., three antennas in the case of the
dresser shown in Figure 4. RSSI measurements are multiplied
with an antenna-specific attenuation factor, which is precon-
figured by the furniture manufacturer to account for furniture
characteristics, such as wall thickness and used materials. To
compensate for variations caused by external influences [21],
the median RSSI of all received beacons per antenna and the
number of received beacons are used to weight results in sub-
sequent calculations. In our tests, 6 beacons proved to be
a reasonable compromise between robust results and search
speed. From these 6 beacons per directed antenna, the me-
dian RSSI value is determined. Next, the median RSSI values

of all antennas of one SmartFurniture are sorted. The high-
est median RSSI determines the direction estimate which is
reported to the server by a SmartFurniture. Each antenna’s
RSSI measurements are also included to enable consistency
checking by the server.

The server receives direction estimates from one or more
SmartFurniture. In order to determine the Stuff’s position in
relation to the SmartFurniture pieces, the server maintains a
connected, bidirectional furniture graph G=(FE,V’). Each
v; € V represents a SmartFurniture, which is connected with
up to four neighbors—the closest SmartFurniture pieces to
the left, right, in front, and behind. Neighbor relations be-
tween two SmartFurniture modules are always bidirectional.
They are determined in the pairing process, described below,
when joining a local environment. Note that a SmartFurniture
does not know its actual position in the environment, but the
orientation (left, right, front, back) of each of its antennas,
which can be preconfigured for furniture pieces with a pre-
dominant orientation. For example, the front-facing antenna
in a dresser is always the front antenna, regardless of how the
dresser is positioned in a room. Thus, each SmartFurniture
can report direction estimates for a Stuff’s position based on
its antenna directions without having to know the exact posi-
tion and orientation of itself.

The server recursively calculates the Stuff’s relative position
with its furniture graph, and the received RSSI values and di-
rection estimates. By considering measurements of multiple
SmartFurniture, and each SmartFurniture contributing mul-
tiple median RSSI values (one per directional antenna), the
positioning algorithm is robust against erroneous RSSI val-
ues and temporary signal distortion. Currently, the resulting
relative position cue is either a single direction (right of, left
of, front of, behind), if only one SmartFurniture received the
Stuff’s beacons, or a between X and Y near X/Y relation for
two SmartFurniture pieces. Theoretically, position cues could
also relate to more than two furniture pieces. However, re-
porting concise and helpful cues for multiple furniture pieces
requires further research. Note that while position cues only
relate to the two closest SmartFurniture, direction estimates
from all SmartFurniture that received the Stuff’s beacons are
considered in the localization process, which increases posi-
tion accuracy. The resulting relative position cue is returned
to the user together with a stored image of the sought-for ob-
ject, as shown in Figure 2.

Balancing Configuration and Security

Two main configuration tasks arise in our system: registering
new Stuff and integrating or rearranging SmartFurniture. The
challenge is to minimize manual configuration effort while
providing sufficient security to prevent tracking of users or
unauthenticated localization of their objects. FiIMS leverages
spatial proximity of RFID tags and readers to reduce man-
ual configuration to a minimum. The StarterKit in a FiMS
environment not only serves as ZigBee coordinator (other
SmartFurniture are ZigBee routers), but also has a registra-
tion plate, consisting of an additional ZigBee module and
RFID reader, for the registration of new objects. User authen-
tication is realized with personalized RFID tags; an admin tag



is capable of generating user tags and pairing new SmartFur-
niture.

Stuff registration

Figure 5 shows the process of registering a new object with
FiMS. The ZigBee network (N;) of Stuff and SmartFurni-
ture is encrypted (AES-128) to prevent eavesdropping. Thus,
the Stuff of the new object must first obtain the network key
to join N;. For this purpose, the user first authenticates at
the StarterKit with a personal RFID tag. If the user has the
required privileges, the StarterKit switches into registration
mode, indicated by a blinking LED. The StarterKit opens a
separate unencrypted ZigBee network Ny, which an unreg-
istered Stuff joins automatically. StarterKit and Stuff estab-
lish a shared key, which is used to encrypt the subsequent ex-
change of configuration information. To prevent eavesdrop-
ping on key establishment, the range of Ny can be physically
restricted, e.g., by reducing transmission power.

