
Tangible Context Modelling
for Rapid Adaptive System Testing

Frank Honold, Felix Schüssel, Michael Munding, Michael Weber
Ulm University

Institute of Media Informatics
89069 Ulm, Germany

{frank.honold, felix.schuessel, michael.munding, michael.weber}@uni-ulm.de

Abstract—With the rise of adaptive interactive systems came
a growing demand for tools to test the envisioned adaptivity. This
article presents a tactile interface allowing direct manipulation of
a context model for adaptive behavior in intelligent environments.
The presented tool starts with an abstract context model, which is
transformed to an easy-to-use interface supporting tangible inter-
action. Different context parameters can directly be manipulated.
Diverse context-relevant items can be integrated using tangible
objects to emulate and use their real world location parameters.
The article gives an insight in the technical implementation and
the usage as substitute for a sensor topology from an existing
intelligent environment to support evaluations and tests.

I. INTRODUCTION

In 1991 Mark Weiser shaped the term of Ubiquitous
Computing with his successful article “The Computer for the
21st Century” [1]. He named ubiquitous computing a computer
technology, which can be used by any person without any
further notice or effort. Based on this, the coming age of
computer technology was announced as “the [. . .] age of calm
technology" [2]. The development of adaptive systems is a
further step in this direction. If a system adapts to a user due
to gathered information from the context of use, the user, in
turn, must adjust himself to the system much less.

Adaptive components of intelligent environments do not
only adapt to the user, but also to the environment. The
information about the user and environment are part of the
context model, in which all of the context of an application
can be described. This knowledge is the key to adaptivity.

A context model describes a situation in the real world.
The context information contained therein can be used to
allow applications to adapt to the situation. They can therefore
change their behavior without direct (active) user intervention
and thus allow an implicit form of interaction. In this case
implicit means that a user does not have to trigger an action by
himself, but that the action is triggered by contextual analysis
and the identification of a certain circumstance. In return, the
adaptive behavior can even change the context by itself (e. g.
switching the lights on causes the effect that it is not dark
anymore).

Situations are very dynamic and in permanent change.
Users enter and leave rooms, they express different emotions,
perform a variety of tasks, and are motivated by different and
changing intentions and goals. Devices may have different user
interfaces, their positions may change, and their availability for
interaction may also be quite unpredictable.

A. Adaptivity in Intelligent Environments

A system or application is always executed in a well
defined situation. If the application is aware of the situation, the
individual user can benefit from a system’s context adaption
as described by Shackel [3]. For example, systems can adapt
their processing behavior, the individual dialogue strategy or
the user interface to support individual users in their tasks. Any
useful information items that characterize a certain situation as
a certain context of use are collectively referred to as context.

One way to support a user by context information is the
identification and application of implicit actions. In this case
implicitly means that the user has not to trigger a certain action
obviously, but the system triggers a suitable action by iden-
tifying the user’s needs based on certain context knowledge
items itself. As an example, a smartphone would therefore
trigger an implicit action and enable the silent mode, if the
context information can be interpreted in a way that the user
is in a library (pure location based) or in a meeting situation
(location: meeting room plus other mobile phones in the closer
environment), or the light switches on when entering a dark
room. Another way of adaption focuses on the adaption of the
communicable content and the dialogue strategy. Depending on
the user’s knowledge a more basic or high level vocabulary can
be used via interaction with the user, or additional information
can be offered on the fly if a user seemed to be irritated.

Particularly in mobile and ubiquitous scenarios contextual
information is highly dynamic. The users’ locations and thus
the reachable objects in their surroundings often vary. To
respect these different situations adaptive systems and services
need to access this contextual information at runtime. Even
more important: to develop and test an adaptive behavior
system developers must be able to emulate each possible
context of use.

B. Problems when Evaluating Adaptive Behavior

Context information usually is based on sensory data,
which might be affected with uncertainty. In general, these
data streams can be recorded and re-played for evaluation. If
possible, the sensors’ data gets interpreted and recorded in a
transcribed form on a symbolic level as well. To test variants
of the recorded context of use (or even transition between
them) the recordings have to be manipulated in advance to
test an intended adaption hypothesis. This method for testing
and evaluating an envisioned adaption behavior can be time-
consuming and costly.

C. Contribution

Facing this problem, our article presents a flexible and
extensible approach to realize a tangible and easy-to-use
context editor. We give a theoretical introduction to context
knowledge and name essential requirements for supporting
rapid testing adaptivity in intelligent environments. Based
on that, we describe our approach and present the realized
system of a flexible model driven multi-user context editor.
The presented editor supports tangible interaction and direct
manipulation to manipulate the linked context model in a quick
and easy way.

