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Summary. We present techniques that enhance global illumination algo-
rithms by incorporating the effects of participating media. Instead of ray
marching we use a sophisticated Monte Carlo method for the realization of
propagation events and transmittance estimations. The presented techniques
lead to unbiased estimators of the light transport equation with participating
media.

1 Introduction

A complete computation of all illumination effects is critical for the synthesis
of photorealistic images. This means that the global illumination problem
has to be solved. Global illumination is an important problem in graphics
and of high interest for applications like architecture, industrial design, and
even production. Accordingly, there are a great number of approaches that
attempt to solve the task of simulating light transport through virtual three-
dimensional scenes in an unbiased and physically correct way. Nevertheless,
most algorithms lack the ability to correctly estimate the effects caused by
interactions with media like smoke, fog, or dust.

The most sophisticated unbiased approaches are Bidirectional Path Trac-
ing [LW93, VG94] and the Metropolis Light Transport algorithm [VG97,
KSKAC02]. All of these algorithms are robust and can capture a wide variety
of illumination effects, albeit with varying efficiency. Additionally, extensions
to scenes with participating media were presented in [LW96, PKK00]. Note,
however, that these techniques are not unbiased as they rely on ray marching
techniques [PH89] to sample distances and to approximate the transmittance
of participating media.
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2 Light Transport with Participating Media

In the theory of radiative transfer there is generally a distinction between
solid objects, i.e. those that do not allow light to pass through them, and
diaphanous media like gases and liquids. Scenes are therefore often modeled
as a volume V and its boundary, i.e. the surface of solid objects ∂V. Note that
we assume V to be an open set, so that V ∩ ∂V = ∅. On the surface ∂V the
local scattering equation governs light transport

L(x, ω) = Le,∂V(x, ω) +
∫
S2
fs(ω, x, ω′)L(x, ω′)|cos θx|dσ(ω′). (1)

Here, S2 is the set of all directions, fs is the bidirectional scattering distribu-
tion function (BSDF), which describes the scattering behavior at x, and cos θx

is the cosine of the angle between direction ω′ and the surface normal in x.
This formulation is sufficient for scenes in a vacuum, where all interaction
events occur on the surface.

In order to account for effects caused by participating media inside the
volume, we have to consider the equation of transfer

∂

∂ω
L(x, ω) =Le,V(x, ω)− σt(x)L(x, ω)

+ σs(x)
∫
S2
fp(ω, x, ω′)L(x, ω′)dσ(ω′),

(2)

which describes the radiance change at position x in direction ω due to vol-
ume emission and interaction events. The medium’s scattering and absorption
characteristics are given by the phase function fp, the scattering coefficient
σs, and the absorption coefficient σa. The latter two form the extinction co-
efficient σt := σs + σa. Usually, equation (2) is integrated along straight light
rays to the next surface interaction point xS = h(x,−ω), which is found by
the ray casting function h. This approach yields a Fredholm integral equation
of the second kind, which can be handled by Monte Carlo techniques.

2.1 Path Integral Formulation

A very general formulation of light transport is given in [Vea97] and has been
extended to handle participating media in [PKK00] and [Kol04]. The local
description by equations (1) and (2) is recursively expanded to obtain an
integral over an abstract space of complete transport paths.

The path space P can be modeled as the union of spaces containing paths
of a specific finite length, i.e.

P :=
⋃

k∈N

Pk where Pk :=
{
x̄ = x0 . . . xk : xi ∈ R3

}
.

For each of these spaces we use a product measure µk, defined for a set Mk ⊆
Pk by
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µk(Mk) :=
∫
Mk

dλ(x0)dλ(x1) · · · dλ(xk),

of the corresponding Lebesgue measure on the volume and on the surface, i.e.

dλ(x) :=

{
dA(x) if x ∈ ∂V
dV (x) if x ∈ V.

The measure µ of a set M⊆ P then is the natural expansion of those disjoint
spaces’ measures

µ(M) :=
∑
k∈N

µk (M∩Pk) .

