
Shallow Bounding Volume Hierarchies for Fast SIMD Ray Tracing of
Incoherent Rays∗

H. Dammertz1 and J. Hanika1 and A. Keller2

1{holger.dammertz, johannes.hanika}@uni-ulm.de, Ulm University, James-Franck-Ring, 89081 Ulm
2
alex@mental.com, mental images GmbH, Fasanenstrasse 81, 10623 Berlin, Germany

Abstract

Photorealistic image synthesis is a computationally demanding
task that relies on ray tracing for the evaluation of integrals.
Rendering time is dominated by tracing long paths that are
very incoherent by construction. We therefore investigate the
use of SIMD instructions to accelerate incoherent rays. SIMD
is used in the hierarchy construction, the tree traversal and the
leaf intersection. This is achieved by increasing the arity of ac-
celeration structures, which also reduces memory requirements.
We show that the resulting hierarchies can be built quickly and
are smaller than acceleration structures known so far while at
the same time outperforming them for incoherent rays. Our
new acceleration structure speeds up ray tracing by a factor
of 1.6 to 2.0 compared to a highly optimized bounding inter-
val hierarchy implementation, and 1.3 to 1.6 compared to an
efficient kd-tree. At the same time, the memory requirements
are reduced by 10–50%. Additionally we show how a caching
mechanism in conjunction with this memory efficient hierarchy
can be used to speed up shadow rays in a global illumination
algorithm without increasing the memory footprint. This opti-
mization decreased the number of traversal steps up to 50%.

1 Introduction and Previous Work

Improving ray tracing [Gla89, Shi00] performance has received
thorough attention [Hav01, Smi98]. One of the most pop-
ular acceleration structures for fast ray tracing is the kd-
tree [HB02, SSK07]. Bounding volume hierarchies (BVH) be-
long to the simplest and most efficient acceleration schemes for
ray tracing [GS87, WK06, WBS07, Gei06]. Memory require-
ments [WK07] and memory latency [Wal07] have been recog-
nized as bottlenecks and fast tree construction has been inves-
tigated [WK06, WH06, SSK07]. A lot of work has been spent
to exploit SIMD instructions of modern processors for coher-
ent packets of rays [WBWS01, Wal04, RSH05, Ben04, WBS07,
Res07].

Algorithms that perform physically correct simulations of
light transport [Vea97] tend to shoot rays as wide-spread as
possible in order to increase efficiency, e.g. by employing quasi-
Monte Carlo methods [KK02]. As a result, most rays that

∗author’s preprint of the paper submitted to EGSR 08

account for global illumination effects are incoherent. Because
of that, major parts of the simulation cannot benefit from trac-
ing packets of rays. This has been recognized in professional
rendering products [CFLB06, Sec. 6.4], too. They use SIMD
instructions by intersecting multiple objects at a time. Com-
pared to tracing packets this has the major disadvantages that
tree traversal is not accelerated and that memory bandwidth is
not reduced.

We address the bandwidth problem by reducing the mem-
ory footprint of the acceleration data structure. In contrast to
reduced-precision methods [Mah05, HMB06], which work best
when the overhead of transforming the packed data to world
space is amortized over a bundle of rays, we increase the arity
of the acceleration hierarchy, which saves memory for nodes and
pointers. This is similar to a lightweight BVH [CSE06], but in
the context of efficient SIMD processing and without the draw-
backs of limited precision and median split tree construction.

We also show how to use the memory layout of the new accel-
eration structure to contain additional data used to transpar-
ently speed up coherent rays. This uses backtracking in a way
related to [HB07] but without additional memory requirements
and with entry points at every node, not in a sparse way on top
of another acceleration structure.

Smits [Smi98] naturally recognizes the possibility of BVHs
with higher arity (without regard to parallel processing), but
does not indicate how to construct the acceleration structure in
this case while still minimizing the cost function [GS87]. Also,
the suggested data structure does not support sorted traver-
sal, which we found to be crucial for good performance on cur-
rent CPU architectures, especially for intersection rays. He also
points out the opportunity of speeding up shadow rays using a
cache. As this cache only stores one single primitive with the
previously found intersection and is not hashed per light source,
he states that the method only works well with large triangles
and very coherent rays.

2 n-ary Bounding Volume Hierarchy

Bandwidth problems are an issue [Wal07] for efficient stream-
ing processing. We achieve a small memory consumption by
flattening the hierarchy and favoring larger leaves which also
allow for efficient streaming intersection of the primitives. We
use axis-aligned bounding boxes, stored as a minimum and a

1



maximum corner point, for bounding volumes. A detailed de-
scription of the memory layout is given in Section 2.1.

As the SIMD width is n = 4 in most current processors,
our new BVH implementation is called QBVH (Quad-BVH)
throughout this paper, although the concepts are not limited
to n = 4.

