
An Efficient Approach for
Emphasizing Regions of Interest

in Ray-Casting based Volume Rendering
T. Ropinski, F. Steinicke, K. Hinrichs

Institut für Informatik, Westfälische Wilhelms-Universität Münster
Email: {ropinski, fsteini, khh}@math.uni-muenster.de

Abstract
We propose a volume visualization algorithm, which allows the combination of different visual appearances
within one volume dataset to emphasize certain regions of interest or to eliminate extraneous information. For
example, isosurface rendering may be combined with direct volume rendering to visualize surface structures
of certain regions within a volume dataset while maintaining volumetric information for the remaining parts of
the dataset. To achieve such a combination we use a lens volume, i.e., a 3D shape having an arbitrary convex
geometry, which defines a region within the dataset to which a different visual appearance is applied during
rendering. The proposed algorithm extends ray-casting approaches and exploits the features of current graphics
hardware and thus enables rendering at high frame rates even on commodity hardware.

Keywords: volume rendering, interactive volume visualization, region of interest

1 Introduction

Volume rendering has become an important field
of interactive 3D computer graphics. It supports
professionals from different domains when exploring
volume datasets, e.g., medical or seismic data. Since
the advent of programmable graphics hardware many
hardware-accelerated volume rendering algorithms
have been developed, which allow rendering at
interactive frame rates on commodity hardware. Thus
expensive graphics workstations are no longer required
to enable interactive volume visualization. Therefore
many volume rendering applications for interactive
exploration of volume datasets are now available.
To further assist the user during volume exploration
special visualization techniques are needed which
can be applied intuitively and still enable interactive
rendering on commodity graphics hardware.

In this paper we introduce a novel visualization
algorithm for interactive volume visualization which is
based upon the ray-casting approach introduced in [1].
Our algorithm allows to visualize certain regions of
a volume dataset using different visual appearances
by preserving interactive frame rates. Therefore an
arbitrary convex 3D shape serves as a lens volume with
a special visual appearance assigned to it. All parts
of the volume dataset intersecting the lens volume are
rendered using this visual appearance (see Figure 1).
Because our algorithm is fully accelerated by current
graphics hardware the shape of the lens, its position
and orientation as well as the visual appearance can
be modified interactively. Furthermore, in contrast

to the clipping volume approach presented in [2] our
algorithm is applicable to the very efficient GPU-based
ray-casting approach introduced in [1] and needs
considerably less hardware resources in terms of
per-fragment operations during rendering. With this
algorithm, regions of interest can be highlighted,
cut out or used for isosurface extraction without
affecting the appearance of the rest of the volume
dataset. Thus the user can visually intrude into the
datasets and extract as much information as possible
without loosing contextual information, since the parts
outside the lens volume are rendered using the regular
visual appearance. The presented approach can be
classified as a ray-casting technique which exploits
early ray-termination as well as empty space skipping
and thus achieves interactive frame rates.

The next section discusses related work and briefly in-
troduces GPU-based volume ray-casting. In Section 3
the idea of the proposed rendering algorithm is outlined
and some details are discussed. Section 4 describes
how the proposed concepts can be implemented us-
ing OpenGL by exploiting per-fragment operations. To
demonstrate the performance of our algorithm Section
5 gives frame rate measurements. The paper concludes
in Section 6.

2 Related Work

Since dedicated volume rendering graphics hardware,
e.g., the VolumePro real-time ray-casting system ([3])
is very expensive compared to commodity graphics
boards, numerous algorithms have been developed



Figure 1: An engine dataset with a cuboid transparency lens (left). A seismic volume dataset with a spherical
clipping lens applied (middle). Isosurface rendering applied to an x-ray scan of a human foot (right).

in the past few years with the intention to allow
high-quality volume rendering on commodity graphics
hardware at interactive frame rates ([1, 4]). A common
image-based volume rendering technique is based
on ray-casting. With ray-casting a pixel’s color is
calculated by casting rays originating from the eye
position through the pixel’s position and the volume
dataset. The final pixel color is determined by blending
the colors at the samples encountered on the ray.
Image quality of image-based rendering approaches
is proportional to the sampling rate of the volume
dataset. In texture-based approaches this sampling rate
is given by the number of polygons used for the proxy
geometry, while in ray-casting it is the number of steps
needed for processing each ray.

