
1

Bluetooth-based Ad-Hoc Networks for Voice Transmission

Frank Kargl - Stefan Ribhegge - Stefan Schlott - Michael Weber
Department of Multimedia Computing, Albert-Einstein-Allee 11,

89081 Ulm, University of Ulm, Germany, +49-731-50-31310,

frank.kargl|stefan.ribhegge|stefan.schlott|michael.weber@informatik.uni-ulm.de

Abstract—In this paper we inspect the possibilities of us-
ing Bluetooth for building Ad-Hoc networks suitable for
transmitting audio and esp. voice data using synchronous
SCO links. We analyze the features or problems that
Bluetooth offers for transmitting audio data in a multihop
network. As the existing MANET routing protocols that
emerged out of the work of the IETF MANET WG (like
AODV, DSR etc.) can not be directly used to work with
Bluetooth, we present a new routing protocol called Blue-
tooth Scatternet Routing (BSR) that is influenced by other
MANET routing protocols but pays special attention to the
restrictions of Bluetooth (like number of connections, con-
nection setup times etc.). The protocol is also inspired by
the channel switching concept of ATM. Some initial results
of simulations and real-life tests give an impression of the
performance and efficiency this protocol can reach in an ap-
plication scenario.

I. PAPER OUTLINE

After section II gives an introduction to a scenario of
voice transmission in a Bluetooth based MANET, sections
III to V give a short overview on relevant aspects of Blue-
tooth, MANETs and earlier work in this field. Section VI
analyzes the benefits and problems of mobile ad-hoc net-
working via Buetooth with special focus on audio/voice
transmission. We argue that existing MANET routing pro-
tocols cannot be used straightforward with Bluetooth but
need adaption. In section VII we describe our contribu-
tion: a routing protocol called ”Bluetooth Scatternet Rout-
ing” (BSR). As the Bluetooth hard- and software avail-
able today doesn’t implement the standard completely -
e.g. often scatternet functionality is missing - we have
implemented only parts of the protocol directly. Section
VIII tries to evaluate the efficiency of BSR with an ap-
proach combining measurements and simulation. Section
IX concludes our paper with a summary and outlook.

II. M OTIVATION

Many of the research activities in the field of mobile
ad-hoc networks (MANET) assume that cheap short to
medium range radio transceivers will become very com-
mon in the next years. Most of the practical work and

BT

BT

BTBT

Fig. 1. Example scenario of a Bluetooth ad-hoc network

implementations focus on IEEE 802.11 Wireless LAN as
an underlying physical radio network used for simulations
or tests. For use in limited wearable devices like PDAs
or cellphones, 802.11 has the disadvantage of consum-
ing more battery power than other technologies like Blue-
tooth [1][2]. Furthermore it seems that after some startup
problems Bluetooth may really become a common fea-
ture of cellphones (like the Ericsson T68m and others) or
PDAs (like the new Compaq IPAQ 3870).

So the developers of the MANET routing protocols
should consider that their protocols might also be used in
a Bluetooth environment. The initial goal of our work pre-
sented here was to evaluate if the current protocols can be
easily used in combination with Bluetooth or what modifi-
cations need to be done to enable Bluetooth-based Ad-hoc
networking.

First we try to find a scenario where most of the char-
acteristics and problems of MANETs and Bluetooth will
appear. In this scenario we connect a large number of
Bluetooth-enabled cellphones to a (multi-hop) MANET
in order to enable Bluetooth-relayed phone calls between
them.

There are a large number of possible application fields
for this scenario. Think of a large office building where
people move a lot between their office desk, conference
rooms or central areas like printer-rooms or the cafeteria.
Fixed-line telephones don’t provide a reasonable grade of
reachability here. So people tend to call their colleagues at
their cellphone in order to find our their current location
or to reach them for urgent requests etc. Of course the

2

RADIO
BASEBAND

HCI

Bluetooth Hardware

HCI

Host

L2CAP
RFCOMM SDP ...
PPP

Application

UART, USB, RS232 ...

Fig. 2. Bluetooth stack

network carrier of the cellular phone network charges for
these calls. Given our scenario above people may be able
to do the same calls at no cost.

Another usage of the system proposed may be on large
exhibits or fares where a lot of people with Bluetooth-
enabled phones may meet. Again relaying calls between
two visitors (like friends visiting different halls that want
to meet for lunch) via a Bluetooth-based MANET may
save costs compared to the normal cellular phone network.