Figure 2 illustrates the new construction of a 4-ary QBVH
tree, which is detailed in Section 2.2. Here the same split plane
proposals as for the binary case are used but instead of creating
nodes after each split the object sets are split again resulting in
four disjoint object sets. Now, contrary to the common notion
of bounding volume hierarchies, each node does not contain
a single bounding volume. Each node directly contains the
four bounding volumes of its children. So already the top level
node of the tree contains four bounding boxes, which can be
processed using SIMD.

Additionally, the four child pointers and the three axes of
the proposed split planes are stored for each inner node. These
split axes are used for an efficient, sorted traversal similar to
binary BVHs as described in Section 2.3.

In Section 2.4, the paradigm of streaming processing and low
memory consumption is applied to leaf intersection. This is
achieved using a small cache storing the triangles in a SIMD-
friendly form. This also allows to use more memory efficient,
but slower, representations of the triangle data without a major
speed impact. In Section 3.3 the vertex-index representation of
triangles is compared to the direct 9 floats representation often
used in real-time ray tracing. Even though better methods
for memory reduction exist [LYM07], they are not as easily
integrated into an existing rendering system. Cache-friendly
padding of the node structure provides us with some additional
memory which can be used to improve performance, we provide
a way to exploit this to accelerate shadow rays in Section 4.

2.1 Memory Layout

In real-time rendering systems, the triangle data is often sorted
directly during tree construction for more efficient memory ac-
cess in the leaf intersection. However, this is not an option in
production rendering systems, as other parts of the renderer
may depend on the original order. For this reason, we choose
to sort an additional index array instead.

In the implementation we chose the following data layout for
the tree nodes:

struct SIMD_BVH_Node {
float bbox[2*4*3];
int child[4];
int axis0, axis1, axis2;
int fill;

};

The result is a large BVH node with a size of 128 bytes which
perfectly matches the caches of modern computer hardware.
The 4 bounding boxes are stored in structure-of-arrays (SoA)
layout for direct processing in SIMD registers. Of course the
axes could be packed into a single value but for cache alignment
reasons the size of 128 bytes is favorable and packing this data
would save only 10% of the total memory consumption. The
integer fill is used to store additional data for optimizations
later on. The tree data is kept in a linear array of memory
locations, so the child pointer can be stored as integer indices
instead of using platform-dependent pointers.

It is important to note that for a leaf no additional
SIMD BVH Node is created. The leaf bounding box is already
stored in the parent and the leaf data can be encoded directly
into the corresponding child integer.

We use the sign of the child index to encode whether a node
is a leaf or an inner node.

x

y y

xyy

Figure 2: Construction of a binary BVH (left), compared to the
construction of a 4-ary BVH (QBVH, right). Four
children are created for each node. The top row in-
dicates the split plane candidates common to both
approaches.

There exist various encoding possibilities and it depends on
the processor architecture and compiler which one is the most
efficient. The most memory efficient is to directly encode the
leaf information into the remaining 31 bits. Generally we chose
4 bits for the number of triangles in the leaf and the remaining
27 bits as the start index in the triangle array. Since the trian-
gle intersection is done using SIMD, the number is a multiple
of 4. So up to 64 triangles per leaf can be stored and up to 227

triangles can be indexed. Empty leaves are encoded in a special
value (INT MIN) so the 4 bits can be used for the full 16× 4 tri-
angles. Note that when using bounding volume hierarchies the
number of triangles per leaf is easily bounded because forcing
another split guarantees a reduction in the number of triangles.

If the upper bound of 227 is not acceptable for certain ap-
plications, a slightly less memory efficient version is created.
The full 31 bits are used to index an additional data structure
containing the leaf information. Another memory efficient en-
coding strategy is to store only the start value of the triangle
reference array and to mark the last triangle with a negative
index in this array.

2.2 Tree Construction by Flattening Binary Trees

The n = 2k-ary BVH tree construction can be seen as collapsing
a classical binary tree. This is illustrated in Figure 2 for the
case of n = 4. Each k-th level of the tree is kept and the
rest discarded. This results in 2k bounding volumes per node.
Figure 3 illustrates how a QBVH is constructed, for k = 2,
approximately halving the memory requirements.

This view allows to use the same construction principles used
for binary trees to construct 2k-ary trees. In our implementa-
tion we used recent results [SSK07, Wal07] to construct good
quality trees with fast construction times. We use min-max
binning with 8 bins to approximate the surface area heuristic

2



0

1

2

3

4

0

1

collapse

Figure 3: Collapsing a binary tree to a QBVH. Classical build
methods are used to create a binary tree, which is
then collapsed by leaving out intermediate levels.

