
A Generic Virtual Reality Software System’s
Architecture and Application

Frank Steinicke, Timo Ropinski, Klaus Hinrichs
Institut für Informatik, WWU Münster, Einsteinstraße 62, 48149 Münster, Germany

{fsteini,ropinski,khh}@math.uni-muenster.de

Abstract

Virtual reality (VR) systems utilize additional input and
output channels in order to make interaction in virtual en-
vironments (VEs) more intuitive and to increase the user’s
immersion into the virtual world. When developing VR ap-
plications, developers should be able to focus on modeling
advanced interaction and system behavior instead of ren-
dering issues. Many systems and tools for developing vir-
tual reality applications have been proposed to achieve this
goal. However, no de facto standard is available. In this
paper we present Virtual Reality VRS (VR2S), a generic
VR software system, which is an extension of the high-level
rendering system VRS. The system provides flexibility in
terms of the rendering system and the user interface toolkit.
Thus, with using VR2S rendering can be performed with
several low-level rendering APIs such as OpenGL, Render-
Man or ray-tracing systems, and the interface can be imple-
mented by arbitrary user interface toolkits to support both
desktop- and VR-based interaction. The proposed system
meets the demands of VR developers as well as users and
has demonstrated its potential in different planning and
exploration applications.

Keywords: Virtual Reality, Software Architecture, VR
Interaction Techniques, VR Applications

1. Introduction

According to Burdea and Coiffet ([5]) virtual reality (VR)
is a high-end human-computer interface that involves real-
time simulations and interactions through multiple sen-
sorial channels. These systems serve one main purpose,
namely the enhancement of human-computer interaction
(HCI). But virtual reality is not limited to advanced user
interfaces; VR applications help to solve real problems since
immersive virtual environments (VEs) improve perception
and provide better insights into complex datasets. Exam-
ples are complex design and planning tasks, and the explo-
ration of large volumetric datasets.

In these VR systems the main focus is on interaction,
which combines adequate representations of the virtual en-
vironment with the manipulations available in the VE. Due
to the availability of special hardware, in particular intu-
itive and natural VR input devices, applications in this con-
text are highly-interactive and enable miscellaneous inter-
action concepts. Thus, another important aspect of VR sys-
tems is real-time performance. Response time and update
rate of the system need to be sufficient to avoid latencies.

Within dynamic and responsive computer generated
VEs, multimodal interactions are typically realized by using
special VR hardware. These devices such as data gloves,
wands and speech recognition systems etc. enable users to

navigate in and to interact with the virtual world more im-
mersively and intuitively since multiple senses are addressed
during the interaction process. In addition, immersive dis-
play technologies, e.g., stereoscopic projection systems and
head mounted displays, in combination with various multi-
sensory output paradigms like auditory and haptic feedback
improves the immersion into the virtual world.

When designing VR applications developers should
have to focus less on rendering and implementing devices’
interfaces but rather on interaction and simulation in
order to make VR worlds to become more interactive
and responsive. For that purpose, VR software systems
and toolkits facilitate an abstract view of the system and
the input and output devices by providing higher-level
development libraries to reduce the effort needed for
creating and rendering VEs. Since low-level APIs such as
OpenGL and DirectX address basic rendering issues, VR
research can now focus on more advanced topics, e.g., to
further extend multisensory interfaces and to advance basic
interaction techniques by providing intuitive metaphors to
enhance interaction in VR applications. In this paper we
present such a VR software system.

The paper is structured as follows. The both next sec-
tions discuss related work and point out the contributions
of our approach. In Section 2 we introduce Virtual Reality
VRS (VR2S), a VR-based extension of a generic graphics
software system, which is currently under development in
our VR laboratory. In Section 3 we discuss examples of
interaction concepts we have integrated in VR2S. Section
4 presents some example applications based on VR2S and
points out its benefits and potential. In the last section
we conclude the paper and give an overview about future
work.

1.1. Related Work

Many VR software systems and VR toolkits have been pro-
posed which support the development of virtual reality ap-
plications. For example, users of VPLs Body Electric ([1]),
which is a real-time simulation system for VR, specify rela-
tions between virtual objects and input or output devices in
a dataflow diagram editor. This dataflow approach can also
be found in a variety of similar systems such as SGIs Open
Inventor and VRML. However, a pure dataflow approach
does not support program modularity ([3]).

Alice ([11]) is a rapid prototyping system for creating
interactive computer graphics applications without requir-
ing much technical background. Since Alice has not been
designed to allow complete control over geometry at poly-
gon and vertex level for handling large data amounts, the
library is unsuitable for scientific and complex data visual-
ization.