III. B LUETOOTH OVERVIEW

In this section we will give a very brief overview of the
relevant aspects of the Bluetooth standard. For detailed
information see [1][2].

When initiated in 1998, the original idea of Bluetooth
was to create a cheap wireless replacement for the myriad
of data wires that surround today’s multimedia devices.

Bluetooth uses a protocol stack of several layers. Fig-
ure 2 shows an simplified overview. The Radio Layer de-
scribes the physical radio system. Bluetooth devices fall
within one of three different radio classes, but nearly all
of todays Bluetooth-enabled devices use Class 3 radios,
esp. the smaller battery-powered systems like cellphones.
These devices have a radio range of about 10m. Bluetooth
uses a frequency hopping scheme where the hopping se-
quence is coordinated by the master of each Piconet (see
below).

The Baseband Layer is responsible for transmission and
reception of data packets, error detection and encryption
(if used).

The Link Controller uses a state machine to control syn-
chronization, connection setup and shutdown. This state
machine has different states that are called Standby, Page,
PageScan, Inquiry, InquiryScan and Connection. A con-
nected device may either be in the state Active, Hold, Sniff
or Park. For details see [1].

When a device wants to connect another device it first
has to do an inquiry for its direct neighbors. After re-
ceiving the inquiry results it can contact another device

Scatternet w Slave

in wo Piconets

ith

t

M

M

S S/M

M

S

Scatternet with Master in

one and Slave in another Piconet

Fig. 3. Examples of Scatternets

using its unique Bluetooth address. When connected the
two devices form a so-called Piconet. The initiator of the
connection becomes the Master of this Piconet, the other
device becomes a Slave. When the Master contacts addi-
tional devices, this Piconet will contain multiple slaves up
to a maximum of 7.

When a device A that is e.g. a Slave in one Piconet con-
tacts another device B then a new Piconet is formed with
A being the Master in this new Piconet and still being a
Slave in the original Piconet. Any connected combina-
tion of Piconets is called a Scatternet. Figure 3 shows
some Scatternet examples. A Scatternet is essentially
some form of a MANET where traffic may be relayed
between Piconets. Unfortunately the Bluetooth standard
does not describe any Routing protocol for this and most
of the hardware available today has no capability of form-
ing Scatternets. Some even lack the ability to communi-
cate between Slaves of one Piconet or to be a member of
two Piconets at the same time. We will give details on this
later.

For building MANETs based on Bluetooth we need to
find a suitable routing algorithm and implement this func-
tionality on the application level. Later this may be inte-
grated into the Bluetooth stack itself.

After connecting another device, data may be trans-
mitted using the ACL mode (Asynchronous Connection
Less). In Bluetooth the data transmission is controlled
completely by the Master. Slaves may only transmit data
after being polled by the Master. ACL data transmission
implements error detection and retransmission.

The other transmission mode uses SCO links (Syn-
chronous Connection Oriented). SCO links need to be
established explicitely and only after an ACL connection
has been setup. Each SCO link reserves 64kBit/s of band-
width. In contrast to the ACL links, SCO links have no
retransmission, packets with errors are silently discarded.
A master may establish up to three SCO links to its slaves.

The Host-Controller-Interface (HCI) separates the
Bluetooth hardware from the part of the protocol stack
that is usually implemented in software. Thanks to this
standardized interface, the Bluetooth hardware and the
Bluetooth stacks usually interoperate very well. The hard-

3

ware connection is standardized for HCI-UART, HCI-
RS232 and HCI-HCI-USB. Others may follow.

The Logical Link Control and Adaption Protocol
(L2CAP) layer multiplexes different data streams, man-
ages different logical channels and controls fragmenta-
tion. Multiple higher layer modules may access the
L2CAP layer in parallel. These higher layer modules may
consist e.g. of RFCOMM for emulation of serial connec-
tions, OBEX for transmission of serialized data objects or
SDP for service discovery.

IV. MANET OVERVIEW

This section will give a short overview of MANET
routing. For more detailed information see e.g.
[3][4][5][6][7]. MANET routing protocols may be di-
vided into two categories: proactive and reactive.