In this context, the sensor response Ij of pixel j can be expressed as an
integral over P,

Ij =
∫
P
fj(x̄)dµ(x̄), (3)

where fj is called the measurement contribution function. In order to find
this function, we describe light transport in a slightly different manner. Let
L(y → z) denote the radiance scattered and emitted from point y in direction
−→yz := z−y

‖z−y‖ . Inside the volume this quantity is given by

L(y → z) = Le,V(y,−→yz) +
∫
S2
σs(y)fp(−→yz, y, ω)L(y, ω)dσ(ω). (4)

On the surface we obtain L(y → z) directly by equation (1), i.e. L(y → z) =
L(y,−→yz) ∀y ∈ ∂V.

Using these notions in the integration of (2) with boundary condition (1)
and changing the integration domain to R3 yields the three point form:

L(y → z) = Le(y → z)

+
∫
R3
L(x→ y)f(x→ y → z)G(x↔ y)V (x↔ y)dλ(x), (5)

where the following abbreviations are used (see [Kol04] for a full derivation):

• Three point scattering function

f(x→ y → z) :=

{
fr(−→yz, y,−→xy) if y ∈ ∂V
σs(y)fp(−→yz, y,−→xy) if y ∈ V

(6)

• Source radiance distribution

Le(x→ y) :=

{
Le,∂V(x,−→xy) if y ∈ ∂V
Le,V(x,−→xy) if y ∈ V

(7)
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• Geometric term

G(x↔ y) :=


|cos θx||cos θy|

‖y−x‖2 if x, y ∈ ∂V
|cos θx|
‖y−x‖2 if x ∈ ∂V, y ∈ V
|cos θy|
‖y−x‖2 if y ∈ ∂V, x ∈ V

1
‖y−x‖2 if x, y ∈ V

(8)

with θx and θy the angles between −→xy and the surface normals at the
respective points

• Attenuated visibility function

V (x↔ y) : = V ′(x↔ y)τ(x↔ y)

= V ′(x↔ y)e−
R ‖y−x‖
0 σt(x+t−→xy)dt

(9)

with the standard binary visibility function

V ′(x↔ y) =

{
1 if ‖y − x‖ ≤ ‖h(x,−→xy)− x‖
0 otherwise

Finally, we need a function ψj(xk−1 → xk) to describe the sensor response of
a pixel j to radiance arriving from xk−1 at the point xk on the image plane.
Along with the recursive expansion of the three point form (5) this yields the
measurement contribution function for a path x̄ = x0 . . . xk beginning on a
light source and ending on the image plane:

fj(x̄) := Le(x0 → x1)G(x0 ↔ x1)V (x0 ↔ x1)

·
k−1∏
l=1

(
f(xl−1 → xl → xl+1)G(xl ↔ xl+1)V (xl ↔ xl+1)

)
· ψj(xk−1 → xk)

(10)

3 Unbiased Techniques for Transport Path Sampling

In a vacuum the next interaction point is fixed as the closest surface point
along the ray. With participating media, however, the position of this point is
no longer given deterministically but described by a stochastic process. From
the structure of equation (10) it is obvious that we have two separate operators
that describe the transport: one governing the distance to the next interaction
point (the τ term) and the other governing the scattering behavior (the phase
function or the BSDF). We treat these factors independently as in [PKK00]
by first sampling a distance and then sampling a direction, as described in
the next section. Since the processes are clearly independent, the resulting
density is simply the product of the two densities involved.
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Homogeneous Media

In the case of a homogeneous medium with σt(x) ≡ σt, the transmittance is
proportional to the exponential distribution’s density p(t) = σte

−σtt. Apply-
ing the inversion method we realize the desired distance as

t =
− ln(1− ξ)

σt
(11)

for a uniformly distributed random number ξ ∈ [0, 1).

Heterogeneous Media

In the general case, the density proportional to τ = e−K(t) with K(t) :=∫ t

0
σt(x0 + t′ω)dt′ is given by p(t) =

(
d
dtK(t)

)
e−K(t) = σt(x0 + tω)e−K(t).

Things are more complicated here since the inversion method only yields the
implicit equation

K(t) =
∫ t

0

σt(x0 + t′ω)dt′ = − ln(1− ξ) (12)

for a uniformly distributed random number ξ ∈ [0, 1). As the inversion method
cannot be applied directly and there is no straightforward Monte Carlo esti-
mator available (as we cannot evaluate τ), this distance is usually sampled
using the classic ray marching algorithm [PH89]. Note that this method, which
is frequently used in computer graphics, is biased.

f loat sampleDistance (Point x0 , Direction ω )
{

// sample wi th the maximum ex t i n c t i o n σt

f loat t = −l og ( rand ( ) ) / σt ;

while ( σt(x0+tω)
σt

< rand ( ) )

t −= log ( rand ( ) ) / σt ;

return t ;
}

Algorithm 1: Unbiased distance sampling for arbitrary media.