CAVElib ([6]) which is based on both OpenGL as well as

IRIS Performer provides low-level APIs for creating appli-
cations for VR systems, in particular projection-based sys-
tems. Bierbaum and Just ([2]) mentioned that the CAVE
library was not intended as a long-term solution for VR
development, and thus its API is often difficult to extend
in backwards-compatible ways. In addition, the library is
inadequate for non projection-based VR systems, e.g., aug-
mented reality (AR) systems.

AVANGO ([19]) extends IRIS Performer scenegraph ob-
jects to allow multisensory VR application development by
providing fast and flexible VR support. Since AVANGO is
based on IRIS Performer, it is limited to SGI platforms and
not usable in other standard system environments. The
modular system Lightning ([4]) is an object-oriented sys-
tem for creating and developing VR applications. Similar
to AVANGO Lightning is also restricted to SGI platforms.

VRJuggler ([3]) and DIVERSE ([9]) are software systems
for building large high-end VR applications. Both systems
have been designed to overcome the drawbacks of some of
the previous systems. VRJuggler establishes a single com-
mon, modular architecture for different devices. To maxi-
mize performance the only layer the application interfaces
to directly is the graphics API. Due to the complexity of
VRJuggler the usage of its API is not effortless, whereas
DIVERSE lacks platform independence since it processes
on Linux and IRIS environments only.

Other approaches such as the Studierstube project ([13])
and MRToolkit ([14]) have originally been developed for
augmented reality, but extend to other VR systems. How-
ever, these approaches provide insufficient support for
projection-based VR environments.

A more detailed description of further VR software sys-
tems and toolkits can be found in [2]. Although, many sys-
tems are available for creating and developing virtual reality
applications, due to compatibility and customization issues
universities and research institutions tend to use their own
visualization libraries and VR-based extensions to explore
and interact with their specific datasets. Thus, there is no
standardization of VR system architectures, yet.

1.2. Contributions

In this section the contributions of VR2S as an alterna-
tive approach of a generic VR software system are pointed
out. Some of the following features of VR2S are standard
in most VR toolkits and therefore not explained in detail.
We briefly discuss our VR software system under different
viewpoints, including ease of VR application development
and usability of the library as well as technical properties,
such as extensibility, modularity etc.

Demands on VR software systems include especially
hardware-oriented issues such as support for multisensory
output, various input paradigms, or device independence.
Also multi-user support for collaborative interaction should
be possible within the VR system. VR2S meets these re-
quirements and is used in different VR system configura-
tions. In addition, it is possible to run VR applications in
desktop environments by simulating VR devices with stan-
dard desktop input paradigms. Thus, expensive system
components can be conserved by using desktop environ-
ments whenever possible.

Since VR2S is based on the generic 3D graphics system
VRS, the Virtual Rendering System ([8]), which has been
designed to enable rapid development of interactive graph-
ics applications, developers can focus on interaction and
system behavior. VR2S provides an adequate abstraction

for VEs as well as interplay of highly independent mod-
ules by a multi-layered application programming interface.
The platform independent and modular implementation of
VR2S eases both extensions as well as usability and aids
portability. Since VRS supports standard formats exchange
of content is ensured.

In contrast to most other graphics systems, VRS provides
a rendering system independent API. Thus, a VR2S-based
application can switch between different rendering systems
at runtime; there is no need for redesign of the application
source code.

In addition a generic user interface concept supports the
development of applications, which are not constrained to
a specific user interface. Hence, VR applications can be
ported to many existing standard user interface.

The proposed generic VR software system VR2S meets
the demands of VR developers and users and has demon-
strated its potential in different planning and exploration
applications.

2. Virtual Reality Extension of the Vir-
tual Rendering System

In this section we describe the architecture and concepts
as well as some components of VR2S. Since VR2S is based
on the generic graphics software system VRS, the Virtual
Rendering System will be introduced first.

2.1. Virtual Rendering System

VRS ([8]) is an object-oriented, scenegraph-based 3D com-
puter graphics system written in C++, which provides
numerous building blocks for composing 3D scenes, an-
imated 3D objects, and 3D interaction. VRS concen-
trates on OpenGL for real-time rendering and supports ad-
vanced rendering techniques such as multipass algorithms
for global illumination. In addition, VRS wraps and sup-
ports various other 3D rendering libraries, e.g., the Render-
Man, the global illumination system Radiance and also ray-
tracing renderers such as POVRay. Since VRS completely
encapsulates low-level 3D rendering systems through a uni-
form interface, applications can switch between different
rendering systems at runtime without any need for reim-
plementing the application. Low-level code specific to a
rendering system can be integrated into VRS source code;
but this low-level code causes loss of flexibility of the ren-
dering system. In interior design prototyping, for instance,
a modeled scene can be rendered for interactive exploration
and sound propagation using OpenGL and an arbitrary spa-
tial sound library. Rendering the scene with Radiance can
simulate interior light dispersion, while an additional pho-
torealistic impression of this room can be achieved using
the POVRay interface. Applications based on other graph-
ics systems need a reimplementation to switch to another
rendering system.