Proactive protocols always try to maintain up to date
routing tables for all reachable destinations. All well-
known Internet routing protocols like RIP or OSPF fall
in this category. The reactive protocols are only activated
when a node S wants to send packets to a second node D.
In this case S originates a route request that searches the
network for a valid path towards the destination. Once the
optimal path has been discovered, D sends a route reply
to S. Once S has a valid path for D it can start to send
its packets. During this process the routing system needs
to perform routing maintenance, i.e. it has to check if the
route is still valid. If a route breaks many protocols per-
form a route repair.

When transmitting audio data over a network there are
basically four parameters that determine the audio quality.
The bandwidth of a link is the maximum amount of data
that a link between two nodes can transmit.

The loss rate is defined as the maximum percentage of
packets (or sometimes octets, bytes, ...) that a link may
drop during operation.

lrsinglehop =
NumberOfLostPackets

NumberOfAllPackets
(1)

The delay is defined as the amount of time that a packet
needs to be transfered from A to B. In our scenario, we
usually measure roundtrip delays. The unidirectional de-
lay d is defined as

d =
roundtrip

2
(2)

Normally we measure the delay of a large number of pack-
ets (D = di|i = 1 . . . n) and specify only the average
delay:

avDelay = E(D) =
1
n

n∑
i=1

di (3)

The final relevant value is called jitter. It is defined as the
standard deviation of the link’s delay:

jitter = σ(D) =

√√√√ 1
n

n∑
i=1

(di − E(D))2 (4)

When we introduce buffers at the receiver we can reduce
the jitter but increase the delay.

V. RELATED WORK

There are a number of publications describing work to
enable Ad-Hoc networking with Bluetooth hardware. E.g.
in [8] Lars Wernli and Riccardo Semadeni describe their
work on developing a reduced version of the DSR pro-
tocol [5] for Bluetooth [1]. This work also demonstrates
that you face extremely long delays when you just port
the existing protocols to Bluetooth without regarding the
special properties of Bluetooth.

Other approaches like Bluetree [?] or Bluenet [9] try
to establish a Bluetooth Scatternet spanning all reachable
nodes.

In contrast our work only established links as needed.
This is reasonable because Bluetooth puts tight limits on
the number of connections allowed, esp. when using SCO
links.

VI. B LUETOOTH-BASED MANETS

When using Bluetooth as a physical layer for a
MANET, we have to consider a number of restrictions
compared to e.g. IEEE 802.11 as used by most protocols.

1) Bluetooth is connection oriented. So in order to
send data to another node you have to setup and
later tear down a connection.

2) Bluetooth has no ”all neighbors” broadcast capabil-
ity (only point-to-multipoint within the Piconet). So
in order to e.g. flood a route request you have first
to connect all neighbors and then send a point-to-
multipoint packet to these. If there are more neigh-
bors than allowed in a Piconet (7) things get more
complicated.

3) When using SCO connections we have a restricted
number of connections per master node (3), so any
node may only relay one connection and originate
another connection. The routing protocol needs to
consider this.

4) Bluetooth has very long inquiry and relatively
long connection setup times. So the connection
setup/disconnect needs to be optimized.

When we want to implement a telephone system using
a Bluetooth-based MANET, we have a number of require-
ments that contrast with above capabilities:

4

• Users want a short connection setup time similar to a
normal phone dialing (a few seconds).

• We need to have relatively few hops. Otherwise the
delay will be too long and the user will experience a
significant pause and echo.

• We will usually use SCO links for transmission. As
stated above this restricts the number of paths that
a node can participate in. When using ACL links
this restriction is missing but we then have problems
guaranteeing the necessary bandwidth. The link type
should be configurable.

• In order to optimize the overall throughput and min-
imize interference we want to minimize the number
of Piconets and shutdown unneeded connections.

• To avoid interrupts in audio transmission we need a
very efficient and fast route-maintenance and -repair.

No current MANET routing protocol fulfills all of these
requirements. So we designed a new routing protocol with
the focus on voice transmission in Bluetooth Scatternets.
Nevertheless the current protocols provide a number of
interesting ideas to use as a basis for this new protocol:

• reactive operation
• route maintenance/repair
Furthermore there are other connection oriented net-

works that provide interesting concepts. E.g. our data
packets don’t carry any destination information in the
header. Instead the intermediary nodes use the incom-
ing (L2CAP or SCO) channel identifier to decide where to
forward the data. This is very similar to the circuit switch-
ing approach of ATM. We tried to take these ideas and in-
tegrate them in a routing protocol for Bluetooth networks
that is described in the next section.