Once a shared key has been established, the StarterKit ob-
tains the Stuff’s ZigBee address, RFID ID, and receives the
Stuff’s default name and description. If the Stuff is directly
embedded in an object, the description can provide the ob-
ject’s semantics. A camera mounted above the registration
plate also takes a photo of the new object. All obtained in-
formation is stored by the server. The StarterKit provides the
Stuff with the Personal Area Network (PAN) ID and encryp-
tion key for network Nj and triggers a restart of the Stuff
module, which then leaves Ny and joins [V;. The registration
process is transparent for the user, who only places a Stuff-
tagged object onto the StarterKit’s registration plate and waits
for visual feedback (green LED) that the Stuff has been regis-
tered successfully. Afterwards, the user can adjust the Stuft’s
details via the server’s Web interface.

SmartFurniture pairing

The process of adding new SmartFurniture is initiated by
swiping the admin RFID tag of the local environment over
a labeled position on the new SmartFurniture. From the ad-
min tag ID, the new SmartFurniture derives the SSID and en-
cryption key of the local WiFi network (e.g., WPA2-PSK).
After the new SmartFurniture joins the WiFi network, it is
detected by the FiMS server which requests additional infor-
mation preconfigured by the furniture manufacturer, includ-
ing the furniture type and model, as well as information about
integrated RFID readers, e.g., their association with a specific
drawer. The server sends the PAN ID and encryption key of
ZigBee network N;. When the SmartFurniture has joined /Ny,
the server initiates the pairing process to determine the new
SmartFurniture’s position in relation to other present Smart-
Furniture. The new SmartFurniture sends broadcasts consec-
utively through all its directed antennas. Similar to Stuff lo-
calization, existing SmartFurniture measure RSSI with their
directed antennas. The server obtains all RSSI measurements
and updates the furniture graph by determining the new fur-
niture’s relative position in relation to existing SmartFurni-
ture, or creates a furniture graph if no other SmartFurniture
is in range. For diagonal alignments of SmartFurniture (as
in Fig. 8b), pairing may result in two correct relations, since
two orthogonal antennas might measure nearly the same RSSI
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Figure 5: Registration of a new object with Stuff module.

value. The same process is also used to recalibrate the furni-
ture graph upon environmental changes, e.g., when SmartFur-
niture has been moved. Recalibration can be triggered peri-
odically by the server, manually, or by accelerometers in the
SmartFurniture.

This pairing and calibration approach has the advantage that
meaningful SmartFurniture relations can be derived and uti-
lized for object localization without requiring a ground truth,
such as a room map or explicitly specified furniture positions.
Pairing is only based on the orientation of directed anten-
nas of involved SmartFurniture pieces to each other, without
knowing a SmartFurniture’s actual position. The purely re-
lational information maintained in the furniture graph is suf-
ficient to provide meaningful search cues, because users are
able to map the relative search cue onto the physical furniture
arrangement.

PROTOTYPE AND FUNCTIONAL EVALUATION

We built a fully functional prototype of FIMS based on Ar-
duino. Our current setup [7] consists of two SmartFurniture
(a StarterKit and a dresser) and multiple Stuff modules. We
used XBee Series 2 modules for ZigBee; for RFID, we used
125kHz readers and World Tag passive RFID transponders.

Our Stuff modules (see Fig. 3) consist of an Arduino Pro
Mini, a passive RFID tag, and an XBee module with inte-
grated antenna on a breakout board. The Stuff prototype is
further equipped with a bright LED and a buzzer to option-
ally guide users with audiovisual feedback. Our SmartFur-
niture prototype is a dresser (see Fig. 4). Each of the three
drawers is equipped with an RFID reader and a blue LED
to support retrieval of objects inside drawers. Opening the
drawer to take out the sought-for Stuff switches the LED back
off. Except for these LEDs, the smart dresser looks like reg-
ular furniture. In the middle drawer, we added three planar
four-quad antennas with reflectors [1] for ZigBee localiza-
tion, pointing left, right and to the front. No back antenna
was added as drawers are commonly placed against walls.
The radiation pattern of these antennas (see Fig. 6), measured
while mounted in the drawer, shows that they actually re-
ceive signals from different directions. Higher signal strength
changes exactly at 45° between front and left antenna. Be-
tween front and right antenna, this point is slightly shifted to
-40°, due to manufacturing variations. Due to the drawer’s
metal bearing slides, the gain of the right and left antenna are
lower compared to the front antenna, which is compensated
in Stuff localization with a negative attenuation offset for the
front antenna. Two Arduino Mega boards handle localization
and control the XBee modules, RFID readers, and LEDs of
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Figure 6: Radiation pattern of the dresser’s three build-in an-
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the SmartFurniture. A WiFi interface handles communica-
tion with the server. While the StarterKit can be integrated
into normal furniture, our current model is a basic rectangu-
lar stand equipped like the dresser. One XBee module acts as
ZigBee coordinator. In addition, the StarterKit has a registra-
tion plate on top, containing the additional XBee module and
RFID reader for Stuff registration.