VRS is available for most common platforms such as
Windows, Linux, Unix, and Mac OS. All major user in-
terface systems such as Qt, X11, wxWidgets, Tcl/Tk , and
GTK+ are incorporated.

VRS is designed to support rapid development of interac-
tive 3D applications. Furthermore, it also serves as a frame-
work and testbed for application-specific and experimental
rendering, and design of innovative interaction techniques.

For run-time debugging, developers can use the Tcl/Tk
package interactive VRS (iVRS) ([10]), which is intended

as a rapid prototyping graphics environment. iVRS pro-
vides access to almost all features of VRS through the
scripting language without the need of compiling the source
code of the application.

2.1.1. Scene and Behavior Graphs in VRS

A VRS application requires at least one canvas, which is
typically integrated into the applications user interface.
The scene displayed in a canvas is defined by one or more
scenegraphs, while interaction and animation is specified
by behavior graphs. Thus, the four essential components a
VRS developer has to deal with are:

• a canvas representing a drawing area for VEs,

• hierarchical scenegraphs describing geometry and
appearance of 3D virtual objects,

• behavior graphs describing event-dependent and
time-dependent behavior of the virtual scene, and

• graphics resp. non-graphics objects representing
shapes, graphics and non-graphics attributes. These
objects are evaluated when included in scenegraphs.
Animations and interactive manipulations can be per-
formed by specifying them in corresponding behavior
graphs.

Modeling VEs with two types of graphs, scenegraphs and
behavior graphs, is unique to VRS. Because behavior is in-
dependent from geometry and most behavior cannot be as-
signed to a single subgraph, both aspects of an application
should be treated independently. Canvas objects delegate
events and requests, which are sent from the VRS run-time
management, to the associated graphs, e.g., redraw events
to scenegraphs, and mouse or keyboard events to behavior
graphs.

2.2. Virtual Reality Extension of VRS

VRS provides flexible and rapid prototyping of 3D applica-
tions. The distinction between geometry or appearance of
VEs and their behavior, eases the development of interac-
tive and immersive applications.

In this section we describe the extension of the VRS
graphics system to obtain an alternative approach for a
generic VR software system, which exploits the benefits of
the Virtual Rendering System and contributes new con-
cepts for HCI.

2.2.1. Software Architecture Overview

The main objective of VR2S is to provide VR software de-
velopers with a suite of APIs that abstract, and hence sim-
plify all interface aspects of applications including the user
interface and typical VR system tasks. The integration of
VR software components into VRS is based on the same
paradigms as the entire design of VRS. VR2S applications
are essentially independent of the VR system, and hence ap-
plications run on different system architectures in both VR
systems and desktop environments. The modular and flex-
ible design of VR2S permits individual as well as combined
usage of VR components. Thus, existing desktop applica-
tion can easily be extended by VR specific components, e.g.,
viewpoint-dependent stereoscopic rendering techniques (see
Section 2.2.4) require just a few additional lines of code:

1 // i n i t i a l i z a t i o n of the track ing system
2 TrackingSystem∗ t s ;
3 t s = new TrackingSystem (camera) ;
4

5 // se t ID of the tracked g l a s s e s
6 ts−>setHeadID (0) ;
7

8 // append track ing system to the canvas
9 canvas−>append (t s) ;

In line 2 and 3 a tracking system object required to deter-
mine the user’s head position is created dynamically. The
constructor’s only parameter is the camera attribute, which
is modified when viewpoint dependent rendering is active.
Other optional parameters include, for instance, the mea-
sures and orientation of the projection-screen or additional
transformations applied to the tracking data. In line 6
the application developer assigns the (default) ID for head
tracking, i.e., pose of rigid body number 0 is used for the
position and orientation of the virtual camera. Finally, in
line 9 the tracking system object is connected to the canvas
and all tracking events are evaluated by this canvas.

As illustrated in Figure 1, VR2S extends VRS by a VR-
based user interfaces to support multimodal HCI in appli-
cations. This VR-based user interface (see Section 2.2.3)
provides advanced concepts for the development of interac-
tion metaphors and techniques. All metaphors integrated
into VR2S can be used with both VR hardware devices and
desktop-based input paradigms such as two-dimensional
GUIs.