Since in ray-casting a higher sampling rate, which
results in better image quality, does not require to
send any more proxy geometry down the rendering
pipeline it can be implemented very efficiently on
current graphics hardware. The algorithm presented in
this paper has been developed for volume ray-casting
techniques. The underlying GPU-based volume ray-
casting technique, in the following called GPU-based
ray-casting, has been introduced by Krüger and
Westermann in 2003 ([1]). It allows very efficient
volume rendering on commodity graphics hardware
by casting rays through the volume dataset, which is
represented as a 3D texture. For each ray the entry
and exit points at the bounding box of the volume
dataset are encoded as RGB color values which specify
the corresponding volume texture coordinates. A
major benefit of this GPU-based volume ray-casting
algorithm is that it supports early ray termination as
well as empty space skipping to further accelerate
rendering without affecting the quality of the final
image.

In 2003 Weiskopf et al. ([2]) have introduced two in-
teractive clipping techniques for volume visualization:
depth-based clipping and clipping against a volumet-
ric clipping object. With these techniques it is possi-

ble to define 3D clipping shapes against which a vol-
ume dataset is clipped. Besides the fact, that our tech-
nique allows to apply a different visual appearance in-
side the lens volume, our approach has the following
two advantages. Depth-based clipping, which is based
on performing an additional depth test, is not suitable
for GPU-based ray-casting since due to invariance the
lens’s surface depth values cannot be compared to a
sample’s depth value on the ray. Furthermore depth-
based clipping as well as volumetric clipping lead to an
additional texture fetch for each sample to determine
whether the lens is intersected. This additional texture
fetch has the drawback that it has to be performed for
each sample, which leads to lower frame rates.

In 2004 Viola et al. ([5]) have proposed a visualization
algorithm, which allows highlighting regions of inter-
est in volume datasets. In contrast to our algorithm, this
technique does not allow interactive frame rates.

3 Using different Visual Appearances
with Ray-Casting based Volume
Rendering

To apply a different visual appearance inside the lens
volume, the voxels contributing to a pixel in image
space need to be distinguished whether they are inside
or outside the lens volume. There are two different
approaches to perform this determination. The voxels
can be distinguished either on the fly during rendering
or before rendering the volume dataset. We have
decided to use the second approach which results
in a better performance because only voxels within
the currently rendered region have to be processed
during rendering, and therefore a lower number of
per-fragment operations is needed when traversing the
volume dataset.

Considering a ray cast through a volume dataset which
is intersected by a convex lens volume. The ray is
split into three different sections if it intersects the lens:
There is one section in front of the lens, one inside the



region1

region2

region0

eye

Figure 2: Scheme showing additional entry and exit
points at the lens volume.

lens and one behind the lens (see Figure 2). Therefore
in our algorithm we distinguish three view-dependent
regions:

• region0: voxels behind and next to the lens vol-
ume,

• region1: voxels inside the lens volume, and

• region2: voxels in front of the lens volume.

The algorithm renders these view-dependent regions in
three separate rendering passes starting with region0.
The number of samples used during rendering of each
region is determined based on the length of the current
section of the ray. Thus, regardless if a lens is applied
or the dataset is rendered using regular volume ren-
dering, the number of samples on each ray having the
same length is not affected. Furthermore, the number
of per-fragment operations executed for each sample is
not increased when using our approach (see Section 4).