A more sophisticated and unbiased approach to sampling this distance
can be found in [Col68]. Let σt be a constant with σt ≥ σt(x) for all x ∈ V
and let t1, t2, . . . be independent random distances sampled according to
equation (11) with parameter σt. Let, furthermore, ξ1, ξ2, . . . ∈ [0, 1] be in-
dependent uniformly distributed random numbers. Then, the first distance
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Ti0 =
∑i0

i=1 ti satisfying ξi0 ≤ σt(x0+Ti0ω)

σt
is distributed as desired. Algo-

rithm 1 implements this procedure and thus provides an unbiased distance
sampling routine for arbitrary media.

In fact, the condition σt ≥ σt(x) only has to be satisfied for points along
the ray. Choosing a larger σt simply yields more iterations in Algorithm 1.
However, determining the maximum σt = supx∈V σt(x) in the whole volume
data set during a preprocessing step is usually easy while determining the
maximum along a single ray may be quite complicated.

3.1 Line Integral along a Ray

An explicit estimation of the transmittance τ is quite important in many algo-
rithms. Furthermore, splitting along the primary ray is often beneficial when
rendering scenes that contain participating media. We therefore generalize the
one-dimensional integration along a ray in the context of Algorithm 1 in order
to obtain a generic and unbiased solution.

1. Determine the surface intersection point x∂V = h(x,−ω), the distance t∂V =
‖x− x∂V‖, and the maximum volume extinction σt

2. Compute the probabilities pV = 1− e−σtt∂V and p∂V = 1− pV
3. Estimate the surface contribution c∂V = L(x∂V , ω) and set C = p∂V · c∂V

4. Generate n randomly shifted equidistant sample points ∆ ⊂ [0, pV)

∆ :=


(k + ξ)pV

n
: k = 0, . . . , n− 1

ff
for one uniformly distributed random number ξ ∈ [0, 1)

5. Use ∆ as initial random numbers for n random walks according to Algorithm 1
resulting in distances t1, . . . , tn

6. Add contributions

C = C +

(
1
n
· pV · c(x−tkω,ω)

σt(x−tkω)
, if tk < t∂V

1
n
· pV · c∂V , else

for k = 1, . . . , n

Algorithm 2: Unbiased line integration along a ray.

Assume that we have to estimate a transmittance-weighted integral C
along a light ray (x∂V , ω) starting at the surface intersection point x∂V as
present in the transport equations,

C = c∂V (x∂V) τ(x↔ x∂V) +
∫ ‖x∂V−x‖

0

cV(x− tω)τ(x↔ x− tω)dt, (13)
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where cV and c∂V are volume and surface contributions, respectively. For the
simple case c∂V ≡ 1 and cV ≡ 0 we obtain an estimate of the transmittance
itself. We can estimate C by applying Algorithm 1 repeatedly and averaging
the corresponding contributions. Instead of using random numbers for the
starting points of Algorithm 1 the convergence can be improved by trans-
forming equidistant samples that are shifted by one random offset (see Figure
1). Algorithm 2 is a formulation of this approach where we additionally have
seperated what we know from the maximum extinction.

A comparison for splitting along the primary ray in the scenario of shading
from a large set of point light sources representing global illumination is given
in Figure 2.

t = 0 t∂V

Fig. 1: Samples along a ray x0+tω for t ∈ [0, t∂V): transformed random points (top)
and transformed equidistant points (bottom). The latter yield a better distribution
for the initial points in Algorihm 1.