II. WHAT IS CONTEXT?

Since there are different domains of context-adaptive in-
telligent environments there are various definitions of the
term context. Day and Abowd investigated various definition
approaches to form their own definition of context [4]. They
go along with the idea from Schilit et al. [5] to address the
main aspects of context like “where you are, who you are with,
and what resources are nearby”, as well as to summarize these
items as “the constantly changing execution environment”. By
“environment” they subsume “computing environment, user
environment and physical environment”.

In the remainder of this article we refer to context as
defined by Dey and Abowd [4]:

Context is any information that can be used to
characterize the situation of an entity. An entity is
a person, place, or object that is considered relevant
to the interaction between a user and an application,
including the user and applications themselves.

One interesting statement in this definition is the fact, that
entities can temporarily be associated as context, depending on
the current interaction. So the context model itself may vary
regarding the number of contextual knowledge items.

III. RAPID TESTING BASED ON TANGIBLE INTERACTION

As stated in section I-A, it is a costly endeavor to provide
and edit a complex context model in order to test a system’s
adaptive behavior. Data bases or text files as manipulation
interfaces are hard to maintain, and – concerning the necessary
interaction concepts – often lack a good usability.

A. Tangible Interaction

Tangible interaction can be the key to a better usability.
Durell Bishop’s Marble-Answering-Machine from 1992 is
often named to mark the beginning of tangible interaction. Ishii
and Ullmer came up with the idea of “Tangible Bits” to bridge
the gap between cyberspace and the physical environment [6].
Their idea of interactive surfaces and the use of graspable
objects for interaction led to new and intuitive forms of
interaction and direct manipulation. One of the early repre-
sentatives of tangible interaction is Underkoffler’s and Ishii’s
tangible workbench for urban planning (Urp) [7]. Current
systems like the Reactable hardware1 allow the use of fiducials
as interactive objects. One of the best known commercial

1Reactable – http://www.reactable.com/ [online: 2013-02-15]

products for surface interaction is the Microsoft PixelSense
Table (formerly known as Microsoft Surface). This product is
able to detect visual markers. Objects can be equipped with
so called Byte Tags2 to realize interactive tangible objects
on the screen. The Byte Tags can be placed on the screen
and any linked event like the occurrence, moving, rotation, or
disappearance of each tag can easily be processed by event
handling.

B. Requirements for Rapid Testing Support

Stemming from an expert consultation we conducted
amongst research colleagues, different requirements for a con-
text manipulation tool for rapid testing of adaptive components
were identified. First of all, such a tool must support the
separation of context model and application. This means that
it shall be able to run independently from the application it is
intended for. It must be easy to add or remove items of the
context model (e. g. persons, devices). It should be possible to
model and manipulate uncertain data. The underlying context
model should be extensible and easy to change (e. g. specific
data types and attributes). Furthermore, the tool should have a
high usability and support easy supervision of the current state
of the model. Keeping these requirements in mind, we designed
and implemented our tool as described in the following section.

IV. REALIZATION

The realization is implemented on a Microsoft Surface
Tabletop (first generation of the PixelSense table). This hard-
ware is able to detect the visual markers, called Byte Tags.

To meet the aforementioned requirements a model driven
approach is applied to realize the interactive fragments of
the editor. As an example we want to model some persons,
different devices and the environment for a fictive scenario.
Since each context attribute of interest shall be configurable,
and the context model shall be extensible and flexible, we
decided to realize a model driven approach. Our editor’s basic
concept is to provide a UI where different users can be emu-
lated in a fictive surroundings. The users and environment’s
attributes are defined using an XML configuration file (cf.
listing 1) based on well-defined XML-Schema description.
The model’s knowledge attributes are inspired by the later
application domain as well as by studies (e. g. by the findings
described in [8]).

The editor interprets the XML file and realizes an editable
UI. An exemplary scene is shown in figure 1. A test person’s
context menu is shown and ready to be edited. The tactile
context items on the screen can be re-arranged to form new
scenarios or settings. Due to the hardware’s ability to detect
Byte Tags each tactile item’s context menu is always rendered
besides the item, even if the item is moved on the screen.
Apart from this the implementation supports concurrent multi-
user interaction.