As mentioned above, we determine the view-dependent
regions of the volume dataset before accessing the
dataset itself, i.e, only the lens geometry and the
bounding box of the volume dataset are considered
during this computation. Since in general the shape
of the lens is very simple with respect to the number
of faces, this step can be performed very fast. Our
algorithm has been developed with the goal to be
applicable to GPU-based ray-casting; therefore a
mechanism is needed, which permits to identify the
three regions in an appropriate way. The techniques
proposed by Weiskopf et al. [2] are not sufficient for
our approach due to three reasons. First, to achieve
a better performance we want to separate each ray
into the needed sections before rendering. The two
techniques introduced by Weiskopf et al. perform
this separation during rendering by either accessing a
depth texture or a 3D texture storing the lens volume.
The second and more important reason is that the
depth-based volume clipping technique changes the
depth value of the current fragment. Due to the change
of the depth value the early depth test performed by
current graphics hardware is automatically disabled.
Since exploiting the early depth test is one major

benefit of GPU-based volume ray-casting, altering
the depth value of the processed fragments leads to a
significant loss of performance. Third, depth-based
clipping cannot be combined with GPU-based volume
ray-casting because of numeric issues. In GPU-based
ray-casting the position of each sample on the ray is
calculated in volume texture coordinates. In depth-
based volume clipping the lens volume is defined by
its depth information in image space. Since these
values are given in different coordinate systems with a
different precision, comparison may involve accuracy
errors.

Therefore, in order to distinguish between the regions
we need a different mechanism to calculate additional
entry and exit points on the surface of the lens vol-
ume for those rays which intersect the lens volume.
In particular this mechanism should support the deter-
mination of these intersection points in volume texture
coordinates to eliminate problems caused by numeric
issues. For a convex lens volume at most two addi-
tional intersection points per ray are required, which
can be stored in two additional textures. In contrast
to regular GPU-based ray-casting, where the entry and
exit points are determined by rendering the front resp.
back faces of the volume’s bounding box, in our case
more complex surfaces have to be handled, because
the lens volume can be defined by an arbitrary convex
shape. Image-based CSG rendering has itself proven
to be a very efficient concept to determine these entry
and exit points. In contrast to regular CSG rendering
techniques we have to take care of the needed color,
i.e., we want the colors to encode the volume texture
coordinates needed during volume traversal. Thus stor-
ing the needed entry and exit points in the textures is
ensured when using appropriate CSG rendering tech-
niques (see Section 4). For the spherical lens volume
applied to the seismic dataset shown in Figure 1, these
textures encoding the intersection points as RGB colors
are shown in Figure 3. The left figure shows the entry
points for rays cast through region0, i.e., behind and
next to the lens. The right figure shows the exit points
of the rays cast through region2, i.e., in front of the lens
volume.

Figure 3: Textures storing intersection points at the
transition between region1 and region0 (left) resp.
region2 and region1 (right).



In the following paragraphs we are going to explain
the concepts required to compute the additional entry
and exit points. The implementation is discussed in the
following Section 4. To render the region0 consisting
of voxels behind and next to the lens volume, in most
cases the exit points of the cast rays are given by the
complete back face of the bounding box. Only for
those rays where the back face of the lens lies entirely
behind the back face of the bounding box, there are
no voxels behind the lens. In this case region0 con-
tains only voxels next to the lens, and therefore the
corresponding exit points are only given by those frag-
ments of the volume’s bounding box back face, which
lie next to the lens. While the intersection points on
the back face of the volume’s bounding box can be
computed quite easily the entry points for region0 re-
quire a little more effort. Since region0 contains all
voxels behind and next to the lens volume, each entry
point for this region is either given by the ray’s inter-
section point with the back face of the lens volume
or by the intersection point with the front face of the
volume’s bounding box. In cases where a particular
ray intersects both, the lens’s back face as well as the
bounding box’s front face, the intersection point far-
ther away from the viewer is used for further process-
ing. In this step we have to ensure that only those
parts of the lens are taken into account, which inter-
sect the volume’s bounding box. This is important be-
cause only these parts affect the volume dataset, and
to efficiently perform volume rendering later on, the
parts of the lens outside the volume’s bounding box
should be ignored. Because the computation of the exit
points of region2 is similar to that of the entry points of
region0, we proceed with region2. region2 consists of
all voxels which lie in front of the lens volume. Thus,
the exit points for region2 lie on the front face of the
lens volume, while the entry points are given by the
volume’s bounding box front face. In this section we
describe only the computations needed to determine the
exit points for region2, since the entry points can be
determined in a straightforward way as in GPU-based
volume ray-casting. Again, to exclude parts lying out-
side the volume’s bounding box from rendering, we
consider only those intersection points with the lens’s
front face, which lie inside the volume’s bounding box.
Hence by considering all intersection points with the
lens’s front face which lie inside the volume’s bounding
box, we obtain the exit points for region2.