(a) Algortihm 1
(repeatedly)

(b) Ray marching
(random offsets)

(c) Algorithm 2 (d) Reference image

Fig. 2: Comparison of splitting techniques along the primary ray for a homogeneous
(top) and a highly inhomogeneous (bottom) hazy Mie medium at low sampling rates
with the same computation time. Of course, our ray marcher implementation does
not perform shading operations in regions where σs = 0. While perfectly unbiased,
Algorithm 2 approaches the smoothness of ray marching with increasing homogene-
ity along the ray. The reference image has been computed using Algorithm 1 with
a vast amount of samples.
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3.2 Handling Multiple Wavelengths

It is a common notion in computer graphics that solving the transport equa-
tions separately for each wavelength is less efficient than simulating various
wavelengths at once. While this may be true for moderately saturated colors,
the general setting requires some additional considerations for sampling the
BSDF. Color-dependent implementations of Russian roulette [SSKK03] can
help but still cannot avoid infinite variance in general and are impractical
for bidirectional path tracing, as the probability density evalutions for the
heuristics become extremely complicated.

Using Algorithm 1 in a context where σt depends on the wavelength is
also problematic when computing a single solution for several wavelengths.
Consider sampling equation (13) with cV ≡ 1 in an infinite homogeneous
medium for two wavelengths λ1 and λ2 with σt,λ2 > σt,λ1 simultaneously,
using the density pλ2(t) = σt,λ2e

−σt,λ2 t. The variance on wavelength λ2 is
now zero, whereas the variance on λ1 can be arbitrarily high:

V

(
τλ1(x↔ y)

pλ2

)
=

∞ if σt,λ2 ≥ 2σt,λ1(
2σt,λ1σt,λ2 − σ2

t,λ2

)−1

− (σt,λ1)
−2 otherwise.

The problem can be avoided by limiting the extinction coefficient to a scalar
value, i.e. by forcing σa,λ1(x)+σs,λ1(x) = σa,λ2(x)+σs,λ2(x) = σt(x) for every
pair of wavelengths λ1, λ2. This corresponds to situations where the extinction
coefficent is a quanitity depending on volume particle density and size only.
Then, the color of a medium is due to the reflection, refraction, and absorption
probabilities of the particles themselves (in analogy to the BSDF) and may
vary within this constraint. However, in scenarios where this restriction cannot
be applied (e.g. atmospheric scattering) solving the transport equations for
each wavelength separately should be preferred.

4 Applications

In order to obtain truly unbiased estimators for light transport, we incor-
porate the presented techniques into several Monte Carlo global illumination
algorithms. These include simple and Bidirectional Path Tracing, an unbiased
variant of Instant Radiosity for Participating Media, and a very robust version
of the Metropolis Light Transport algorithm.

4.1 Path Tracing

Path Tracing [Kaj86] is one of the most basic global illumination algorithms.
Due to its simplicity, it is still used frequently to compute reference solutions
or handle complex scenes. A recently presented variant called Adjoint Photon
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Tracing [MBE+06] is capable of rendering difficult settings with participating
media accurately. The simple form of pure Path Tracing without next event
estimation, which does not estimate direct illumination at each path vertex
explicitly, can be extended to handle participating media without much effort.
The only modification is an additional distance sampling call for each ray that
is cast.

The spatial sampling found in Path Tracing with next event estimation
requires an estimate of the transmittance. This quantity is easily obtained
with Algorithm 2. Note that the stability of Path Tracing may be compro-
mised in this case: a path vertex can be sampled arbitrarily close to a light
source, in which case the geometric term of the connection yields a weakly
singular integrand with infinite variance. This is generally a problem for algo-
rithms with next event estimation, though it is often avoided in a vacuum by
only modeling light sources with a certain minimum distance to other surface
points. With participating media the same problems arise from non-vacuum
volume points near light sources. Such cases are usually much harder to avoid.
However, the techniques presented below can be applied to handle the weak
singularity in an unbiased manner.

4.2 Instant Radiosity

Instant Radiosity [Kel97] is a popular global illumination algorithm for scenes
with predominantly diffuse surfaces. A set of transport paths is started from
the light source in a preprocessing pass and point light sources are stored at
each path vertex. The point lights, which represent path space samples, are
then used to shade each camera ray’s first interaction point.

Adapting this process for participating media using Algorithm 1 is straight-
forward. Note that the volume point light sources have to be equipped with
a phase function instead of a BSDF. Shading the primary ray can be done
by sampling a first interaction or, preferably, applying some splitting in the
sense of Algorithm 2.

Solutions computed with Instant Radiosity can converge quite quickly,
given that the weak singularity found in the shading path is avoided by bound-
ing the geometric term [Kol04]. However, this approach introduces bias.