Since there are many libraries for multimodal input and
output channels, the usage of multisensory interaction is
performable by extensible interfaces to the correspond-
ing libraries. Some of these extern libraries are not con-
strained to support multisensory input or output channels
and include further advanced interaction concepts, such as
physical simulation systems, e.g., Open Dynamics Engine
(ODE), or the AR software system ARToolKit.

In the graphics layer, some of the VR2S extensions re-
fer to the VRS core of rendering techniques, e.g., off-axis
stereoscopic rendering, other components relate more to the
VR-based user interface at the application layer. Rendering
of the scene is performed in the rendering layer by usage of
adapters to the corresponding rendering system.

In the following subsections we will explain some of these
basic concepts and interfaces in more detail. All interac-
tion issues are handled via the Interaction class, which
evaluates all kind of input events and eventually activates
appropriate system behavior.

2.2.2. Interaction and Event Handling

An interaction between a user and the VR system consists
of three logical steps:

1. It starts,

2. it executes for a certain time interval, and

3. it either ends regularly or is canceled.

Accordingly, the specific interaction tasks can be imple-
mented in four methods start, execute, end, and cancel
by subclassing these methods. Conditions that have to be
satisfied determine the state of the interaction.

For example, considering 6 degrees of freedom (DoF) ma-
nipulations, the interaction is started, when the user per-
forms a predefined action indicating the selection of a vir-
tual object. During the 6 DoF manipulations the interac-
tion executes until the user releases the object or an error

Figure 1: The system architecture of VRS ([8]) and its VR-based extension VR2S consisting of application, graphics and
rendering layers.

occurs. An interaction can receive and propagate canvas
events, which belong to the interaction nodes appended to
one of the behavior graphs of the corresponding canvas;
other events are ignored.

According to the conditions the Interaction class trig-
gers the start, execute, end, and cancel methods. Ex-
amples of subclasses of the Interaction class are control
classes for input devices, which receive and propagate input
device events, e.g., glove or space mouse events.

2.2.3. VR User Interface

VR system environments support multisensory inputs that
enable a natural and intuitive interface for HCI. To use
such devices a uniform class SpatialInputDevice provides
an interface for controlling virtual input devices. A vir-
tual input device is the representation of a physical device
in the virtual world. It is controlled via sampled data re-
ceived from the hardware and abstracts from the particular
used input device. Special VR hardware devices are either
connected to the same computer VR2S runs on or they can
be communicate via network sockets with VR2S. Thus, to
maintain performance extensive and also platform depen-
dent processes such as tracking or gesture recognition can
be distributed to different systems.

When an arbitrary VR input device, e.g., a
wand or a data glove, is used, corresponding
SpatialInputDeviceEvents are generated and processed
by the interaction handling mechanism.

The events for a virtual input device are divided into four
groups:

1. Motion events are generated and processed when an
associated input device is tracked and moved through
the VR system environment.

2. Selection events occur when the user performs a pre-
defined action associated with the selection process,
e.g., pressing a special button or posing a special ges-
ture.

3. After the user has indicated a selection process, move

events are generated permitting the 6 DoF manipu-
lations of virtual objects.

4. Analogous to the selection subprocess, release events
are generated by the user performing predefined re-
lease actions, e.g., releasing a button.

The resulting events cause corresponding system behav-
ior, i.e., if a motion or move event occurs, the virtual input
device resp. selected objects are positioned in the scene
according to the pose of the real input device. A selec-
tion event causes grabbing, a release event unhanding of
virtual objects. This interaction is implemented by a call-
back mechanism, i.e., events 1 to 4 execute user-definable
callbacks in which all manipulations are handled.

The following source code describes how an arbitrary
scenegraph element can be exploited as a virtual input de-
vice.

1 SceneThing∗ th ing = new SceneThing (view) ;
2 thing−>append (new Sphere ()) ;
3

4 // append s p a t i a l input device to the canvas
5 canvas−>append (new Spat ia l InputDev ice (th ing)) ;

In line 2 a virtual sphere is appended to a scene thing, which
is contained in the scenegraph. In line 5 this sphere is used
as virtual input device and can be controlled by arbitrary
physical input devices, such as tracked data gloves.

Since the SpatialInputDevice class incorporates further
information, several interaction metaphors can be imple-
mented by inheriting these callbacks (see Section 3).