Based on the work of Strang and Linnhoff-Popien [9] we
decided to use an XML representation as context knowledge
interchange format with other components, as we believe that

2Microsoft Byte Tags – http://msdn.microsoft.com/en-us/library/ee804885%
28v=surface.10%29.aspx [online: 2013-02-15]

<?xml version="1.0" encoding="UTF-8"?>
<ui xmlns="http://sfb-trr-62.de/b3/uiConfig.xsd">
 <person>
 <!-- ... more items here -->
 <container contextParameter="name" label="name">
 <uiElement type="string_var" value="TestPerson"
 probability="1"/>
 </container>
 <container contextParameter="gender" label="gender">
 <uiElement type="string_fix" value="male"
 probability="0.1"/>
 <uiElement type="string_fix value="female"
 probability="0.9"/>
 </container>
 <container contextParameter="age" label="age">
 <uiElement type="integer" value="35" probability="1"
 resolution="5" min_value="0" max_value="120"/>
 </container>
 <!-- ... more items here -->
 </person>
 <!-- ... more items here -->
</ui>

Listing 1. Excerpt from an exemplary configuration file. Changes to this
file automatically result in a changed final UI for each person item, which is
placed on the surface (see figure 1).

Fig. 1. The automatic UI generation process realizes an editable widget
based on the given model description from listing 1. The different containers
are separated by horizontal rows. The user model can easily be manipulated
by touch interactions from multiple users. The location can be changed by
re-arranging the figure like in real world.

this is the best trade-off between expressiveness, universal
readability and deployment.

Our toolkit is designed to link re-usable tangible objects
(e. g. toy figures) with additional context data. To support the
possible occurrence of sensor- and inference-based ambiguous
context data, it is possible to explicitly model ambiguity. As
an example compare the gender knowledge item as defined
in listing 1 and its resulting UI representation in figure 1.
In this case the gender container represents a probability
distribution for the two attributes male and female. Increasing
the probability at runtime of one certain attribute will decrease
the other value’s probability within the same container. The
overall probability will always be 1 (or 100 % as displayed in
the UI).

The tool supports the use of five different data types to
model diverse context data. To model a probability distribution
for nominal data, like gender, we use the string_fix type.
To realize probability distributions for string input fields the

string_var type can be used. The use of the integer
type results in a spinner widget. To manipulate decimal data
via a slider we can assign the double type. If there is
only one UI element within a container, the data cannot be
ambiguous. Therefor the model driven concept does not offer
the possibility to manipulate the probability for the single item.
The use of the boolean type results in a checkbox with
a probability spinner. This type behaves different, since each
single UI element of a boolean value represents a probability
distribution by itself. The probability for the checked state
represents the inverse probability for the unchecked state and
vice versa. That is why different boolean UI elements in one
container do not affect each other, while other types within a
container do.

V. TACTILE CONTEXT MANIPULATION IN USE

From the way of specifying data using the XML config-
uration file over data modeling and manipulation by tangible
interaction to context data deployment, the presented approach
supports developers in any point, and provides great usability.
Even children are able to model context situations with the
presented system.

Changes to any of the context model’s items (user models,
surroundings model, device- and component models, as well as
distance relations) are communicated to dedicated subscriber
modules via a message oriented middleware. We use the
Semaine API as presented by Schröder [10] to realize a very
flexible middleware concept. Semaine allows us to send the
context data as text, XML, or even as EMMA messages. Based
on change events from the surface, the tool’s XML output is a
set of probability distributions. Each container (cf. listing 1 and
figure 1) gets represented by its own probability distribution.
Again the boolean type forces a different handling. Not
the container, but the nested UI elements are represented as
probability distributions in XML. Using XSLT in a post-
processing step, the context data can be transformed into
almost any subscriber-specific text format.

We successfully used the tactile context editor in our
collaborative research center. It turned out that this kind
of context manipulation has interesting additional benefits.
By the ability of the hardware to support concurrent tactile
and tangible operations by several users, it is possible to
change several context values simultaneously. This allows us to
simulate complex real-world scenarios where different changes
to the context model may occur at the same time. Another
benefit arises from the reusable tangible context items. Since
there is a binding coupling a tangible’s byte tag and its context
model data, the tangibles can be collect, stored in a repository,
and can be reactivated whenever they are needed. This allows
us to create reusable context items. A little weakness is owed
to the fact that the XML-Schema is not as restrictive as it
should be. The initial configuration file must be well-formed
and valid but this still cannot prevent all modelling mistakes.

The presented tool was used to provide the context
model in order to evaluate a system for context adaptive
multimodal fission as described in [12]. As an example,
one of the adaptive aspects of the fission module was to
reason about the proper output device and output encoding
of arbitrary information. In this case the decision depends

Fig. 2. On the left: the scenario as modeled and tested on the surface. On the right: A comparable real-world situation. The realized and tested system gathers
its data from diverse sensors. The user localization is realized by laser scanners as described in [11]. This context knowledge is used to influence the UI’s
realization on different devices as described in [12].

on the user’s preferences and abilities, the distances to the
different devices, and other context information [12]. As
depicted in figure 2 (left) the fission’s reasoning was tested
using the presented toolkit. More specific: by playing through
different scenarios, different evaluation functions, which
form the basis of the adaptive system, have been adjusted
until the final fission module was successfully integrated in
the consortium’s multi-sensor platform (cf. figure 2 (right)).
Using the presented tool allowed us to test and evaluate
distributed context adaptive systems in advance without the
need to use massive and costly sensory equipment. The fully
tested fission module was integrated in the final system.
From that point on, the user localization and the inference of
distance data are realized using the intelligent environment’s
sensors as described by Geier et al. in [11]. A movie, which
shows our realized tool in use is accessible here: http:
//companion.informatik.uni-ulm.de/ie2013/Tangible_Context_
Modelling_for_Rapid_Adaptive_System_Testing.mp4.