Position Accuracy Experiments

We performed multiple experiments to evaluate positioning
accuracy and reliability of our ZigBee-based relative posi-
tioning approach. To provide realistic interference, experi-
ments were performed in a meeting room (55 m?) furnished
with tables, chairs, book shelves, couches, plants, and an in-
teractive display (see Fig. 7). For our measurements, we par-
titioned the room into 50x50cm cells (13x16 cells). Due
to the book shelves and a concrete pillar on the right side,
8 cells had to be excluded. We also excluded the cells of
the SmartFurniture pieces, as they are not relevant for Zig-
Bee localization. For each of the remaining 198 cells, we
performed 3 independent search queries without caching, re-
sulting in 3,564 RSSI values and 594 result cues per exper-
iment. The result of each query is calculated by 6 differ-
ent RSSI measurements as part of our search algorithm. In
the middle of each cell, a Stuff module was placed at table
height (=80cm). In multiple preliminary experiments we
found almost no differences between table height and posi-
tioning on the floor. The ZigBee nodes operated on channel
15 (2.425 GHz), which was automatically selected by the co-
ordinator node based on energy scans of available channels.
Thus, nearby WiFi access points on channels 1 (2.412 GHz),
6 (2.437 GHz), and 11 (2.462 GHz) did not cause notable in-
terference. Further mitigation strategies have also been pro-
posed to improve ZigBee operation in busy channels [13].

Positioning accuracy in opposing arrangement

In the first experiment two SmartFurniture pieces were fac-
ing each other (see Fig. 8a). The preceding pairing process
correctly determined the furniture graph, indicating that the
SmartFurniture pieces were in front of each other. Thus, we
compared obtained search cues against the ground truth de-
rived from the furniture graph (left part of Fig. 8a), which
provides the expected relative position cue for each cell. The
solid lines separate the three main areas left, right and in front

Figure 7: Furnished meeting room used for positioning accu-
racy experiments and first user study.

of dresser (D) and StarterKit (SK) by 45° each. In the mid-
dle, between D and SK, we distinguish two subareas which
indicate whether an object is near D or near SK.

The right part of Figure 8a shows the result accuracy of the 3
search queries per cell. A fully colored cell indicates consis-
tent results over all 3 queries (98%). A differently colored cell
border indicates that 1 result deviated and how, e.g., measure-
ments for cell L4 returned 2 correct and 1 wrong result (left of
D). Green cells indicate a correct position cue. Resulting cues
in border regions (e.g., on the line between left and front ar-
eas) were rated correct when they matched one of both areas
in the ground truth. Red cells indicate incorrect results, e.g,
in cell G1 the resulting cue was between dresser and Starter-
Kit, near dresser although Stuff was placed left of D. Orange
cells indicate coarse results, which deviate from the ground
truth, but could still support retrieval. For instance, the result
of cell M7 was right of dresser, which could still help users
when frontally facing the dresser. 87% of all cues were cor-
rect (green). Coarse results (orange) were given in 47 cases,
incorrect results (red) in 34 cases of 594 total. The incor-
rect results around the middle table are likely caused by the
surrounding chairs, as some cell centers were very close to
a chair’s backrest, which could have blocked the signal. In-
terferences caused by the room arrangement or windows are
also possible reasons, as some incorrect results are consistent
in both experiments.