2.2.4. Multimodal User Input

VR input devices not already supported by VR2S can easily
be integrated into VR2S to enable control via the described
VR user interface. Besides desktop devices such as mouse
or keyboard VR2S supports data gloves, space mice and
arbitrary tracked input devices. In addition, any physical
object can functionalize as VR input device by applying
appropriate tracking technologies. Thus, user-defined input
devices such as wands, gloves or hands are trackable for
natural and intuitive 6 DoF interactions.

The usage of tracking systems provides another powerful
extension of VR systems. Tracking of the users’ head po-
sition and head orientation enables the system to calculate
a corresponding camera projection and orientation. Thus,
users can walk around virtual objects and watch them from
different positions. The evaluation of tracking data gener-
ated by an arbitrary tracking system is implemented by a
general interface class TrackingEvent. The recorded track-
ing data generates events, which includes information about
the uniquely tracked object, such as the transformation of
this object in relation to its initial position and orienta-
tion, the moment of the tracking, and the canvas to which
the tracking system is associated with. In the case of head
tracking a trackable configuration is attached to the user’s
head, e.g., a rigid body attached to stereo glasses.

Since, VR hardware devices are expensive technologies,
all devices can be simulated using VR2S, which allows the
implementation and testing of VR interaction concepts out-
side a VR system environment. For example, head tracking
events can be emulated using the arrow keys on the key-
board.

2.2.5. Multisensory System Output

Even though visual perception is dominant in VEs, other
sensors, e.g., auditory, haptic etc. provide the user addi-
tional immersive experience. Hence, like the multimodal
user input channel, the system feedback may use multisen-
sory concepts.

Similar to the other event classes, multisensory feedback
can be initiated via corresponding events propagated, for
example, by the HapticEvent and the SoundEvent classes,
to enable haptic and auditory feedback. These events are
generated by interface classes to the corresponding libraries
such as the spatial sound library OpenAL or the haptic li-
brary (HapticID) developed at our VR laboratory. This li-
brary can be used to create and trigger user-definable vibra-
tion signals for hardware devices equipped with a vibration
unit, e.g., wands or gloves. Interfaces to other multisensory
libraries can be integrated easily with our approach.

3. Interaction Metaphors and Advanced
Exploration

In this section we briefly present an overview of interaction
metaphors, which have been developed and implemented
with VR2S.

3.1. Interaction Metaphors

The enhancement of human-computer interaction in VR
requires the availability of intuitive and natural interaction
metaphors to accomplish fundamental interaction tasks eas-
ily. Thus, we have developed several multimodal interaction
metaphors, which underline the feasibility of the described
interaction concepts.

3.1.1. Improved Virtual Pointer Metaphor

In order to advance the selection and manipulation process
when using pointer techniques, we have introduced the im-
proved virtual pointer (IVP) metaphor ([16]), which avoids
most of the disadvantages of current interaction metaphors.
The IVP metaphor enables a user to select a desired object
without requiring an exact hit. A straight ray is used to

indicate the direction of the virtual pointer, while an ad-
ditionally visualized bendable ray points to the closest se-
lectable object. The selection process is accelerated since
a user can roughly point at desired objects, and the curve
automatically gives a visual feedback about the object’s ex-
act position. Besides the advanced interaction with distant
and small objects, the usage of a bendable ray also enables
the selection of partially or completely occluded objects.

To further support the user during the interaction we
add multimodal concepts described in [17] to this selec-
tion process. When the curve bends to another object the
user perceives a smooth vibration signal, whereas the signal
strength increases with decreasing distance between user
and object. In addition, a gentle sound disperses from the
position of that object and results in a better spatial cog-
nition of the location of the desired object. Thus, also non-
visible objects can be located approximately.

After selecting the active object, 6 DoF manipulations
can be accomplished by different mapping approaches be-
tween movements of the input device and the manipulated
object as described in [17].

The usage of the IVP metaphor is illustrated in Figure
2 and Figure 4. In Figure 2 a user interacts with a virtual
building via a 3D widget ([7]) attached to it. The small han-
dles enabling a constrained rotation and translation of this
object are not accessible with common VR interaction tech-
niques, whereas the IVP metaphor supports the 3D widget
interaction. In Figure 4 the IVP metaphor concepts are
used for menu-based interaction.

3.1.2. Dual-Purpose Interaction Metaphor

In [18] we introduced a dual-purpose metaphor which is an
extension to the IVP metaphor concepts.

The objective of this approach is to simplify porting of
desktop applications to VR systems. The main concept
is based on enabling desktop interaction with VR hard-
ware devices by mapping the tracked information to cor-
responding desktop events. In opposite to the VR simu-
lation mode, VR hardware emulates standard desktop in-
put devices. Thus, all desktop-based interaction aspects
are applicable with the usage of VR devices. To overcome
inaccuracy and latency of tracking results, we integrate
the IVP metaphor concepts into this approach to advance
two-dimensional GUI interactions. Switching between both
modes, i.e., VR-based and desktop-based interaction, is en-
sured at runtime.