VII. B LUETOOTH SCATTERNET ROUTING (BSR)

We named our routing protocol protocol Bluetooth
Scatternet Routing (BSR). It is a reactive routing protocol
similar to AODV or DSR but keeps additional informa-
tion on the state of links and tries to avoid long delays due
to inquiry or connection setup. The main components of
BSR are presented in the next subsections.

A. Path Discovery

Before participating in a path discovery, any node needs
to know its direct neighbors. These are found by regular
inquiries and are stored in an internal neighbor list.

When a node S wants to send data to another node D it
first picks an arbitrary neighbor X and connects to X using
an ACL connection. It then sends a Path-Request (PREQ,
figures 4a and 5). Each PREQ contains a PREQ-ID which
is incremented each time a node initiates a request. For

CODE

SOURCE BTA

DEST BTA

LEN TTL

PREQID FLAGS

N.-LEN 0

NEIGHBOR1 BTA

NEIGHBOR2 BTA

. . .

(a) PREQ (CODE=1)

(b) PEND (CODE=2)

PFOUND (CODE=3)

PINT (CODE=4)

CODE

SOURCE BTA

DEST BTA

LEN TTL

PREQID FLAGS

Fig. 4. BSR packet formats

S

D

1

2

3

4

5

6
7

(1) PREQ

S

D

1

2

3

4

5

6
7

(2) PFOUND & PEND

PFOUND

PFOUND

PFOUND

PEND

PEND

PEND

PEND

PEND

PREQ

PREQ

PREQ
PREQ

PREQ

PREQ

PREQ

PREQ

Fig. 5. Path Discovery

simplicity, we assume that there is no overflow in PREQ-
IDs. The PREQ furthermore contains a Time To Live field
(TTL) that is decremented by each intermediary node. Fi-
nally each packet includes a list containing all of the last
node’s neighbors.

On receiving a PREQ, X checks whether it already re-
ceived a PREQ packet from S with destination D and
a given sequential-ID. If not it forwards the packet to
all neighbors (excluding the originator of the data) in
the same manner as described above, decrementing the
TTL-field by one. All neighbors that are included in the
packet’s neighbor list (i.e. the neighbors of X’s predeces-
sor) are excluded from this, because it is expected that X’s
predecessor has already forwarded the PREQ to them; es-
tablishing another expensive ACL-connection is not nec-
essary.

When a node X receives a second PREQ packet for the
same path request, it decides (based on the TTL) which of
the two paths is shorter. It then sends a Path-End (PEND,
figure 4b) packet to the other host pruning the path. The
same happens when a node has no neighbors to relay the
PREQ packet to or it has received PENDs from all of its
neighbors. This way unnecessary Bluetooth connections
are closed after a short time.

Finally the destination node D will receive the PREQ.
It then sends a Path Found (PFOUND, figure 4b) packet
back the discovered path to S. Note that using this mech-
anism the path discovery will find a short but not neces-
sarily the shortest path. To really find the shortest path,
the destination would need to wait for an undefined time
to collect all PREQ packets and find the request with the
highest TTL. As this may take a very long time (given the

5

long connection setup times that we will see later) this is
not acceptable. So the goal is to get a connection quickly
even if the path used may not be optimal. One of the
optimizations below describes a way to use late-coming
PREQs with better TTLs.

When a node along a path receives a PFOUND, it for-
wards the packet towards the source of the PREQ S. At
the same time it sends PEND packets to all other nodes
to which it forwarded the PREQ packets earlier. As the
connection setup necessary for the PREQ delivery takes
much longer than just forwarding a packet over an estab-
lished connection, the PEND packets have a very good
chance of overtaking the PREQ. In this case the PREQ is
canceled so that the Bluetooth network is not stressed too
much.

When we want to use synchronous transfer and a
PFOUND packet reaches S, we need to establish SCO
links along the path found. Otherwise the already estab-
lished ACL connections can be used right away. Finally
the audio data can be transmitted. Each node stores a map-
ping of incoming and outgoing channel for each connec-
tion. So whenever a node receives data on one channel it
only needs a simple table lookup to find the corresponding
outgoing channel.

In case of SCO channels, all intermediary nodes can
(at maximum) relay only one connection and initiate or
terminate one other connection at a time. So if a node X
is already relaying one connection and receives a PREQ
for a node other than itself it needs to reply with a PEND.
If however the PREQ is searching a path to X, then X can
accept the connection. Possibly X must also perform a
number of master-slave switches to become master of all
three SCO links.