Positioning accuracy in diagonal arrangement

We further considered a diagonal arrangement of StarterKit
and dresser (see Fig. 8b). The relation in the furniture graph
was determined as StarterKit left of dresser and dresser right
of StarterKit, due to the diagonal alignment. Thus, the ground
truth (left part of Fig. 8b) covers a between area. Results were
consistent over all 3 queries for 97% of cells. In 85% of the
searches, FIMS returned a correct position cue (green). Of the
594 resulting cues, there were only 23 incorrect (red) and 61
coarse results (orange). The results in Figure 8b show three
clusters of coarse results (=1-1.5m?). Shading by the TV,
and refraction and reflection from the window front and table
end opposite of the StarterKit are likely reasons.

Positioning accuracy with obstructing person

The previous experiments show that unequipped furniture
(e.g., chairs, tables, and shelves) had only a marginal effect
on the accuracy of relative position cues in our setting. To as-
sess the influence of persons in the room on position accuracy,
we performed another experiment using the same opposing
arrangement and ground truth as shown in Figure 8a. Rather
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Figure 8: Ground truth (left) and positioning accuracy results (right) for two arrangements of two SmartFurniture pieces: dresser
(D) and StarterKit (SK). A Stuff was placed in the center of each cell and 3 independent search queries (3 x 6 RSSI measurements)
were performed per cell. Green shows correct, red shows wrong, and orange shows coarse results. A fully colored cell indicates
the same result for all 3 queries. A colored cell border indicates that 1 query result deviated and how.

than measuring all cells again, we selected 3 Stuff positions
at cell boarders directly in front of the dresser (I3/14, 15/16,
17/18). For each Stuff position, a person (male, 1.80 m, 68 kg)
was placed at 5 positions, resulting in 15 combinations. The
person stood directly in front of D (at I1/12 and I3), sat on a
chair between D and SK (at I5 and 19), and stood directly in
front of SK (at I12). At each Stuff position we performed 3
queries, resulting in 45 position cues of which 98% were con-
sistent per cell and 91% correct. Of the 45 cues, there were 4
coarse and no wrong results. Coarse results occurred only if
the person stood directly in front of the StarterKit and Stuff
was placed further away, e.g., for I7/I8 the cue was between
D and SK, near D instead of [...] near SK. Further analysis of
RSSI values revealed that the obstructing person caused the
ground truth area to shift towards him by ca 0.5 m, but did not
cause wrong results.

Stuff Energy Consumption and Size

To be practical, Stuff modules must be able to operate on bat-
teries for long times and be sufficiently small. Our current
Stuff prototype consists of off-the-shelf Arduino components
to facilitate flexible experimentation with different hardware.
However, these ready-made components increase form factor
and energy consumption, which could be reduced by the de-
velopment of a dedicated board with integrated components.
While the current Stuff prototype is smaller than a box of
matches (see Fig. 3) and could already be used as a key fob,
an integrated Stuff board could be the size of a large coin,
fitting unobtrusively into a wallet.

Our hierarchical search model ensures that energy require-
ments of Stuff are quite low, because the passive RFID tag
requires no energy source, and the Arduino and XBee com-
ponents can be in sleep mode, only waking up when be-
ing queried. The XBee module polls for new data every
5s and wakes the Arduino board if data is available. We
measured Stuff’s energy consumption in lh with a preci-
sion source measurement unit. Stuff consumed 3.82 mWh;
1.48 mW while sleeping, 78 mW while polling. Reacting to
a search request consumes 0.445 mWh. Thus, 1 day standby
including one search request would require 92.12 mWh. Us-
ing two coin cells (2x 1000 mAh 3 V), our Stuff prototype can

operate for at least 2 months, under the assumption that it is
being searched once a day on average.

USER EVALUATION

The results of the position accuracy experiments shows that
our approach and prototype are robust to use in realistically
furnished settings and that the effects of occluding persons
are negligible. We further performed two independent user
studies to assess the effectiveness of the provided search sup-
port for the retrieval of objects.

User Study 1: Comparison with Manual Search
We conducted a user study to compare the effect of search
support with FiMS on a user’s search time compared to man-
ually searching for objects. We were particularly interested in
determining if the measured position accuracy (85-87%) was
sufficient to reliably assist users in object retrieval.