Figurer 4 illustrates the IVP metaphor in a medical
application allowing an easy access to two-dimensional
menu items such as checkboxes, buttons and sliders. The
visual representation of the medical data can be explored
and manipulated with VR-based interaction techniques.

A user study of the described concepts has pointed out
the advanced usability and efficiency in comparison to other
interaction metaphors. The participants have evaluated the
described concepts as the most intuitive, easy to learn and
easy to use approaches among the compared techniques
([17]).

3.2. Advanced Exploration Approaches

Traditionally, VR systems are used for advanced explo-
ration tasks since stereoscopic viewing on large projection
displays provides a better spatial perception of complex 3D
datasets and also enables groups of users to explore and

experience VR together. In this section we will present two
exploration metaphors which improve the spatial cognition
in such a system setup.

3.2.1. Mixed Reality Environment

Seamlessly merging the real and the virtual world created
within a computer is a challenging topic in current VR re-
search. To optimize the user’s immersion into a mixed re-
ality (MR) environment, we have proposed the concepts of
virtual reflections and virtual shadows ([15]), which use in-
formation about the real environment surrounding the user.
The data is received via real-time cameras to generate cor-
responding reflections and shadows on virtual objects. For
example, users can see their own reflections on reflective
surfaces. Tracked input devices are used to determine the
position and orientation of virtual light sources and they
cast shadows on virtual objects according to their pose re-
spectively.

To evaluate these concepts we have implemented an ex-
ample application that supports the exploration of different
car models. Virtual cars can be illuminated intuitively by
positioning real lamps, to which passive markers are at-
tached for optical tracking. The surrounding of the VR
laboratory is captured with a USB camera mounted on top
of the responsive workbench (see Figure 3 (a)).

Hence, the surface structures of cars look more realistic,
and real and virtual worlds are merged. The virtual car
seen from the users point of view is illustrated in Figure 3
(b), which shows clearly visible reflections and shadows on
the engine hood.

3.2.2. Collaborative Exploration

Besides an enhanced visualization of complex data, large
projection-based displays enable groups of users to explore
and experience VR together. Such cooperations have been
proven to be advantageous since in many application do-
mains the bundling of experts knowledge increases the pro-
ductivity. Since, generally these systems can project a
perspectively-correct image for only one user, i.e., the user
wearing tracked stereo glasses, we have developed an al-
ternative approach for a collaborative virtual environment
(CVE).

The main idea is based on sharing display capabilities
after a registration process; the view space is divided into
sub viewports in which every collaborator perceives a cor-
rect stereoscopic image. The registration process is handled
via gestures and communication between the participants
of a collaborative interaction. After a collaborator has an-
nounced for collaboration by performing a special gesture,
this user is registered for the interaction process and ap-
propriate viewport space is assigned to him. Alternatively,
the interaction can be performed sequentially. In this case
a successful registration process causes a switch of the ac-
tive user, i.e., the user whose head and input devices are
tracked for viewpoint dependent interaction.

Figure 2 shows two collaborators in a responsive work-
bench environment. The active collaborator manipulates a
virtual building, while the second one is watching the inter-
action. By announcing via the registration process and a
following acceptance of the currently active user, both users
can switch their roles, or they can collaborate in front of a
shared projection screen.

Figure 2: Two cooperative city planners interact with vir-
tual buildings via a 3D widget on a horizontally mounted
workbench arrangement.

4. Application Overview

In this section we will briefly describe two applications from
different domains developed with VR2S and point out the
potential of the proposed VR software system. Both appli-
cations run in desktop and VR environments.

4.1. 3D Residential City Planner

Virtual 3D city models provide an important tool for an-
alyzing and communicating spatial information associated
with urban environments. They support many visualization
domains, e.g., of city planning and scientific simulations.
However, specific interactions performed by city planners,
e.g., manipulation of virtual buildings and building areas
etc., require further advancements of these basic interac-
tion techniques. For this purpose, we develop a residential
city planning software for urban planning tasks in coop-
eration with the department of city planning and building
development as well as the cadastral department of the city
of Münster (Germany). Using this software city planners
are able to create and modify development plans by inter-
acting with an automatically generated 3D representation
of arbitrary districts or entire cities.