VI. CONCLUSION

According to the needs when testing adaptive behavior,
we presented a flexible and extensible way of how to model
and manipulate context information. We gave a theoretical
introduction to context knowledge and motivated a flexible
approach for an easy-to-edit context model. The context model
was realized with an implementation supporting tactile in-
teraction on a multi-user platform. The presented prototype
allows to alter context information in a very quick and easy
way and meets the mentioned requirements from section III-B.
As mentioned, this approach forms the basis of an evaluation
and testing of our envisioned adaptive intelligent environment.
The use of reusable tangible context objects proved to be
very useful. The described concept on the tabletop is able to
substitute diverse items from an intelligent environment. Due
to the fact that the system’s user interface is realized with a
model-driven approach it can be tailored and used to test any
context-adaptive component in a fast and easy way.

ACKNOWLEDGEMENTS

This work is originated in the Transregional Collaborative
Research Centre SFB/TRR 62 “Companion-Technology for

Cognitive Technical Systems” funded by the German Research
Foundation (DFG).

REFERENCES

[1] M. Weiser, “The computer for the 21st century,” SIGMOBILE Mob.
Comput. Commun. Rev., vol. 3, no. 3, pp. 3–11, 1999, this article first
appeared in Scientific America, Vol. 265, No. 3 (September 1991), pp
94-104.

[2] M. Weiser and J. S. Brown, “Beyond calculation,” P. J. Denning and
R. M. Metcalfe, Eds. New York, NY, USA: Copernicus, 1997, ch. The
coming age of calm technolgy, pp. 75–85.

[3] B. Shackel, “Human-computer interaction,” J. Preece, Ed. Upper
Saddle River, NJ, USA: Prentice Hall Press, 1990, ch. Human factors
and usability, pp. 27–41.

[4] A. Dey and G. Abowd, “Towards a better understanding of context and
context-awareness,” in CHI 2000 workshop on the what, who, where,
when, and how of context-awareness, vol. 4. Citeseer, 2000, pp. 1–6.

[5] B. Schilit, N. Adams, and R. Want, “Context-aware computing applica-
tions,” in Mobile Computing Systems and Applications, 1994. WMCSA
1994. First Workshop on. IEEE, 1994, pp. 85–90.

[6] H. Ishii and B. Ullmer, “Tangible bits: towards seamless interfaces
between people, bits and atoms,” in Proceedings of the ACM SIGCHI
Conference on Human factors in computing systems, ser. CHI ’97. New
York, NY, USA: ACM, 1997, pp. 234–241.

[7] J. Underkoffler and H. Ishii, “Urp: a luminous-tangible workbench for
urban planning and design,” in Proceedings of the SIGCHI conference
on Human Factors in Computing Systems, ser. CHI ’99. New York,
NY, USA: ACM, 1999, pp. 386–393.

[8] F. Schüssel, F. Honold, and M. Weber, “Influencing factors on multi-
modal interaction during selection tasks,” Journal on Multimodal User
Interfaces, pp. 1–12, 2012.

[9] T. Strang and C. Linnhoff-Popien, “A context modeling survey,” in
Workshop on Advanced Context Modelling, Reasoning and Manage-
ment, UbiComp 2004 – The Sixth International Conference on Ubiqui-
tous Computing, Nottingham/England, 2004, p. 8.

[10] M. Schröder, “The semaine api towards a standards-based framework
for building emotion-oriented systems,” Adv. in Hum.-Comp. Int., vol.
2010, p. 21, January 2010.

[11] T. Geier, S. Reuter, K. Dietmayer, and S. Biundo, “Goal-based person
tracking using a first-order probabilistic model,” in Proceedings of the
Ninth UAI Bayesian Modeling Applications Workshop (UAI-AW 2012),
8 2012.

[12] F. Honold, F. Schüssel, and M. Weber, “Adaptive probabilistic fission for
multimodal systems,” in OzCHI’12 – Proceedings of the ACM OzCHI
2012. Melbourne, Australia: ACM, November, 26–30 2012.