Setup and Procedure

In order to be able to relate position accuracy to search per-
formance, we conducted the experiment in the same setting
as the accuracy measurements, the meeting room shown in
Figure 7, with StarterKit and dresser facing each other (see
Fig. 8a for ground truth and position accuracy). We per-
formed a between-subjects experiment, in which each partici-
pant was randomly assigned to search with FiMS or manually
and had to perform 5 search tasks, in which a Stuff-tagged
wallet was hidden at different locations.

We chose realistic locations for a lost wallet that covered ar-
eas with varying search cue accuracy (see Fig. 8a). The wallet
was hidden near a trash bin (A12), behind the plant (L2), un-
der the couch (O12), under the interactive display (M2), on
top of a chair (I5). The wallet was placed on the floor, except
for the chair. It was never directly visible, but always peeked
out to give manual searchers a realistic chance.

At the beginning of each session, the room was shown to
the participant, together with the Stuff/wallet to be searched.
We instructed them that we tried to simulate realistic hiding
places for a lost wallet and that their search would be timed.
Manual search had no additional support. If FiMS was used,
we further explained the system’s functionality and the user
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Figure 9: Search efficiency results of FIMS and manual
search for the four search tasks in user study 1.

interface displayed on a tablet. Participants had to enter “‘wal-
let”, hit the search button, and shortly wait for the calculated
search cue to be displayed. The Stuff modules did not pro-
vide audiovisual feedback and caching was deactivated. We
also explained that wrong cues are possible and that, if they
suspected a wrong cue, they could trigger a new search (from
within the room) or change to manual search. After the in-
struction and between each task, the participant was asked to
leave the room and the Stuff/wallet was hidden at a hiding
place. Trash bin served as an initial warm-up task for all and
was excluded from results. The order of the other four tasks
was counterbalanced. Once hidden, the door was closed again
and participants started the search on their own. If FiMS was
used, timing started when the participant started typing and an
interim time was taken when they stopped interacting with the
tablet. Otherwise, timing started when the participant opened
the door (A4). Timing stopped when the participant signaled
retrieval or after 300s, if the wallet had not been retrieved.

We had 48 participants in total, evenly split between the two
groups (75% male, 25% female). Most participants were
aged 20-26; 82% studied computer science or related sub-
jects, the other participants had non-technical backgrounds.

Search Efficiency Results

Figure 9 shows the search time results of FIMS and manual
search for each hiding place, including the delay (Mdn=09s)
for interaction with FiMS (starting search, reading result).
The box whiskers contain 95% of results, dots/asterisks mark
outliers. We tested for statistical significance with the non-
parametric Kolmogorov-Smirov Z-test. At the plant, me-
dian retrieval time of FIMS (Mdn=27s) was twice as fast
as manual search (Mdn=59s). Yet, the difference was not
significant, because FiMS provided only 50% correct cues
(42% coarse, 8% wrong); likely due to the planter, which
blocked the Stuff on the floor. At the couch, FiIMS provided
79% correct cues (4% coarse, 17% wrong), resulting in sig-
nificantly faster search time (Mdn=37s) than manual search
Mdn=101s) (Z=1.59, p<.05). For the last two tasks all re-
sult cues were correct, resulting in lower variance and sig-
nificantly faster retrieval with FiMS in case of the display
(Z=2.45, p<.001) and the chair (Z=2.17, p<.001).

For all tasks, FIMS sped up retrieval due to relational cues
narrowing down the relevant search space. Correct cues re-
sulted in very fast retrieval, but even coarse results provided
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Figure 11: The four hiding places in user study 2.

support. Wrong cues were suspected as such by all partici-
pants when the Stuff could not be located after ca. 90s, caus-
ing almost 40% of participants to trigger a new search.

Study 2: Comparison with Other Search Cues

The first study showed that relative search cues lead to faster
object retrieval than manual search. We conducted a second
user study to compare our relative positioning approach to
other types of search cues proposed in related work.