(SAH). This implementation is vectorized by the compiler and
efficiently uses SIMD instructions. As proposed in [SSK07],
only a fraction of the primitives is used for the SAH approxi-
mation in higher levels of the tree. Further speedup is achieved
by precomputing the bounding boxes of the triangles in a SIMD
layout, overwriting the triangle data. This way, the implemen-
tation can benefit from SIMD operations during construction
without using additional memory. After construction, the trian-
gle data is reloaded from disk. The construction is additionally
sped up by allowing more primitives per leaf, resulting in flat-
ter trees. In all measurements, we create a leaf whenever the
primitive count drops below 17. Using this implementation, it
is possible to get very fast tree construction times that are even
comparable to the BIH [WK06].

Figure 3 also illustrates that the resulting tree consumes only
a fraction of the memory needed by the original tree, at the
expense of larger nodes. But this fits modern streaming SIMD
architectures well. A large chunk of aligned data can be loaded
and worked on in parallel.

While using four boxes per node would already be sufficient
to enable SIMD processing of the above data structure in the
manner of [CFLB06], it is important to store along which planes
(perpendicular to the canonical axes x, y, or z) the objects
were partitioned. The plane indices of the binary hierarchy are
stored as three integers axis0, axis1, and axis2, respectively.
This allows exploiting the spatial order of the boxes for a more
efficient pruning using the sign of the ray direction during tree
traversal.

2.3 Tree Traversal

Given a ray, the stack-based traversal algorithm starts by si-
multaneously intersecting the ray with the four bounding boxes
contained in the root SIMD BVH Node using SIMD instructions.
The pointers of the children with a non-empty bounding box
intersection are sorted and then pushed on the stack. The rou-
tine is repeated by popping the next element as long as there
is one.

The ray is prepared prior to traversal by replicating the values
for the maximum ray distance (tfar), the origin, and reciprocal
of the direction across a SIMD register. Additionally the signs
of the components of the ray direction are stored as integers to
allow easy indexing of the near and far bounding box sides.

For the bounding box intersection we use a branch-free im-
plementation of the slab test [WBMS05]. The 4 boxes are in-
tersected simultaneously with the replicated ray. The return
value of this function is a SIMD mask containing all ones when
the respective box was intersected and zeroes otherwise.

In order to enable an early pruning of the traversal, the nodes
are pushed on the stack according to the order determined by
the ray direction. Using the split plane indices stored during

4

3

2

1

A B

C D

Figure 4: Sorted QBVH traversal. The dimension of the split
plane proposals are kept to sort the child nodes using
the ray direction.

tree construction, the sign of the respective component of the
ray direction vector determines whether or not to swap the
two corresponding children, as illustrated in Figure 4. This is
similar to the order a kd-tree would define using the same split
plane proposals.

Two implementations of this sorting turned out to be good
choices. The most elegant variant is based on the SIMD sorting
algorithms described in [FAN07], which works branch-free on
SIMD registers by using masking and swizzling.

First the four child pointers are loaded into a SIMD register.
Second, a SIMD mask is constructed for each of the three axes
stored in the BVH node based on the sign of the ray direction
of that component. Third this mask is used to select either
the original value or a shuffled value resulting in a correctly
ordered SIMD register. Finally the contents of the SIMD child
register are pushed onto the stack in a scalar way. This is done
by pushing a child pointer and then decrementing the stack
top pointer by the corresponding entry of the reordered result
mask from the bounding box intersection. For this purpose, this
mask has to be ordered in the same way as the child pointers
to push the correct children onto the stack. The decrement
works because the result mask contains all ones in case of an
intersection, which equals −1 as an integer, and all zeroes else.

Surprisingly, an implementation using cascaded branches
based on the ray direction signs and split axes is equally fast on
an Intel Core 2 processor in the general case and even slightly
faster when only primary rays are traced. This may be due to
the sophisticated branch prediction of this particular processor.
The implementation is also much simpler than the SIMD sort-
ing. The first decision based on axis0 chooses which two of
the four children should be intersected first. In Figure 4, this
corresponds to the decision whether to visit (A, C) or (B, D)
first. The second and third decision sort each of the child pairs
again, resulting in (A, C) or (C, A) and (B, D) or (D, B).

As the bounding boxes are already intersected while process-
ing the parent, a late early-out is performed: if a triangle inter-
section is found, pruning of bounding boxes which are farther
away can only be done one step later, during processing of the
next node. Additionally storing the distance of the bounding
box intersections with the child pointer on the stack solves this.
While on current Intel processors and the Cell processor the
traversal is faster without this “optimization”, it may pay off
for wider SIMD operations as announced for example for the
Larrabee processor.