Bias Compensation

In order to handle the singularity without introducing bias we extend the
method from [KK04] to participating media. We set the geometric term G as
defined in equation (8) to G′ by letting

G′(x↔ y) :=

{
G(x↔ y) if G(x↔ y) < b

b otherwise
(14)
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for an arbitrary positive bound b ∈ R+. The bias introduced into the evalua-
tion of the three point form L(y → z) as defined in equation (5) by replacing
G with G′ is

L(y → z)− L′(y → z)

=
∫
R3
L(x→ y)f(x→ y → z) ·max{G(x↔ y)− b, 0}V (x↔ y)dλ(x)

=
∫
R3
L(x→ y)f(x→ y → z)

max{G(x↔ y)− b, 0}
G(x↔ y)

·G(x↔ y)V (x↔ y)dλ(x)

=
∫
S2

∫ ‖h(y,−ω)−y‖

0

τ(y − tω ↔ y)L(y − tω → y)f(y − tω → y → z)

· max{G(y − tω ↔ y)− b, 0}
G(y − tω ↔ y)

dtdσ∗(ω).

(15)

In the last step we have changed the integration domain from R3 back to
spherical coordinates, and depending on whether y is a surface or a volume
point we have

dσ∗(ω) =

{
|cos θy|dσ(ω) if y ∈ ∂V
dσ(ω) if y ∈ V.

This reformulation directly leads to a recursive algorithm for computing the
bias which does not suffer from any singularities. We simply sample a direction
ω according to the projected BSDF or the phase function, and a distance t
according to τ . At the resulting next vertex x = y−tω, we recursively estimate
L(x → y) and weight the result by max{G(x↔y)−b,0}

G(x↔y) . This weight is 0 for
G(x ↔ y) ≤ b. If the next vertex is not close enough, we can thus terminate
the path from the camera. In fact, the bounding and bias compensation step
can be interpreted as s special case of Bidirectional Path Tracing where the
weighting functions are constructed with respect to the value of the geometric
term.

The efficiency of the approach is, of course, highly dependent on the choice
of the bound b. Generally, one wants avoid bright spots in weakly illuminated
areas caused by close by point lights. Options to achieve this include bounding
point light contributions and bias compensation to the same maximum value
[KK04] or using radiance estimates (e.g. based on direct illumination) and
bound contributions of the point light sources to values below. Note that
the contribution of the bias compensation step is always bounded by the
brightness of the scene’s light source.

4.3 Bidirectional Path Tracing

Combining Path Tracing and its adjoint approach, Light Tracing, leads to
Bidirectional Path Tracing (BDPT) [LW93, VG94]. The algorithm uses a
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whole family of sampling techniques (Path Tracing and Instant Radiosity
are two of them), which are combined using multiple importance sampling
[VG95]. The multi-sample estimator

F =
n∑

i=1

1
ni

ni∑
j=1

wi(xi,j)
f(x)
pi(xi,j)

(16)

joins the samples xi,j that were created according to the density pi. The
estimator is unbiased as long as the weights wi(x) sum up to 1 for f(x) 6= 0
and are 0 for pi(x) = 0. In fact, this is also true if the weights are only
normalized in expectation, i.e.

Ey

( n∑
i=1

wi(x, y)
)

=
∫

Ω

( n∑
i=1

wi(x, y)
)
dµ(y) = 1 ∀x. (17)

A good choice for a weighting function that satisfies these conditions is the
power heuristic

ws(x) =
pβ

s (x)∑
i p

β
i (x)

for β ∈ R+. (18)

For β = 1 we obtain the balance heuristic and β →∞ results in the maximum
heuristic. As shown in [Vea97], these heuristics guarantee a fairly low variance.

The application of BDPT to participating media is given in [LW96] and can
easily be modified to handle propagation events and transmittance estimations
in an unbiased way by utilizing Algorithm 1 and Algorithm 2. However, the
weighting heuristics need some additional consideration. For heterogeneous
media, the densities pi ∝ τ due to propagation are not analytically computable
and must therefore be approximated. Using Algorithm 2 for this purpose
is generally not an option, as equation (17) fails for all but the maximum
heuristic. However, note that no bias is introduced if we approximate τ by
a deterministic quadrature rule, since the weights produced by equation (18)
will definitely sum up to one then. Presuming a decent approximation, the
good properties of the heuristics are preserved.