B. Path Maintenance

Path maintenance consists of two tasks:Path Monitor-
ing andPath Repair. For Path Monitoring we need to con-
stantly monitor the nodes’s established connections in or-
der to detect link failures and react accordingly. Bluetooth
takes over the task of link monitoring, so we don’t need to
send alive packets or similar.

When a link failure is reported, Path Repair takes place.
In the simplest case, all nodes detecting a broken path
send Path-Interrupted (PINT, figure 4b) packets towards
source and destination. The source of a connection can
then re-initiate a path discovery. See below for possible
optimizations.

C. Path Removal

When an end node of a connection wants to terminate
the connection, it simply sends a PEND packet along the

path and shuts down the Bluetooth connection towards
this neighbor.

D. Optimizations

There are a number of ways to optimize the above pro-
tocol. First we noticed that the order in which neighbors
receive PREQ is completely random. If we had a connec-
tion to the same destination D earlier and that connection
died for any reason, we might want to remember the for-
mer next hop neighbor for that connection and send the
PREQ packet there first. This is calledPreferred Neigh-
bor optimization.

In the protocol described above, the Path Repair will
take a very long time, because after a link failure a com-
pletely new path discovery needs to be initiated. This can
take a number of seconds, so clearly nobody will tolerate
regular breaks of multiple seconds during a call.

The first optimization for this case, calledLocal Re-
pair, makes use of the fact that a single link failure may
be healed locally. We assume that all nodes know all other
nodes in a path (this information has to be added to the
PREQ and PFOUND packet). So when a link fails, the in-
termediary nodes that form this link don’t generate PINT
packets immediately but instead try to do a local repair by
sending a new PREQ with a very small TTL and a desti-
nation of the next but one neighbor along the path. If this
request succeeds, the transmission can continue with only
a very short interruption. If the request fails again, a PINT
packet needs to be sent to the ends of the path.

An alternative to theLocal Repairstrategy is to keep a
backup path readily set up, so that a node can switch to
an alternate path in case of a link failure. ThisBackup
Pathstrategy implies that destinations receiving multiple
PREQ packets may answer two (or even more) of these
requests with a PFOUND packet. In this packet you have
to note the priority of the path. The source can then use
the path with the highest priority and in case of a failure
switch immediately to the second path. In our protocol
we use a backup path only when it is completely sepa-
rated from the primary path. When using a backup path
in combination with SCO links this backup path of course
consumes SCO connections which are very limited (see
above).

A last optimization is calledDynamic Path. As stated
earlier, our current protocol doesn’t necessarily create
shortest paths but instead uses the first PREQ request that
reaches the destination. PREQs with a better TTL that
reach the destination later are answered by a PEND packet
and discarded. WithDynamic Pathwe can answer these
requests with a PFOUND packet marking this path as ”al-
ternative”. When the source has already set up a path to

6

the destination and receives another PFOUND it can then
decide to use this second path and discard the first path by
sending a PEND.Dynamic Pathhas a number of problems
when different paths are not separated and PEND packets
from the first path tear down the second before it’s estab-
lished. We are still investigating solutions to these prob-
lems.

VIII. P ROTOCOLEVALUATION

The first goal when developing a protocol is of course
to implement it on real world hardware. Unfortunately
the available Bluetooth adapters have a number of re-
strictions that make it impossible to implement our pro-
tocol on the current hardware. We started our work
with PCMCIA cards ’Brainboxes BL-620’ which use a
Bluetooth chipset from Cambridge Silicon Radio (CSR)
called BlueCore01b. This cards currently have only a
very limited multipoint capability and the firmware re-
lease notes [11] state that a device can’t be a slave in one
Piconet and a master in another or a slave in both Piconets.
It is therefore nearly impossible to build larger Bluetooth
networks. Other hardware (like the Ericsson test mod-
ules [12] have similar restrictions. Thus we decided to
take a different testing approach. We measure character-
istics of a single Bluetooth Piconet and then transfer these
values to simulation results of our protocol. The Blue-
tooth stack we use is OpenBT 0.0.8 [13] compiled for a
Linux 2.4.16 kernel. As OpenBT has no support for SCO
links we use ACL for our tests.