Setup and Procedure

In this study, we compared FIMS with two other cue types.
Map-based position cues, as used in IteMinder [9], display an
object’s position on a room map. In the SearchLight [2] ap-
proach, a ceiling-mounted movable spotlight illuminates the
object to assist retrieval. We further evaluated two variants
of FiMS. Basic FiMS provides relative position cues only as
in the first user study, while the full feedback FiMS (FiMS
FF) combines relative position cues with audiovisual feed-
back by the located Stuff. We performed a between-subjects
experiment in another lab (see Fig. 10), in which each par-
ticipant was randomly assigned one of the 4 systems and had
to search a switched-off mobile phone in 4 tasks. Figure 11
shows the hiding places. The mobile phone was hidden on the
right table (Tj), on a chair, covered by a bag (11), in the right
shelf within an open box (7%), and inside the dresser’s bottom
drawer (13). Ty was a warm-up task for all participants, the
other tasks were counterbalanced.

As we were mainly interested in the effectiveness of the dif-
ferent search cues, we used a Wizard of Oz setup with fixed
localization results to ensure consistent search cues for all
participants. All four systems used the same search interface
(see Fig. 2). Participants had to enter “mobile phone” on a
tablet to start the search. Resulting search cues were system-
dependent. IteMinder showed a room map with a red target
mark and the text “mobile phone localized at marked posi-
tion.” SearchLight showed the text “mobile phone has been
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Figure 12: Search efficiency results of user study 2 for the
three search tasks (extreme outliers not shown).

localized, a light beam shows you the position.” The mov-
ing spotlight was simulated with a ceiling-mounted flashlight
that was manually arranged between search tasks when re-
hiding the mobile phone. FiMS and FiMS FF provided the
relative position cues “mobile phone is on right table” (Ty),
“mobile phone is between center table and left table, near
left table” (11), “mobile phone is in right shelf on second
topmost level” (Tv), and “mobile phone is in bottom drawer
of dresser” (13). Stuff additionally blinked and beeped when
located with FiMS FF.

Before the experiment, each participant was shown the lab
and the mobile phone/Stuff to be searched. We further ex-
plained the functionality of their assigned system and that
their search would be timed. Participants waited outside the
room, while the mobile phone was re-hidden between tasks.
Once hidden, the door was closed and participants could start
search on their own. As starting the search process was the
same for all systems, timing started once the search result
was displayed on the tablet; it stopped when the participant
retrieved the object or after 180s, if the object had not been
retrieved.

In total, 96 participants (60% male, 40% female) completed
the study, 24 for each system. Most participants were students
aged 20-26. Almost 57% studied computer science or related
subjects, the others had non-technical backgrounds.

Search Efficiency Results

Figure 12 shows search time results for tasks 77—73. For each
task, we used Kruskal-Wallis tests to determine significant
differences between systems. 77 showed no significant dif-
ferences, the object’s concealed position apparently affected
all systems similarly. We found significant differences for 75
(H (3)=48.94, p<.05) and T3 (H (3)=55.32, p<.05) and em-
ployed Mann-Whitney U-tests with Bonferroni correction for
post-hoc analysis.

Search time of FiMS was significantly faster than IteMinder
for T, (U=170.5, r=-35) and T3 (U=2.5, r=-.85), with a
median difference of 7.5s and 14.5s; likely due to the miss-
ing height information in the map-based cue, which is pro-
vided by FiMS with in-furniture RFID localization. Search-
Light was significantly faster than FiMS for T, (U=118.0,
r=-.51), with a median difference of 4.5s; likely because the
spotlight could very accurately illuminate the box contain-

ing the object, while FiMS was not aware of the occluding
box. However, FIMS FF facilitated significantly faster re-
trieval of the object than SearchLight (U=143.5, r=-.44).
For T3, basic FIMS was also significantly faster than Search-
Light (U=87.0, r=-.60) with a median difference of 10.5s.
Because of the smart dresser, FiIMS could provide very ac-
curate position information, while the angle of SearchLight’s
spotlight was disadvantageous.

Usability

After completing all tasks, participants completed the post-
study system usability questionnaire (PSSUQ) [12]. Per-
ceived usability was consistently high for all systems, with-
out any significant differences; likely because all participants
perceived their respective system as useful. We plan to as-
sess potential differences in perceived usability in a future
within-subjects study. Yet, qualitative feedback provided by
some participants still provided interesting insights. The lack
of height information in IteMinder was frequently criticized,
which matches the quantitative results. Some participants
also had initial orientation problems with the map and would
have liked to see themselves on it. The visibility of Search-
Light’s spotlight was also criticized. One participant switched
off the room light to improve it. Another concern was that
occluded objects cannot be directly targeted, e.g., objects be-
hind a room divider. One participant stated that the beeping of
FiMS FF was confusing and did not aid searching, especially
in task 77.