4.4 Metropolis Light Transport

Metropolis Light Transport (MLT) is a powerful alternative to the previous
rendering approaches. The algorithm, which was first presented in [VG97]
and strongly modified in [KSKAC02], uses Metropolis sampling [MRR+53] to
sample the path space. Whereas ordinary importance sampling only consid-
ers factors of the measurement contribution in the previous algorithms, the
flexibility of Metropolis sampling allows us to generate paths according to

p(x̄) =
f (x̄)
b

with b =
∫
P
f (ȳ) dµ(ȳ).
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This yields the importance sampling estimator

Fj,N =
1
N

N∑
i=1

hj

(
X̄i

)
b,

where the measurement contribution function fj(x̄) has been split into a pixel
filter function hj(x̄) and a remainder f (x̄), which is the same for every pixel.

The value of b can be estimated using any suitable rendering algorithm
and a fairly low number of samples. Usually, 104–105 samples yield a suf-
ficiently accurate estimate, which makes the cost of the initialization phase
negligible. One of the approximation samples is selected as the initial state for
the Metropolis phase of the algorithm with probability proportional to f/p.
The selected sample is expected to be distributed according to the stationary
density and thus avoids start-up bias without the need to discard any samples.

Once the first state has been selected, each new state is found by generating
a tentative sample ȳ from the current sample x̄ according to the tentative
transition function T (x̄ → ȳ) and either accepting or rejecting the proposal
according to the acceptance function

a(x̄→ ȳ) := min
{

1,
f(ȳ)T (ȳ → x̄)
f(x̄)T (x̄→ ȳ)

}
.

A good proposal strategy is of paramount importance to the success of the
algorithm. Key features of a sound strategy are the ability to exploit the
coherence in the scene and a low correlation between subsequent samples.

A number of important optimizations of the basic algorithm may be found
in [Vea97]. While they will not be discussed here, they are of great importance
to a successful implementation of MLT.

Adaptive Mutation

Kelemen et al. present a novel implementation of the MLT algorithm in
[KSKAC02], which we adapt to handle participating media. The new mu-
tation is simpler to implement than that proposed by Veach, reduces the
correlation between samples, and is considerably more robust. Furthermore,
the inclusion of participating media and other phenomena does not require
extensive modifications to the mutation.

For any path tracing algorithm—e.g. classic Path Tracing or BDPT—, a
path is uniquely defined by the set of random numbers used to create it. These
numbers can be interpreted as a point in the infinitely-dimensional unit cube
[0, 1)∞, called the primary sample space U . The transformation between the
spaces, s : U → P, is determined by the path tracing algorithm. The path
integral presented in equation (3) can then be transformed to an integral over
the primary sample space:

Ij =
∫
P
fj(x̄) dµ(x̄) =

∫
U

fj(s(ū))
p(s(ū))

dµ∗(ū) ,



Unbiased Global Illumination with Participating Media 13

(a) Bidirectional Path Tracing (b) Metropolis Light Transport

Fig. 3: A scene with a heterogeneous medium featuring caustics seen indirectly
through a reflection. Both images were rendered with the same number of samples
in approximately the same time. Splitting along the primary ray was employed to
speed up the estimation of direct light for MLT.

where f and p are defined as before.
If the chosen path tracing algorithm properly employs importance sam-

pling, the transformed integrand, f∗(ū) := f (s(ū)) /p(s(ū)), will vary only
moderately. Any mutation performed in the primary sample space will thus
automatically adapt to the modalities of the integrand.

The proposed mutation generates a new path by perturbing the primary
sample point that corresponds to the current path by a small exponentially
distributed amount. This perturbation is symmetric, so that the acceptance
probability simplifies to a(ū→ v̄) = min{1, f∗(v̄) /f∗(ū)}.

Like Veach’s original perturbations, the new mutation cannot ensure er-
godicity by itself. To guarantee that the algorithm cannot get stuck in isolated
areas of the scene, independent paths are generated at random intervals by the
underlying path tracer. This is done by simply feeding a fresh set of uniform
random numbers into the algorithm. The mutation type is chosen at random
before each mutation step.