A. Single Piconet

We want to measure the following values: Connection
setup time, single link delay and jitter. In order to get real-
istic results, we implement a scenario where one computer
records an audio signal from the soundcard’s line in and
transmits it to a second computer using a Bluetooth ACL
link (RFCOMM Profile). On the receiving side the audio
signal is played via the normal soundcard line out. An os-
cilloscope is used to produce the audio signal, record the
resulting signal and measure the delay. The complete test
scenario is shown in figure 6.

We measure a total delay of about 200 ms where the de-
lay also varies with the RFCOMM baudrate. At 115200
baud the delay is 270ms, at 460800 baud 164ms. In a
separate installation we test the delay of the PC soundsys-
tem alone (without Bluetooth transmission) and find it to
be about 136ms. So for the Bluetooth transmission alone
remains a delay of about 28ms.

Next we want to find out some information about
roundtrip delay and jitter in Bluetooth. As it is not prac-
ticable to measure jitter with an oscilloscope, we use a

Node 1 Node 2
Bluetooth

Stack/Hardware

Bluetooth

Stack/Hardware

Send-Prg. Receive-Prg.

Micro. In Line Out Micro. In Line Out

»

Frequency Generator Oscilloscope

Fig. 6. Test Scenario

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0

3
0
0

6
0
0

9
0
0

1
2
0
0

1
5
0
0

1
8
0
0

2
1
0
0

2
4
0
0

2
7
0
0

3
0
0
0

3
3
0
0

3
6
0
0

3
9
0
0

4
2
0
0

4
5
0
0

4
8
0
0

Con.Setup Time (ms)

P
(

X
<

=
C

o
n

.S
e

tu
p

T
im

e
)

Fig. 7. Distribution Function of the connection setup time

different setup, where on the one side a program gene rats
data packets with timestamps at a fixed rate (100ms per
packet). On the other side of the connection there is a
simple repeater sending back the received packets as fast
as possible.

When sending 100.000 packets we find the roundtrip
delay to be on average 56ms. When we set the delay to be
the half roundtrip delay we find it again to be 28ms which
is consistent with our former value. The roundtrip jitter is
measured as 11ms so the jitter for a unidirectional trans-
mission is around 5.5ms. In our tests we find 0.4% of all
the packets to have a delay larger than 800ms whereas the
rest of the packets have delays of less than 100ms. We as-
sume that these very long delays occur when transmission
errors happen. After a timer expiration a retransmission is
initiated by the baseband layer. As all other packets reach
their destination much faster we don’t see any packet de-
lays> 100 ms and< 800ms.

In an SCO scenario these retransmissions wouldn’t oc-
cur so that 0.4% of the packets would actually be lost. So
we set the loss rate to 0.4% and drop these packets from
our calculation of delay and jitter.

Finally we need to find out the times for a connection
setup. Again we use some simple test programs to do a
large number of connects and disconnects in a loop. Run-
ning this loop 300 times we measure an average connec-
tion setup time of 1100ms. Figure 7 shows the distribution
function of connection setup times measured.

7

B. Multihop Scenario

Next we will use the results of the last section to calcu-
late values for a multihop scenario. The remaining ques-
tions to solve are: How is the connection setup time, the
loss-rate, the delay and the jitter affected in a multihop
scenario? How does the number of clients in a given area
affect the overall connectivity?

In order to calculate the multihop connection setup
time, we simple have to multiply the single-hop connec-
tion setup time by the number of connection setups neces-
sary:

tBSR = n ∗ tBT (5)

A connection with 6 connection setups e.g. needs a con-
nection setup time of 6 * 1100ms = 6,6s. We need to
keep in mind that a BSR Path Discovery setup needs much
more connection setups than hops in the resulting path be-
cause for sending a PREQ we need to contact in worst
case all neighbors before finding the next hop in a path.

The loss rate in an established multihop path can be cal-
culated as follows: LetP0h be the probability of a packet
to be delivered from source 0 to destination h. The inter-
mediary nodes are called 1, 2 etc.. The overall loss rate is
then

lr0h = 1− P0h (6)

lr0h = 1−
n∏

i=1

P(i−1)i

lr0h = 1−
n∏

i=1

(1− lrBT)

lr0h = 1− (1− lrBT)h

So a Bluetooth connection with 3 hops will have a loss
rate oflrSD = 1− (1− 0.004)3 ≈ 1.2%. The delay of a
given multihop connection can be calculated as:

delaySD = h ∗ delayBT (7)