In this paragraph the computation of the entry and
exit points needed to render the parts inside the lens
volume is explained. Since during calculation of the
entry points for region0 and the exit points for region2
only those parts of the lens are considered which lie
inside the volume’s bounding box, those pairs of entry
and exit points would not define a closed lens surface.
Hence we need another approach to determine the
entry and exit points for region1. Although, again we

Figure 4: Lens’s front face (left) and lens’s back face
(right) with color encoded volume texture coordinates
used to render region2. Only those fragments of the
lens, which are inside the bounding box of the volume
dataset, contribute to these images.

only want to consider those parts of the lens volume
which are inside the volume’s bounding box, we need
a special mechanism to generate a closed surface
from the considered entry and exit points, i.e., for
each entry point of region1 exists a corresponding
exit point. Because only the parts intersecting both
the lens as well as the volume’s bounding box will
be considered, determination of the ray’s intersection
points with (lens volume ∩ bounding box) is required.
These can be computed quite easily by using a
standard CSG rendering technique, for example the
SCS algorithm ([6]). The resulting surfaces with
an appropriate color encoding representing the ray’s
intersection points in volume texture coordinates are
shown in Figure 4.

In the preceding paragraphs we have described how
the intersection points for each ray that are required
by our algorithm can be obtained. Thus each ray cast
through the volume is specified by either two or four
intersection points, depending on whether it intersects
the lens volume or not. With this knowledge it is quite
easy to render region0, region1 and region2 in a back-
to-front order using GPU-based volume ray-casting.

4 A Hardware-Accelerated Implemen-
tation using OpenGL

As mentioned above, our algorithm for applying dif-
ferent visual appearances to volume datasets is based
on the GPU-based ray-casting volume rendering algo-
rithm proposed in [1]. Hence an appropriate mecha-
nism is needed to determine the additionally required
entry and exit points introduced by the lens volume. We
use 2D textures to store the entry and exit points. This
section points out implementation details about how
to determine the needed intersection points for each
ray and how to perform the volume rendering later on
by exploiting the features provided by current graph-
ics hardware. Compared to GPU-based volume ray-
casting no additional per-fragment operations have to
be performed when rendering the volume dataset in the
main rendering pass.



Before the volume rendering can be performed in the
main rendering pass, we need to determine the entry
and exit points for each ray. Since a ray can have
at most four intersection points, i.e., with the front
and back face of the volume’s bounding box as well
as with the front and the back face of the lens, four
images storing RGB color coded intersection points in
volume texture coordinates are needed. We are going
to refer to the images storing the entry resp. exit points
at the the volume’s bounding box’s front resp. back
face as bbox f ront resp. bboxback. The images, which
store the transitions between region0 and region1
resp. region1 and region2 are denoted as transition0
resp. transition1. Furthermore, the entry and exit
points for region1, i.e., the lens volume, are needed
and represented by lens f ront and lensback. While the
generation of bbox f ront and bboxback can be performed
in a straightforward way by using an appropriate
culling technique, the generation of the other images is
more complex and will be explained in the following
paragraphs.