In addition we like to note that our experiments report less
bounding box intersections as compared to sorting the bound-
ing boxes by their actual intersection distances with the ray.
Table 1 gives a comparison of these two methods.

2.4 Triangle Intersection, SIMD Caching and
Vertex-Index Data Structure

Similar to [Res07] we can even get away with much flatter hier-
archies at the cost of leaves that contain more triangles. This

3



scene axes-based distance-based

power plant 799.6 810.9
sponza atrium 339.2 347.6
conference 219.1 224.2

Table 1: Number of bounding box intersections (in millions) us-
ing axes-based sorting vs. distance to box entry point,
measured using path tracing (512× 512 with 16 sam-
ples per pixel). The images correspond to the scene
and camera position, in this order.

further improves traversal speed and also enables the efficient
use of streaming SIMD instructions to process multiple objects
at once [CFLB06]. Compared to [Res07], we use single rays and
avoid performance losses caused by masking.

If memory were of no concern, the triangle data in the leaves
could be precomputed and stored in a SIMD-friendly layout.
Since most of the time this is not practical, the original trian-
gle layout is left untouched. For high performance ray tracing,
Wald [Wal04] uses 48 bytes per triangle, Wächter [WK06] 36
bytes. The more compact vertex-index layout stores all vertices
in an array and only three indices per triangle referencing these
vertices. This is a widely used layout in 3D modeling applica-
tions. Usually this introduces performance penalties due to an
indirection in memory access.

Our implementation supports the 36 bytes layout as well as
the vertex-index form. We efficiently intersect four primitives at
once using a branch-free SIMD version of the test described by
Möller and Trumbore [MT97]. For this test, the triangle data
has to be collected and swizzled to an SoA SIMD layout. This
already works surprisingly fast, but to maximize performance,
we use a small direct-mapped cache for each rendering thread
to store the precomputed layout. This caching mechanism also
allows the use of vertex-index representation for the triangle
data without significant performance loss (see Table 6).

3 Results

We integrated our new BVH into two different rendering sys-
tems. The first one contains highly optimized implementations
of a BIH [WK06] and a memory-bounded kd-tree and uses dif-
ferent unbiased rendering algorithms. This allows for a direct
comparison of rendering performance on the same hardware
and using the same rendering algorithm. The second system
is based on instant radiosity [Kel97] and is used for the entry
point caching comparison in Section 4. All measurements were
performed using a single thread on an Intel Core 2 CPU at
2.33GHz. Note that all measurements were done in a full ren-
dering system where sampling, shading and texture look-up are
a significant part of the rendering time and are not sped up by
faster ray tracing.

Section 3.1 and 3.2 use the first rendering system to compare
the QBVH to the other acceleration structures. This system
only supports the 36 byte triangle layout. Two versions of the
QBVH are compared. The first one does not employ the SIMD
triangle caching from Section 2.4 and is called ncQBVH. It uses
leaves of 8 triangles. The second version uses a SIMD cache size

of 128 entries with a leaf size of 16 triangles.
In Section 3.3 the second renderer is used to evaluate the

speed impact of using vertex-index based triangle representa-
tion.

3.1 Rendering Performance

To estimate the performance in a usual rendering setup we used
three scenes of different complexity and left all parameters at
their default settings. Figure 5 shows the scenes used. The
conference room consists of 1M triangles, the interior scene is a
complete house with 900K triangles and the power plant model
has 12M triangles.

Figure 5: The three scenes (conference, interior, power plant)
used for comparison of the QBVH against BIH and a
kd-tree. The conference room and interior were ren-
dered with a bi-directional path tracer using 8 bi-
directional samples per pixel. The power plant was
rendered with a path tracer and 32 paths per pixel.

Table 2 shows the measured rendering performance from in-
vocation of the renderer to the final image (total time to im-
age: TTI) for each acceleration structure (ACC). Additionally
the time for constructing the acceleration structure (ACT), the
memory consumed by the acceleration structure (MEM), and
the time spent in the ray tracing kernel (RTT) is given. The
QBVH uses very little memory while even outperforming the
tree construction times of the BIH. Also note that the ray trac-
ing kernels were all included in the same rendering system for
a precise comparison. This made some optimizations in the
tree construction impossible—optimizations which would allow
building the QBVH for the plant in around 14 seconds. For de-
tailed statistics about the tree quality and ray tracing behavior
of the different kernels, see Table 3.

Table 4 gives an idea of how effective the use of SIMD in-
structions is, by comparing packet traversal to the QBVH in
the setting for which it has not been designed: casting coherent
primary rays only.

3.2 Memory Bound Performance

Memory consumption is an important part of any rendering sys-
tem. All three acceleration structures allow to a-priori bound
the memory used [WK07]. Table 5 shows the performance of
each acceleration structure with bounded memory. The same
scenes and rendering settings as in the previous section are
used. The kd-tree has serious problems with tight memory
bounds (note that a build of the conference room with 5 MB
was impossible to render in acceptable time) while especially
the QBVH reacts robustly to limiting the memory.