So again a 3 hop connection will have a delay of
delaySD = 3 ∗ 28ms = 84ms. Finally the jitter in a mul-
tihop path can be calculated as follows: LetD = {di|i =
1 . . . n} be the delay of a large number of packets andDij

be the D for a link from i to j where the hops are numbered
from 0 to h.

jitterSD = σ(D) (8)

jitterSD =
√

σ(D)2

jitterSD =
√

V AR(D)

jitterSD =

√√√√V AR

(
h∑

i=1

D(i−1)i

)

jitterSD =

√√√√V AR

(
h∑

i=1

DBT

)

jitterSD =
√

h ∗ V AR(DBT)

jitterSD =
√

h ∗ σ(DBT)
jitterSD =

√
h ∗ jitterBT

Again with our results from the last section we can calcu-
late the jitter for a 3 hop connectionjitterBT = sqrt3 ∗
6ms ≈ 10ms.

C. BSR Simulation

With the results of the last sections we are ready to sim-
ulate the behavior of a large Bluetooth Ad-Hoc network.
For this purpose we use a simple BSR simulator written in
Java which simulates a configurable number of nodes on
a rectangular area. The nodes don’t move during a simu-
lation run.

Each run has three phases. In a first phase the simulator
places the nodes at random positions in the area. Next
it determines for all nodes their neighbors. A neighbor is
any node that resides within a circular area with a diameter
of 10m around the node. Normally this would be done by
inquiries but as a simplification we dropped this from the
simulation. Then the simulator randomly picks a source
and destination node and performs a BSR Path Discovery.

Per run the simulator outputs the number of Bluetooth
connection setups that were altogether necessary to find
the destination and the length of the resulting path. Of
course there is also the possibility that a connection can’t
be established because there is no valid path from source
to destination.

Our first test shows how the number of nodes in a fixed
area (30m x 30m) influences the path length. Whereas 5
nodes provide a connectivity of only 33% this probabil-
ity raises linearly until 25 nodes where we have a nearly
100% coverage (see figure 8a). 15 nodes (P=75%) seems
to be a reasonable number where the use of BSR makes
sense. Figure 8b shows that the connection setup time
also raises with the number of nodes. With 100 devices
a connection setup takes 17.5s. Even with the 15 nodes
that provide a reasonable connectivity, we still have aver-
age setup times of 3.5s. During a call we can’t tolerate
such long interrupts so we definitely need optimizations
like Local Repair or Backup Paths.

Next we want to evaluate how the size and shape of
the area influenced the network. First we change the size
of a quadratic area that is populated with 70 nodes. As
you can see in figure 8c, the density of nodes is most of
the time high enough to allow nearly 100% connectivity.

8

The average path length raises until 4.6 hops (figure 8d).
This leads to a delay of up to 128ms which is tolerable
for phone calls. The connection setup times rise up to 13s
(figure 8e). Further tests clearly indicated that the path
length as well as delay and jitter is mostly influenced by
the diagonal length of the area. Figure 8f shows the de-
pendency between diagonal length and the latency for a
fixed number of nodes (70). This indicates that areas with
a diagonal length of some 100 meters are not suited for
BSR audio transmission.

To sum up the major simulation results:
• The connection setup time depends largely on the

number of clients. Without optimizations in Path
Maintenance the use of BSR is not reasonable, as
otherwise the repair of defect paths would interrupt
a phone call for some seconds. There should be
no more than about 55 nodes involved in the Path
Discovery as otherwise the initial connection setup
would take more than 10s.

• The path length that largely influences delay and jit-
ter depends on the diagonal length of the area. To
limit the delay and jitter this length should be limited
to 100 or 200m.

IX. SUMMARY AND OUTLOOK

With our work we try to answer the question whether it
is reasonable to build Bluetooth-based MANETs and use
them for audio transmission. The results indicate that this
depends largely on the intended use and environment. The
area for such a network is limited to a field of about 100m
x 100m because in larger areas the delay and connection
setup times get unacceptable large. Furthermore the num-
ber of nodes in this area is restricted, too. If there are more
than about 50 nodes in the area, we again have very long
connection setup times.

The last aspect is a problem for scenarios like large fair
halls, because there you might have a larger number of
people within a hall. But e.g. within company buildings
the use of our BSR protocol might enable people to make
phone calls from cellphone to cellphone without the use
of a traditional carrier.

For a more efficient use of BSR there need to be a num-
ber of changes done to the Bluetooth specifications. First
of all the connection setup times need to be reduced dras-
tically.