To render the images denoted as transition0,
transition1, lens f ront and lensback a second inde-
pendently configurable depth test is needed in addition
to the standard OpenGL depth test. To simulate this
second depth test we use a concept similar to the depth
peeling technique introduced in [7]. Within depth
peeling a depth texture of type GL DEPTH COMPONENT
is used as a secondary read-only depth buffer, and
the shadow test is used to simulate the second depth
test operating on the additional depth buffer. Since
our implementation exploits the features provided
by programmable graphics hardware, we can easily
perform this second depth test within a fragment
program. Therefore, we access appropriate depth
textures containing the required depth information, and
we perform the depth test by comparing the current
fragment’s z-coordinate to the depth value stored in the
depth texture at the corresponding position. Dependent
on the result of this comparison the fragment may
be discarded, i.e., the second depth test fails. The
additional depth test performed in a fragment program
has a different behavior than the standard depth test.
In our algorithm we rely on the fact that a fragment,
which is discarded within a fragment program, is not
processed any further by the rendering pipeline. In
contrast when a fragment fails the standard depth test,
it is possible to define an appropriate stencil operation
to modify the stencil buffer.

To obtain the information stored in transition0 we do
not change the standard OpenGL depth test which is set
to GL LESS and render the back face of the lens as well
as the front face of the volume’s bounding box. Since
as aforementioned the effect of the lens is restricted to
the volume’s bounding box, we need to consider the
parts of the lens intersecting the bounding box only.

Furthermore, we have to address the cases, where the
back face of the lens lies behind the bounding box,
i.e., at this pixel position region0 contains no voxels
behind the lens. In our implementation we simply use
the alpha channel to encode that there is no intersection
point at the current position. Thus we set the alpha
value to 0.0 in transition0 at every pixel position where
the lens’s back face is behind the volume’s bounding
box back face. To fulfill these demands we use a second
depth test in combination with the stencil test. We ini-
tialize the stencil buffer with 0’s and replace the stencil
value with 1’s where the volume’s bounding box’s back
face would be rendered by also writing the depth values
of the volume’s bounding box back face to the depth
buffer. Then the stencil function is set to render only
those pixels where the stencil value equals 1, and the
lens’s back face is rendered to the color buffer. During
this rendering an additional depth test, which is set to
GL GREAT ER and which performs on a depth tex-
ture containing the depth information of the volume’s
bounding box’s front face, is used to render only those
parts of the lens which intersect the volume’s bound-
ing box. To prepare the subsequent rendering of the
volume’s bounding box’s front face it is important to
configure the stencil operation to replace the current
stencil value by 0 if the stencil test passes regardless
of the result of the standard depth test. Thus only if the
current fragment lies in front of the volume’s bound-
ing box no stencil buffer update occurs, since the frag-
ment is discarded within the fragment program and is
not processed any further by the rendering pipeline.
So far we have generated a color buffer containing the
parts of the back face of the lens which intersect the
volume’s bounding box and a stencil buffer contain-
ing 0’s at these positions as well as at the positions
the lens’s back face lies behind the volume’s bounding
box’s back face; and 1’s at the remaining positions.
Finally, we render the front of the volume’s bound-
ing box where the stencil buffer contains 1’s to obtain
transition0. To obtain transition1 we simply render the
fragments of the lens’s front face, which lie inside the
volume’s bounding box. Therefore, we render the back
face of the volume’s bounding box to the depth buffer
and set the standard depth test to GL GREAT ER. Then
we render the front face of the lens volume and con-
figure the additional depth test to compare the current
fragment’s z-coordinate with GL LESS to the corre-
sponding depth value of the volume’s bounding box’s
front face.