Transformation

The presented Metropolis algorithm only works efficiently if the transforma-
tion s : U → P ensures that a small change in U corresponds to a small change
in the path space. Because of the robustness and efficiency of the approach,
we use BDPT as the basic sample generation technique. Due to the separate
generation of subpaths by BDPT and the inclusion of participating media,
it is not possible to use values from successive dimensions of U as random
numbers for the generation of samples and still satisfy the requirement of
corresponding small changes. Rather, the values driving distinct parts of the
path generation must be separated from each other.

Random numbers used for the generation of eye and light subpaths can
simply be separated e.g. by assigning positive indices to one type of subpath
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Fig. 4: A primary sample stored as an array of arrays. Random numbers are sepa-
rated between light and eye subpaths, as well as between scattering and propagation.

and negative indices to the other type. While the number of random values
needed to sample distances in homogeneous media is fixed, the amount of
random input needed to drive the presented distance sampling routine cannot
be determined in advance in scenes that contain heterogeneous media. In
such cases, each deterministic connection between two subpaths also needs an
additional unknown amount of random values to estimate the transmittance
as described in section 3.1. Finally, some scattering models may need more
input than others when sampling a direction.

We therefore propose storing the current primary sample ū in an array
of arrays as outlined in Figure 4. The ith row vector provides input to the
sampling that is done at the |i|th vertex of the respective subpath. The ele-
ments of each vector are accessed in sequential order. This separation ensures
that the random numbers that generated each vertex remain associated to
that vertex. The estimation of the various path transmittance values may be
driven by the row at index 0. A further separation is not necessary because
the transmittance is fairly smooth in realistic settings. Large variations in
the random values running the estimation thus have very little effect on the
result.

5 Conclusion

We have presented unbiased global illumination algorithms for scenes with
participating media. We thus close a gap in computer graphics where many
algorithms are labeled as unbiased despite the fact that this claim was previ-
ously not true for heterogeneous media. The new approaches presented here
allow for the physically accurate and efficient visualization of a wide range of
scenes.
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berg (BW-FIT).

References

[Col68] W. Coleman. Mathematical Verification of a certain Monte Carlo Sam-
pling Technique and Applications of the Technique to Radiation Trans-
port Problems. Nuclear Science and Engineering, 32:76–81, 1968.

[Kaj86] J. Kajiya. The Rendering Equation. In SIGGRAPH 86 Conference
Proceedings, volume 20 of Computer Graphics, pages 143–150, 1986.

[Kel97] A. Keller. Instant Radiosity. In SIGGRAPH 97 Conference Proceedings,
Annual Conference Series, pages 49–56, 1997.

[KK04] T. Kollig and A. Keller. Illumination in the Presence of Weak Sin-
gularities. In D. Talay and H. Niederreiter, editors, Monte Carlo and
Quasi-Monte Carlo Methods, pages 243–256. Springer, 2004.

[Kol04] T. Kollig. Efficient Sampling and Robust Algorithms for Photorealistic
Image Synthesis. PhD thesis, University of Kaiserslautern, Germany,
2004.

[KSKAC02] C. Kelemen, L. Szirmay-Kalos, G. Antal, and F. Csonka. A Simple
and Robust Mutation Strategy for the Metropolis Light Transport Al-
gorithm. Computer Graphics Forum, 21(3):531–540, September 2002.

[LW93] E. Lafortune and Y. Willems. Bidirectional Path Tracing. In Proc. 3rd
International Conference on Computational Graphics and Visualization
Techniques (Compugraphics), pages 145–153, 1993.

[LW96] E. Lafortune and Y. Willems. Rendering Participating Media with Bidi-
rectional Path Tracing. Rendering Techniques ’96 (Proc. 7th Eurograph-
ics Workshop on Rendering), pages 91–100, 1996.

[MBE+06] R. Morley, S. Boulos, D. Edwards, J. Johnson, P. Shirley, M. Ashikhmin,
and S. Premoz̆e. Image Synthesis using Adjoint Photons. In Graphics
Interface ’06, pages 179–186, June 2006.

[MRR+53] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller.
Equations of State Calculations by Fast Computing Machine. Journal
of Chemical Physics, 21:1087–1091, 1953.

[PH89] K. Perlin and E. Hoffert. Hypertexture. In SIGGRAPH ’89: Proceedings
of the 16th annual conference on Computer graphics and interactive
techniques, pages 253–262, 1989.

[PKK00] M. Pauly, T. Kollig, and A. Keller. Metropolis Light Transport for
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