Overall, the results of study 2 show that the relative position
cues of FIMS support physical-object search significantly bet-
ter than map-based cues. Compared to SearchLight’s cues,
the relative position cues of FiIMS are not affected by light-
ing conditions. The results of FiMS FF indicate that combin-
ing relative position cues with audiovisual feedback is helpful
when the sought-for object is occluded or included in another
object. While all evaluated cue types were perceived as us-
able, the relative position cues of FiMS led to shorter retrieval
times.

RELATED WORK

Subsequently, we compare previously proposed systems for
physical objects search with FiMS and against the require-
ments identified earlier. Table 1 provides a summary. Several
systems require the user’s presence and active participation
in search. In FindIT [14], objects are equipped with low-
power optical sensors; a special flashlight emits an optical
beam to trigger audiovisual feedback of objects, similar to
FiMS. While highly energy efficient due to the use of low-
power sensors, objects must be in the user’s visual range and
cannot be occluded or included in other objects. FETCH [6]
uses mobile phones and laptops to find objects tagged with
Bluetooth modules. Once detected, an object starts beeping,
requiring the user to be in range to perceive the search cue.
Occlusions or inclusions could also make it difficult to hear
the signal. Furthermore, the Bluetooth modules of their pro-
totype require recharging every 2-3 weeks. Frank et al. [4]
also utilize Bluetooth devices of other users to cover a larger
search area. GPS and UMTS cell of origin are used to provide
a rough position when the user is not in range.



Konishi et al. [10] avoid active search by assuming user-
carried RFID readers, which periodically sense tagged ob-
jects in the user’s proximity and store those snapshots. When
searching for an object, their system returns a list of surround-
ing objects from matching snapshots. This approach is en-
ergy and cost efficient and also supports localization of oc-
cluded and included objects. However, it relies on the as-
sumption that lost objects are always surrounded by other
tagged objects and that the user knows the position of at
least one of those objects. The user must also carry an RFID
reader at all times. The aforementioned lteMinder [9] uses
an autonomous robot to continuously scan the environment.
Known locations equipped with passive RFID tags serve as
reference points. The system provides a map-based search
cue, by showing a found object’s location in a 2m range
around a reference point on a map. Drawbacks are the re-
quired time for full environment scans and installation of ref-
erence points. Hallberg et al. [5] measure RSSI of active
reference tags with fixed RFID readers to improve localiza-
tion with the LANDMARC approach [16]. Drawbacks are
initial calibration overhead and optimal placement of refer-
ence tags. It is not clear if their system can handle occlu-
sions and how position results are presented to users. Nakada
et al. [15] combine active RFID tags for localizing occluded
objects with ultrasonic positioning of uncovered objects. A
found object is either illuminated by a ceiling-mounted spot-
light or gives acoustic feedback. Thus, search cues are only
effective if the user is in physical range. Furthermore, ultra-
sonic systems are costly and require precise calibration.

Brownie [17] combines ultrasonic positioning with a ceiling
camera and accelerometers attached to objects in order to find
covered objects. When an object’s ultrasonic signal is lost,
the camera tries to detect a “container” (e.g., a box) at the
object’s last known location and tracks the container’s move-
ments together with the object’s accelerometer to derive the
new position. Thus, it is assumed that containers are always
in visual range of the camera. SearchLight [2] uses only a
ceiling camera to find objects tagged with visual markers. An
initial scan stores the camera’s pan and tilt angle for each
located object. A found object is illuminated by a movable
spotlight, as used in the second user study. SearchLight can
only locate objects in the camera’s line of sight and requires a
lengthy scan process. The use of visual markers is energy and
cost efficient. DrawerFinder [8] uses cameras placed above
boxes to take a picture of the box’s content when opened.
The user must manually browse through all pictures when
searching an object and obviously cannot find objects in other
places.