3.3 Vertex-Index Triangle Representation

The second renderer supports switching between the flat 36
byte triangle representation and a more memory efficient index-
based representation. The indexed representation is more time
consuming for ray tracing because an additional indirection has
to be performed prior to triangle intersection. This overhead is

4



Scene ACC inner nodes leaves tris/leaf tris/ray inner/ray leaves/ray

Conf. kd 371018 384349 13.2 16.2 40.7 6.36
(1M) BIH 1066634 557709 1.8 7.2 71.2 3.78

QBVH 44704 133323 7.4 20.4 11.8 2.29

Interior kd 429294 450133 9.0 20.6 50.0 4.89
(0.9M) BIH 931393 510266 1.8 8.4 101.1 4.58

QBVH 41569 123144 7.4 21.7 18.1 2.48

Plant kd 4379594 4801842 14.9 29.0 59.1 4.28
(12M) BIH 10923900 6717548 1.9 10.5 141.4 5.01

QBVH 548908 1603848 7.9 32.6 24.5 2.93

Table 3: Detailed statistics for different acceleration kernels (ACC). This table shows, for the respective kernel and scene, in this
order: the total number of inner nodes, the total number of non-empty leaf nodes, the average number of triangles per
leaf node, the average number of intersected triangles per ray, the average number of traversed inner nodes per ray, and
the average number of intersected leaf nodes per ray. The measurements have been made under the same conditions as
in Table 2.

Scene MEM ACC ACT TTI RTT

Conf. 32 MB kd 2.1s 113.7s 80.5s
(1M) 23 MB BIH 1.4s 139.3s 104.7s

24 MB ncQBVH 1.5s 95.7s 63.6s
16 MB QBVH 1.2s 85.0s 53.8s

Interior 27 MB kd 1.8s 107.3s 77.7s
(0.9M) 21 MB BIH 1.4s 131.1s 101.4s

22 MB ncQBVH 1.5s 85.5s 56.3s
14 MB QBVH 1.1s 81.1s 52.0s

Plant 392 MB kd 30.0s 118.5s 97.3s
(12M) 206 MB BIH 21.5s 143.6s 112.4s

310 MB ncQBVH 23.9s 104.1s 78.0s
185 MB QBVH 19.1s 94.7s 56.1s

Table 2: Performance comparison of BIH, kd-tree, non-cached
QBVH (ncQBVH) and cached QBVH. The scenes are
shown in Figure 5. The number in brackets are the
number of triangles in millions. MEM is the memory
needed by the acceleration structure, ACC the type of
acceleration structure used. ACT is the tree construc-
tion time, TTI the total time to image and RTT the
pure ray tracing time.

reduced when the leaf caching based QBVH implementation is
used.

The same scenes as in the previous sections are used for this
comparison (see Figure 1). Each rendering was performed at
a resolution of 800 × 600 pixels with 16 passes. Table 6 shows
the rendering times and the memory used by the triangle data
of the scenes. The resulting QBVH trees are the same as in
Section 3.1 and both versions use the SIMD triangle layout
caching.

4 Accelerating Shadow Rays for Point Light
Based Global Illumination

Visibility rays (or: shadow rays) are an essential part in many
rendering algorithms with deterministic connections of points,
e.g. in bi-directional path tracing or instant radiosity. They
are merely used to determine the mutual visibility of two given
points. Any intersection of an interval on a ray with an object
is sufficient to determine occlusion. Therefore, three optimiza-
tions are to quit the traversal on the first intersection found,
to omit the sorting of the nodes pushed on the stack, and not
to compute intersection distances, which can simplify object
intersection routines [Smi98].

Another important general optimization is to start the traver-
sal deeper in the tree instead from the root node. If a suitable
entry point is known, this can save major parts of the process

Kernel Sponza Interior 1 Interior 2 Plant

2x2 BIH 16.3 16.6 10.9 3.6
BIH 6.4 6.6 4.1 1.4

QBVH 14.1 11.9 9.03 2.4

Table 4: Comparison of frames per second for 2×2 SSE packets
in a BIH vs mono ray BIH vs. mono ray QBVH on an
Intel Core 2 Duo (480 × 320). The images depict the
camera positions, in the same order as in the table. In
the packet version, flat shading and ray creation is also
done using SIMD. Most of the performance benefit of
the packets is due to coherent memory access, which
is already lost for Interior 2, where QBVH and packet
traversal perform about the same. So the QBVH is
able to make effective use of SIMD instructions, even
without exploiting high coherence for memory access.

of traversing down to the first leaf.

