Exploration of geo-virtual Environments using 3D Magic Lenses

Timo Ropinski
ropinski@math.uni-muenster.de

Institute for Computer Science
University of Münster, Germany
Motivation

Aim

- Reveal information, which is hidden in large sets of high-dimensional data

Problem

- Only three dimensions in space (plus one dimension in time) can be used in 3D visualization
- Difficult to visualize a large number of attributes associated with geo-objects

One common Strategy

- Visualizing just a subset of attributes
- Same subset of attributes is visualized everywhere in the virtual environment

Why use Magic Lenses?

- Magic lenses allow to visualize different sets of attributes in different parts of the virtual environment
City Model Visualization - Rendering Techniques

- **Photorealistic** Rendering: Try to match reality as close as possible
- **Non-Photorealistic** Rendering: Display only necessary information

[Gooch et al.: Interactive Technical Illustration]

[Döllner et al.: Real-Time Expressive Rendering of City Models]
City Model Visualization – Example Lens

- Buildings are colored red
- Buildings are rendered in wireframe mode
- Roofs have been removed
- Air photograph has been replaced by sketch
To modify the visual appearance of selected geo-objects they must be identifiable.

Objects can be excluded from rendering:
```
excludeList = {'roof'};
```

Graphical representations are modified using an attribute stack:

<table>
<thead>
<tr>
<th>Color</th>
<th>Texture0</th>
</tr>
</thead>
<tbody>
<tr>
<td>red</td>
<td>sketch</td>
</tr>
<tr>
<td>FaceStyle</td>
<td></td>
</tr>
<tr>
<td>wireframe</td>
<td></td>
</tr>
<tr>
<td>LineWidth</td>
<td></td>
</tr>
<tr>
<td>2.0f</td>
<td></td>
</tr>
</tbody>
</table>

building | ground
Technical aspects of the algorithm

Functionality
- Obtain depth information
- Render scene
 - **Behind** and next to the lens volume (a,b)
 - **Inside** the lens volume (c)
 - **In front of** the lens volume (d)

Characteristics
- **Image-based** multi-pass rendering algorithm
- **Hardware-accelerated** by current GPU’s
- Implemented using **OpenGL** and **VRS**
Terrain Visualization

- Highlight region of interest

<table>
<thead>
<tr>
<th>Color</th>
<th>Opacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>white</td>
<td>0.4f</td>
</tr>
</tbody>
</table>

- FaceStyle: wireframe

terrain

water

Alternatively

```java
excludeList = {'water'};
```
Lens Types

Scene Lenses
- can be positioned anywhere in the virtual environment
- highlight regions of interest interactively

Camera Lenses
- positioned relative to the virtual camera
- assist the user while exploring dense datasets

Example lenses:
- semi-transparent rendering
- removing of partial or complete data
- highlighting data inside the lens volume by applying extra light sources
Conclusion

- Image-based real-time rendering algorithm
- Magic lenses in city model visualization
- Application to terrain visualization
- Classification into two lens types

Future Work

- Multi lens environments
- Library for easy use of magic lenses in existing OpenGL applications
Thank you