Lamming and Bohm [11] equip objects with small battery-
powered devices (SPECs). Mobile SPECs have a battery
lifetime of about one month; stationary SPECs of one year.
SPECs broadcast their ID via an IR transmitter and log re-
ceived IDs of surrounding SPECs. The history of received
IDs is used to locate objects. Stationary SPECs are similar
to FiMS SmartFurniture, but are not interconnected. Thus,
sighting histories are distributed across all SPECss and can
only be uploaded to a server when a gateway device is nearby.
Furthermore, objects need to be located in visual range of an-
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Table 1: Comparison of existing object search approaches.

other SPEC to be located. Like FiMS, Snoogle [19] com-
bines a ZigBee mesh network of sensors and objects with
a hierarchical topology. Objects register with a room’s In-
dex Point (IP), which is registered to a key IP, e.g., of the
building. Room level IPs are comparable to having only one
FiMS SmartFurniture per room. Thus, Snoogle’s localization
granularity is limited to room level, while FIMS can provide
relational cues involving multiple furniture pieces, and can
search inside furniture. Security and privacy is provided by
an asymmetric encryption scheme and UNIX-like access con-
trol. MAX [20] uses a hierarchy of base-stations on the room
level and furniture-based sub-stations similar to FiMS. RSSI
measurements of RFID are used to provide relative locations
of sought-for objects e.g., “sunglasses located in bedroom at
desk”. In contrast to FiMS, their search results cannot reflect
ambiguities about the position, e.g., when the sought-for ob-
ject is located between multiple sub-stations rather than near
one. Also in contrast to FiMS, MAX does not address inclu-
sion of objects and provides no further search cues once the
user is looking at the stated position. Security and privacy on
the object and room level are supported by MAX with asym-
metric encryption, access control is enforced by base-stations.

DISCUSSION AND CONCLUSIONS

In summary, FIMS is a system for physical objects search
that provides user-independent localization by employing a
hierarchical search model, which ranges from inside furniture
to remote locations. FiMS SmartFurniture is equipped with
RFID readers and directed ZigBee antennas to support local-
ization of objects inside and in relation to furniture. An active
Stuff module is attached to objects to make them searchable.
Our current Stuff prototype is small enough to be attached to
a key chain and can operate for at least 2 months with two
coin batteries.

FiMS is based on relative positioning of objects in relation
to multiple SmartFurniture rather than exact localization of
objects. While MAX [20] also uses signal strength to de-
termine proximity between an object and one furniture, our
approach supports positioning in relation to multiple Smart-
Furniture and can provide advanced search cues in which fur-



niture serve as landmarks, e.g., “wallet is between dresser and
couch, near couch.” Directed antennas in SmartFurniture not
only sense nearby Stuff, but also automatically determine rel-
ative orientations of furniture pieces to each other, without
requiring user calibration or knowledge of the furniture’s ac-
tual position. Our position accuracy experiments with two
SmartFurniture showed that our approach is sufficiently ro-
bust in realistic settings (85-87% accuracy) and not impacted
by present persons. User evaluation showed that our rela-
tive position cues lead to faster object retrieval than manual
search, even for coarse results. In a Wizard of Oz setup, our
cues performed also significantly better than map-based and
spotlight-based cues, in most tasks.

SmartFurniture contains multiple active components that in-
cur costs, which can be traded off against search granular-
ity. While replacing all furniture in a home with SmartFur-
niture will remain prohibitive in the near future, 1-2 Smart-
Furniture per room already provide a significant advantage in
the retrieval of occluded objects. A limitation in such a sce-
nario would be localization of objects in un-equipped furni-
ture. While retrofitting furniture could also be possible, it re-
quires additional configuration and calibration effort. There-
fore, we plan to investigate another approach, more in line
with the goal of seamless configuration. A single, low-cost
FiMS component with only one antenna could be placed in
a room’s light fixture or power outlet, to provide the infor-
mation in which room an object is located. Such components
could be easily deployed in multiple rooms in the user’s home
and connected environments, e.g., her office.

We are further planning a longitudinal study in actual homes,
in order to gain insights on how relative position cues aid
users in locating objects they misplaced themselves. We also
plan to investigate search cues in relation to three or more
SmartFurniture and further miniaturization of Stuff tags, in
order to facilitate direct integration into physical objects.
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