Desktop-based interaction within this software is per-
formable via standard GUI interaction concepts. A menu
supports standard tasks such as creation, selection, manip-
ulation and removal of virtual buildings. Using the dual-
purpose IVP metaphor (see Section 3.1.2) the port of this
software to a VR system requires no adaptation. The user
can easily switch between VR interaction such as manipu-
lation of virtual building with the hands and the described
GUI interaction. Hence, all interactions can be performed
while access to the complete menu originally designed for
the desktop application is ensured.

Figure 2 shows this application in a responsive work-
bench environment. The active user manipulates a virtual
building by selecting handles attached to a 3D manipula-
tion widget ([7]). This selection process is realized by using
the IVP metaphor, which permits the access to the small
handles of the widget.

(a) User in a responsive workbench environment with tangible
user input elements.

(b) The resulting virtual reflections and virtual shadows from
the users point of view.

Figure 3: Application of virtual reflections and virtual shadows to a car model in a mixed reality environment setup.

4.2. Molecular Cardiovascular Imaging

Visualization of medical volume datasets provides an essen-
tial diagnosis tool for medical applications. Today, medical
volume rendering techniques ease health professionals work
during medical diagnosis. Due to the rapid development of
high precision medical imaging techniques, e.g., CT, MRI
and PET, and their high spatial resolution, the amount and
complexity of data makes performing diagnostic examina-
tions a challenging task. Since in most medical applications
the region of interest, e.g., tumors or arterial structures,
is small in comparison to the overall dataset, mechanisms
are required which support health professionals to focus on
these regions.

Since VR technologies can be used to obtain immer-
sive insights into such highly complex volume datasets, we
have integrated different rendering techniques into VR2S
to highlight these regions of interest ([12]). The proposed
algorithms enable to interactively define regions of interest
within a volume dataset, to which a different visual appear-
ance is applied. The region of interest is given by an arbi-
trary convex lens shape and a visual appearance associated
with it. Data within the lens volume can be emphasized us-
ing arbitrary rendering techniques, e.g., edge-enhancement,
isosurface rendering etc. In contrast to recent comparable
techniques, the proposed algorithm is fully accelerated by
todays commodity graphics hardware, such that the shape
of the lens, its position as well as the visual appearance can
be controlled interactively with VR hardware devices.

At present, these concepts are integrated in a software
application for the exploration of medical volume data in
desktop and VR environments. The software application
is based on VR2S to enable an easy development of inter-
action concepts. The engineering is focused on the design
of intuitive and natural exploration metaphors to support
an immersive perception of the inner structures of organ-
isms. Another research issue is the development of further
efficient interaction techniques permitting surgery specific
tasks such as 3D segmentation.

Figure 4 shows the usage of a prototype of the described

Figure 4: A user in a back-projection passive stereo system
explores a volumetric PET dataset by applying a spherical
shaped emphasizing lens and GUI interactions.

application in a back-projection passive stereo system. The
IVP metaphor enables an intuitive interaction with 2D
menu contents and volumetric PET datasets. The 2D menu
can also be projected on personal interaction panels held in
the non-dominant hand to enable tactile feedback during
menu interaction. A spherical shaped emphasizing lens is
applied to a PET scan of a mouse acquired using a Quad-
Hidac small animal PET scanner.

5. Conclusion and Future Directions

In this paper we have presented our approach of a generic
VR software system. We have introduced the system archi-
tecture and described some basic components. The major
benefits of VR2S in comparison to other VR software sys-

tems and toolkits have been pointed out by discussing the
integrated interaction concepts. Two example applications
underline the potential and usability of the proposed ex-
tension for interactive domains focussed on interaction and
exploration tasks.

In the future we will integrate additional input and out-
put devices to further increase multimodality of VR ap-
plications. Additional interaction metaphors will be de-
veloped and evaluated in the context of the proposed VR
software system. Further libraries, e.g., for physical sim-
ulation or speech recognition, will be integrated into the
scenegraph-based structure to support the rapid develop-
ment of constraint-based interaction.

6. Acknowledgments

We thank the students and graduands, who have imple-
mented many parts of VR2S and who evaluated the con-
cepts in user studies. We appreciate the work of the VRS
developers at the University of Münster and the Hasso-
Plattner Institute in Potsdam, in particular Jürgen Döllner.

In addition, we would like to acknowledge the city plan-
ning and building development as well as the cadastral de-
partment of the city of Münster for their cooperation.

The development of the molecular cardiovascular imag-
ing software is realized as part of the SFB 656 ”Molecular
Cardiovascular Imaging” which is funded by the german
research foundation (DFG).