Reshetov et al. [RSH05] use an entry point search for large
bundles of rays in kd-trees. In our approach we use a backtrack-
ing method that allows every node of the tree to be used as an
entry point and will give correct results. For the backtracking,
we store the parent with each node. As the SIMD BVH Node still
provides some room to store additional information, it is pos-
sible to keep the index of the parent node without additional
memory requirements.

This method proved especially suitable for shadow rays. It
is possible to take advantage of implicit coherence of shadow
rays and start tracing at the last node where an intersection
was found.

Figure 6 shows the idea in the setting of a point light
source based global illumination renderer. Consecutive visibil-
ity queries result in occlusion by different but spatially nearby
triangles. This fact can be exploited by using the node of the
last occlusion as the entry point for the next shadow ray. The
tree is then searched for intersecting geometry using a back-
tracking algorithm: the regular traversal stack is initialized with
the children of the entry point node and intersected the usual
way. If no occlusion has been found so far, the entry point node
is the root node, so there is no special code for this case. Next,
if the stack is empty, all children of the parent of the entry point

5



Conference
MEM 16 MB 5 MB

ACC kd B
IH

n
cQ

B
V

H

Q
B

V
H

kd B
IH

n
cQ

B
V

H

Q
B

V
H

ACT 1.3s 1.2s 1.2s 1.2s — 0.7s 0.7s 0.7s
TTI 119s 138s 99s 85s — 220s 224s 120s
RTT 89s 106s 86s 54s — 189s 190s 91s

Interior
MEM 16 MB 8 MB
ACT 1.3s 1.2s 1.1s 1.1s 0.8s 0.9s 0.9s 0.9s
TTI 113s 130s 91s 81s 250s 139s 118s 88s
RTT 84s 101s 63s 56s 219s 110s 90s 59s

Plant
MEM 185 MB 100 MB
ACT 21s 18s 19s 19s 14s 15s 16s 16s
TTI 129s 139s 105s 95s 369s 145s 117s 95s
RTT 85s 98s 78s 56s 330s 107s 90s 68s

Table 5: The performance of the different acceleration struc-
tures when the available memory is a-priori bounded
(MEM). ACC is the type of acceleration structure
used. The timings are given for the acceleration struc-
ture construction time (ACT), the total time to im-
age (TTI) and the time spend in the ray tracing core
(RTT).

Scene 36 TTI 36 MEM VI TTI VI MEM

Interior 107s 32 MB 108s 16 MB
Plant 191s 438 MB 197s 213 MB

Conference 62s 43 MB 66s 18 MB

Table 6: This table compares the impact of using the flat trian-
gle layout with 36 bytes per triangle (36) to a vertex-
index (VI) based representation. TTI is the total time
to image and MEM is the memory consumption of the
triangle data.

node are pushed to the stack, except the one that has just been
processed. For the next iteration, the entry point node is set
to its parent. The algorithm terminates when the parent of the
root node is about to be processed. So the regular traversal is
only extended by one variable and one additional loop. If a leaf
node is found as an occluder, its parent node is cached for this
point light source.

What remains is finding a suitable entry point for an occlu-
sion query. The described algorithm above is correct for any
entry point, but an acceleration can only be expected when the
hit is close to a previous occlusion. The rendering system uses
occlusion queries given by two points, where the first one is the
path’s hit point and the second one the light source position. In
our implementation we use a simple unbounded (i.e. hashed)
voxel grid and the light position as hash. For each position
the last found occlusion entry point is recorded. If no occlu-
sion occurred, the root node is used. In the statistics we used a
hash table with 4096 entries and divided the scene into (10cm)3

voxels (assuming the scenes are modeled in the correct scale).

This optimization can be transparently incorporated into any
existing rendering system which spawns shadow rays with two
points to be checked for visibility.

5 Results for Accelerating Shadow Rays

All benchmarks were done using a single thread on a Core 2 pro-
cessor. Extending this to a multi-threaded version is straight-

Figure 6: Spatial coherence of occluders when using point light
based global illumination. The entry point cache is
able to quickly find occlusions, since the visibility rays
to the same point light source (depicted with a star)
exhibit some coherence. The big leaves of the QBVH
make a hit even in the same leaf more likely. The
performance gain is achieved in a way which is com-
pletely transparent to the underlying renderer, no ad-
ditional complexity is introduced to existing systems
(as would be the case for ray packets).

forward for the application of photorealistic rendering, where
the fast tree construction times vanish compared to the time
required for ray tracing. The resolution for the benchmarks
are 800× 600 pixels and for the point light based approach 16
rendering passes were used with an average of 22 point light
sources per pass. Primary rays were created per scanline, addi-
tional speedup can be expected when using Hilbert curves. We
compare the normal implementation of the QBVH (using only
the standard shadow optimizations) with the one using the en-
try point caching. The statistics contain the total number of
bounding box intersections performed for the final image. The
speedup is of course larger in scenes with a larger amount of
occlusion. This explains why the interior scene only shows a
marginal speed up. The results are shown in Table 7.