In our ongoing work we will try to add the optimiza-
tions outlined earlier to our simulations as well as build a
real-world prototype as soon as suitable Bluetooth devices
become available.

REFERENCES

[1] Bluetooth SIG: Bluetooth Specification Version 1.1. 2001,
http://www.bluetooth.com/pdf/Bluetooth11 SpecificationsBook.pdf.

[2] J. Bray, C.F. Sturman: Bluetooth - Connect without Cables. Pren-
tice Hall, New York, 2001.

[3] S. Corson, J. Macker: Mobile ad hoc networking (MANET):
Routing protocol performance issues and evaluation considera-
tions. IETF 1999, RFC 2501.

[4] V. Park, S. Corson: A Highly Adaptive Distributed Routing Algo-
rithm for Mobile Wireless Networks. Proceedings of IEEE INFO-
COM ’97, April 1997; pp 1405-1413.

[5] D.B. Johnson, D.A. Maltz: Dynamic Source Routing in Ad Hoc
Wireless Networks. Mobile Computing, T. Imielinksi and H. Ko-
rth, eds. The Kluwer International Series in Engineering and Com-
puter Science (vol. 35), Kluwer Academic Publishers, Norwood,
Mass. 1996; pp. 153-181.

[6] C. Perkins, E. Royer: Ad-Hoc On-Demand Distance Vector Rout-
ing. Proceedings of 2nd IEEE Workshop on Mobile Computing
Systems and Applications, Feb. 1999; pp. 90-100.

[7] E.M. Royer, C.-K. Toh: A Review of Current Routing Protocols
for Ad-Hoc Mobile Networks. IEEE Personal Communications
6(2), April 1999; p. 46-55.

[8] L. Wernli, R. Semadeni: Bluetooth Unleashed - Wireless Net-
zwerke ohne Grenzen. 2001, http://www.tik.ee.ethz.ch/ beu-
tel/projects/sada/saSemadeniWernli.pdf.

[9] Z. Wang, R. Thomas, Z. Haas: Bluenet - a New Scatternet Forma-
tion Scheme. In Proceedings of the 35th Annual Hawaii Interna-
tional Conference on System Sciences, January 2002.

[10] G Zaruba, S. Basagni, I. Chlamtac: Bluetrees - Scatternet For-
mation to enable Bluetooth-based Ad Hoc Networks. Proceedings
of IEEE International Conference on Communications, 2001, pp
273–277.

[11] Cambridge Silicon Radio: BlueCore01 12.7 Firmware Release
Notes. 2001, http://www.csr.com/, (Only available at request).

[12] Ericsson Microelectronics: ROK 101 007 Bluetooth Module
Datasheet. 1999, http://www.comtec.sigma.se/.

[13] AXIS: AXIS OpenBT Stack. 2002,
http://sourceforge.net/projects/openbt/.

9

0

5000

10000

15000

20000

5

2
0

3
5

5
0

6
5

8
0

9
5

Number of nodes

C
o

n
.S

e
tu

p
T

im
e

(m
s

)

0

0,2

0,4

0,6

0,8

1

1,2

5 10 15 20 25 30 35 40 45 50

Number of nodes

P
(c

o
n

n
e

c
ti

o
n

p
o

s
s

ib
le

)

0,96

0,97

0,98

0,99

1

25 10
0

22
5

40
0

62
5

90
0

12
25

16
00

20
25

25
00

Area (m²)

P
(c

o
n

n
e

c
ti

o
n

p
o

s
s

ib
le

)

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

25 100 225 400 625 900 1225 1600 2025 2500

Area (m²)

N
u

m
b

e
r

o
f

h
o

p
s

0

5000

10000

15000

25 10
0

22
5

40
0

62
5

90
0

12
25

16
00

20
25

25
00

Area (m²)

C
o

n
.S

e
tu

p
T

im
e

(m
s

)

0

50

100

150

20 30 40 50 60 70

Diagonal length (m)

D
e

la
y

(m
s

)

(a) Fixed area: connection propability depending

on number of nodes

(b) Fixed area: average connection setup time

depending on number of nodes

(c) Fixed number of nodes: connection propability

depending on area

(d) Fixed number of nodes: average path length

depending on area

(e) Fixed number of nodes: average connection

setup time depending on area

(f) Fixed area and number of nodes: average delay

depending on diagonal length

Fig. 8. Simulation Results