References

[1] Yoshitaka Adachi, Takahiro Kumano, and Kouichi
Ogino. Intermediate representation for stiff virtual ob-
jects. In Proceedings of IEEE VRAIS, pages 195–203,
1995.

[2] Allen Bierbaum and Christopher Just. Software tools
for virtual reality application development. In Course
Notes for SIGGRAPH 98 Course 14, Applied Virtual
Reality, 1998.

[3] Allen Bierbaum, Christopher Just, Patrick Hartling,
Kevin Meinert, Albert Baker, and Carolina Cruz-
Neira. VR Juggler: A virtual platform for virtual re-
ality application development. In IEEE Proceedings of
VR2001, pages 89–96, 2001.

[4] Roland Blach, Jürgen Landauer, Angela Rösch, and
Andreas Simon. A flexible prototyping tool for 3D
realtime user-interaction. In Virtual Environments:
Conference and Eurographics Workshop, pages 195–
203, 1999.

[5] Grigore C. Burdea and Philippe Coiffet. Virtual Real-
ity Technology. Wiley-IEEE Press, 2003.

[6] Carolina Cruz-Neira. Virtual Reality Based on Mul-
tiple Projection Screens: The CAVE and Its Applica-
tions to Computational Science and Engineering. PhD
thesis, University of Illinois at Chicago, 1995.

[7] Jürgen Döllner and Klaus Hinrichs. Interactive, an-
imated 3D widgets. In Computer Graphics Interna-
tional 1998, pages 278–286, 1998.

[8] Jürgen Döllner and Klaus Hinrichs. A generic render-
ing system. In IEEE Transactions on Visualization
and Computer Graphics, 8(2), pages 99–118, 2002.

[9] John Kelso, Lance E. Arsenault, Steven G. Satter-
field, and Ronald D. Kriz. DIVERSE: A framework
for building extensible and reconfigurable device inde-
pendent virtual environments. In Proceedings of IEEE
Virtual Reality 2002 Conference, pages 183–190, 2002.

[10] Oliver Kersting and Jürgen Döllner. Interactively de-
veloping 3D graphics applications in Tcl. In USENIX
Annual Technical Conference, pages 99–118, 2002.

[11] Randy Pausch, Tommy Burnette, A. C. Capehar,
Matthew Conway, Dennis Cosgrove, Rob DeLine,
Jim Durbin, Rich Gossweiler, Shuichi Koga, and Jeff
White. A brief architectural overview of Alice, a rapid
prototyping system for virtual reality. In IEEE Com-
puter Graphics and Applications, pages 195–203, 1995.

[12] Timo Ropinski, Frank Steinicke, and Klaus Hinrichs.
Tentative results in focus-based medical volume visu-
alization. In Conference Supplements of Smartgraphics
2005 (in print), 2005.

[13] Dietmar Schmalstieg, Anton L. Fuhrmann, Gerd
Hesina, Zsolt Szalavari, Miguel Encarnaçǎo, Michael
Gervautz, and Werner Purgathofer. The studierstube
augmented reality project. In PRESENCE - Teleop-
erators and Virtual Environments 11(1), pages 32–45,
2002.

[14] Chris Shaw, Mark Green, Jiandong Liang, and Yunqi
Sun. Decoupled simulation in virtual reality with the
MR toolkit. In ACM Transactions on Information Sys-
tems 11(3), pages 287–317, 1993.

[15] Frank Steinicke, Klaus Hinrichs, and Timo Ropinski.
Virtual reflections and virtual shadows in mixed reality
environments. In Short Paper Proceedings of the 10th
International Conference on Human-Computer Inter-
action (INTERACT05), pages 1018–1021, 2005.

[16] Frank Steinicke, Timo Ropinski, and Klaus Hinrichs.
Object selection in virtual environments with an im-
proved virtual pointer metaphor. In International
Conference on Computer Vision and Graphics (IC-
CVG), pages 320–326, 2004.

[17] Frank Steinicke, Timo Ropinski, and Klaus Hinrichs.
Multimodal interaction metaphors for manipulation of
distant objects in immersive virtual environments. In
In Short Paper Proceedings of the 13th International
Conference in Central Europe on Computer Graphics,
Visualization and Computer Vision (WSCG05), pages
45–48, 2005.

[18] Frank Steinicke, Timo Ropinski, and Klaus Hinrichs.
VR and laser-based interaction in virtual environments
using a dual-purpose interaction metaphor. In IEEE
VR 2005 Workshop Proceedings on New Directions in
3D User Interfaces, pages 61–64, 2005.

[19] Henrik Tramberend. AVANGO: A distributed virtual
reality framework. In Proceedings of the IEEE Virtual
Reality ’99, 1999.