The images denoted as lensback and lens f ront can be
obtained by applying a standard image-based CSG
rendering technique, for instance the one described
in [6]. As explained in Section 3 it is important
that, while only the parts of the lens intersecting the
volume’s bounding box are considered, for each ray
intersecting the lens volume lensback and lens f ront
contain a pair of intersection points. Therefore the



Table 1: Frame rates measured in frames per second which are achieved when rendering various volume datasets
with different viewport sizes.

viewport size 5122 10242

no lens lens applied no lens lens applied
seismic dataset (2563) 60.0 58.3 53.0 49.1
skull dataset (2563) 30.1 24.0 19.0 14.7
foot dataset (2563) 29.7 25.3 14.8 9.7

CSG expression (lens volume ∩ bounding box) is
evaluated to generate the image shown in Figure 4
(left). The image shown in Figure 4 (right) is obtained
in a very similar way, where the role of the back and
front faces of the lens volume is exchanged.

5 Performance Analysis

For measuring the performance of the proposed algo-
rithm for arbitrary convex lens shapes some datasets
have been rendered by applying our technique. The
engine the seismic dataset as well as the foot dataset
are shown in Figure 1. During the measurements the
datasets have been rendered both with and without ap-
plying a lens. To show the effect of changing the fi-
nal image resolution the viewport size has been altered
as well. The results are shown in Table 1. For the
performance tests an Intel Pentium 4, 3GHz system,
running Windows XP Professional, with 1 GB RAM
and a nVidia GeForce FX 6800 based graphics board
equipped with 256 MB RAM has been used.

Table 1 shows that interactive frame rates are remained
when applying a lens to the dataset. Furthermore the
table shows that the frame rate drops when a larger
viewport is used, since GPU-based ray-casting makes
extensive use of per-fragment operations.

6 Conclusion

In this paper we have proposed a novel visualization
algorithm for volume datasets. The algorithm exploits
different image-based state-of-the-art rendering
techniques to allow the combination of different
visual appearances within a single volume dataset.
Thus when applying the presented visualization
techniques, the user is able to define an arbitrary
convex shape which serves as a lens. Because the
proposed algorithm facilitates GPU-based volume ray-
casting which supports early ray-termination as well
as empty space skipping it allows volume visualization
at interactive frame rates even on commodity graphics
hardware.

References

[1] J. Krüger and R. Westermann, “Acceleration Tech-
niques for GPU-based Volume Rendering,” in Pro-
ceedings IEEE Visualization 2003, 2003.

[2] D. Weiskopf, K. Engel, and T. Ertl, “Interactive
Clipping Techniques for Texture-Based Volume
Visualization and Volume Shading,” Transactions
on Visualization and Computer Graphics, vol. 9,
no. 3, pp. 298–312, 2003.

[3] H. Pfister, J. Hardenbergh, J. Knittel, H. Lauer,
and L. Seiler, “The VolumePro Real-Time Ray-
Casting System,” in SIGGRAPH ’99: Proceedings
of the 26th annual conference on Computer graph-
ics and interactive techniques, pp. 251–260, ACM
Press/Addison-Wesley Publishing Co., 1999.

[4] B. Cabral, N. Cam, and J. Foran, “Accelerated Vol-
ume Rendering and Tomographic Reconstruction
Using Texture Mapping Hardware,” in VVS ’94:
Proceedings of the 1994 symposium on Volume
visualization, pp. 91–98, ACM Press, 1994.

[5] I. Viola, A. Kanitsar, and M. E. Groller,
“Importance-Driven Volume Rendering,” in VIS
’04: Proceedings of the conference on Visualiza-
tion ’04, (Washington, DC, USA), pp. 139–146,
IEEE Computer Society, 2004.

[6] N. Stewart, G. Leach, and S. John, “Improved
CSG Rendering Using Overlap Graph Subtraction
Sequences,” in International Conference on Com-
puter Graphics and Interactive Techniques in Aus-
tralasia and South East Asia (GRAPHITE 2003),
pp. 47–53, 2003.

[7] C. Everitt, “Interactive Order-Independent Trans-
parency,” tech. rep., nVidia Corporation, 2002.