Scene N#BBox NTTI C#BBox CTTI

Conference 16.8 73s 11.7 62s
Conference 2 20.7 92s 9.9 60s
Interior 17.3 109s 15.4 107s
Plant 44.8 297s 25.0 191s

Table 7: Comparison of the number of box intersections and
total time to image image between the normal QBVH
version (N#BBox, NTTI) and the entry point cache
version (C#BBox, CTTI). The images at the begin-
ning of this paper show the test scenes used. For the
measurement they were were rendered only at a resolu-
tion of 800× 600 pixels with 16 passes and an average
of 22 point light sources per pass. Conference 2 is
the same conference scene but with the camera placed
partly under the table.

The caching method could also be used for other acceleration
structures. But compared to acceleration structures like the
kd-tree, the BIH or binary BVHs which use many, very densely
packed, small nodes, this method works especially well for the
QBVH. The additional memory requirement of one more parent
index per node would result in 50% more memory for standard
8 bytes kd-tree nodes.

The approach can also be used for non-shadow rays. Then

6



the procedure cannot benefit from the early-out of shadow rays,
i.e. processing must always continue up to the root node. Still
it can be beneficial, if the rays expose some kind of coherence,
for example primary rays from the eye or coherent reflections.
This allows the ray tracing core to transparently exploit im-
plicit coherence by caching previous intersection entry points
without changing the interface and without performance loss
when incoherent rays are used.

6 Conclusion and Further Work

We efficiently applied SIMD instructions for accelerating the
tracing of single rays and kept the memory footprint of the al-
gorithms as low as possible. The algorithm is simple to use in a
wide range of applications and still allows for taking advantage
of modern computer architectures. We showed that the perfor-
mance of our algorithm is better than current high performance
single ray tracing algorithms and the memory requirements are
reduced due to the flat hierarchies and caching we use.

Contrary to tracing ray packets to reduce memory band-
width, higher arity trees achieve the reduction of memory band-
width by just using less memory. This in turn increases cache
coherence and thus effectively reduces the sum of latencies.

It is obvious how to generalize the approach to higher arity.
A multiple of 4 perfectly supports current processor’s stream-
ing SIMD extensions (AltiVec, SSE). In contrast to tracing
ray packets, the implementation on novel architectures like the
CELL and GPUs with CTM or CUDA is simplified; the 16-way
SIMD path of Intel’s Larrabee processor is an obvious candi-
date for our algorithm and the large node size suits modern
cache architectures and memory layouts very well.

Experiments showed that forcing the same split plane axis for
all three splits does not introduce severe performance penalties
and the simplified sorting step in the traversal routine can even
pay off for a SIMD width of four in some scenes. With the
availability of wider SIMD units, this approach has to be further
investigated.

Additionally an implementation of this acceleration structure
as special purpose hardware (for example in an FPGA) looks
very promising.

The tree construction could also be improved. While using
the standard binary tree construction for building n-ary BVHs
is a simple and practical approach, faster build times could be
achieved if an equally good heuristic could be found for multiple
split planes at once. The entry point cache could be extended
by a better hashing mechanism to accelerate bi-directional light
transport algorithms equally well as point light source based
ones.

7 Acknowledgments

The authors would like to thank mental images GmbH for sup-
port and funding of this research. Credits go also to toxie for
providing his implementation of state-of-the art ray tracing ker-
nels and necro for the global illumination framework to enable
fair comparisons on the same machine.

References

[Ben04] Benthin C.: Realtime Ray Tracing on Current
CPU Architectures. PhD thesis, Saarland Univer-
sity, 2004.

[CFLB06] Christensen P., Fong J., Laur D. M., Batali
D.: Ray tracing for the movie ’Cars’. In Proc.

2006 IEEE Symposium on Interactive Ray Tracing
(2006), pp. 73–78.

[CSE06] Cline D., Steele K., Egbert P.: Lightweight
bounding volumes for ray tracing. Journal of
Graphics Tools 11, 4 (2006), 61–71.

[FAN07] Furtak T., Amaral J. N., Niewiadomski R.:
Using SIMD registers and instructions to enable
instruction-level parallelism in sorting algorithms.
In SPAA ’07: Proc. of the 19th annual ACM Sym-
posium on Parallel Algorithms and Architectures
(2007), pp. 348–357.

[Gei06] Geimer M.: Interaktives Ray Tracing. PhD thesis,
Koblenz-Landau University, Germany, 2006.

[Gla89] Glassner A.: An Introduction to Ray Tracing.
Academic Press, 1989.

[GS87] Goldsmith J., Salmon J.: Automatic creation of
object hierarchies for ray tracing. IEEE Computer
Graphics & Applications 7, 5 (1987), 14–20.

[Hav01] Havran V.: Heuristic Ray Shooting Algorithms.
PhD thesis, Czech Technical University, 2001.

[HB02] Havran V., Bittner J.: On improving kd-trees
for ray shooting. Journal of WSCG 10, 1 (2002),
209–216.

[HB07] Havran V., Bittner J.: Ray tracing with sparse
boxes. In Spring Conference on Computer Graphics
(SCCG 2007) (2007), pp. 49–54.

[HMB06] Hubo E., Mertens T., Bekaert P.: The quan-
tized kd-tree: compression of huge point sampled
models. ACM SIGGRAPH 2006 Sketches (2006),
179.

[Kel97] Keller A.: Instant radiosity. ACM Transactions
on Graphics (Proc. SIGGRAPH 1997) (1997), 49–
56.

[KK02] Kollig T., Keller A.: Efficient bidirectional
path tracing by randomized quasi-Monte Carlo in-
tegration. In Proc. Monte Carlo and Quasi-Monte
Carlo Methods 2000. Springer, 2002, pp. 290–305.

[LYM07] Lauterbach C., Yoon S.-E., Manocha D.:
Ray-strips: A compact mesh representation for in-
teractive ray tracing. In Proc. 2007 IEEE/EG
Symposium on Interactive Ray Tracing (2007),
pp. 19–26.

[Mah05] Mahovsky J.: Ray Tracing with Reduced-
Precision Bounding Volume Hierarchies. PhD the-
sis, University of Calgary, 2005.

[MT97] Möller T., Trumbore B.: Fast, minimum stor-
age ray/triangle intersection. Journal of Graphics
Tools 2, 1 (1997), 21–28.

[Res07] Reshetov A.: Faster ray packets - triangle in-
tersection through vertex culling. In Proc. 2007
IEEE/EG Symposium on Interactive Ray Tracing
(2007), pp. 105–112.

[RSH05] Reshetov A., Soupikov A., Hurley J.: Multi-
level ray tracing algorithm. ACM Transactions on
Graphics (Proc. SIGGRAPH 2005) (2005), 1176–
1185.

7



[Shi00] Shirley P.: Realistic Ray Tracing. AK Peters,
Ltd., 2000.

[Smi98] Smits B.: Efficiency issues for ray tracing. Journal
of Graphics Tools 3, 2 (1998), 1–14.

[SSK07] Shevtsov M., Soupikov A., Kapustin A.:
Highly parallel fast kd-tree construction for inter-
active ray tracing of dynamic scenes. In Computer
Graphics Forum (Proc. Eurographics 2007) (2007),
pp. 395–404.

[Vea97] Veach E.: Robust Monte Carlo Methods for Light
Transport Simulation. PhD thesis, Stanford Uni-
versity, 1997.

[Wal04] Wald I.: Realtime Ray Tracing and Interactive
Global Illumination. PhD thesis, Saarland Univer-
sity, 2004.

[Wal07] Wald I.: On fast construction of SAH based
bounding volume hierarchies. In Proc. 2007
IEEE/EG Symposium on Interactive Ray Tracing
(2007), pp. 33–40.

[WBMS05] Williams A., Barrus S., Morley R. K.,
Shirley P.: An efficient and robust ray-box inter-
section algorithm. Journal of Graphics Tools 10, 1
(2005), 49–54.

[WBS07] Wald I., Boulos S., Shirley P.: Ray tracing
deformable scenes using dynamic bounding volume
hierarchies. ACM Transactions on Graphics 26, 1
(2007).

[WBWS01] Wald I., Benthin C., Wagner M., Slusallek
P.: Interactive rendering with coherent ray trac-
ing. In Computer Graphics Forum (Proc. Euro-
graphics 2001) (2001), pp. 153–164.

[WH06] Wald I., Havran V.: On building fast kd-trees
for ray tracing, and on doing that in O(N log N).
In Proc. 2006 IEEE Symposium on Interactive Ray
Tracing (2006), pp. 18–20.

[WK06] Wächter C., Keller A.: Instant ray tracing:
The bounding interval hierarchy. In Rendering
Techniques 2006 (Proc. 17th Eurographics Sympo-
sium on Rendering) (2006), pp. 139–149.

[WK07] Wächter C., Keller A.: Terminating spatial
partition hierarchies by a priory bounding memory.
In Proc. 2007 IEEE/EG Symposium on Interactive
Ray Tracing (2007), pp. 41–46.

8


