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Abstract

We present visualization techniques for time-
varying volume datasets, i.e., time series of 3D data
volumes. Instead of sequentially displaying the
consecutive 3D volumes contained in such a time
series, our method allows to depict the dynamics in
a single static image. We extract the motion dy-
namics inherent to a time-varying volume dataset
automatically during a preprocessing step by using
three-dimensional block matching. The final ren-
dering of a 3D volume associated with a specific
point in time incorporates the extracted information
to depict dynamics in a single static image by non-
photorealistic overlays in the form of glyphs and
other graphical elements. In addition the preced-
ing and following volumes of the time series may
be rendered and combined with the final image.

1 Introduction

Volume rendering has become a mature field of in-
teractive 3D computer graphics. It supports pro-
fessionals from different domains when exploring
volume datasets, representing for example medi-
cal or meteorologic structures and processes. Cur-
rent medical scanners produce datasets having a
high spatial resolution. Especially Computer Tomo-
graphy (CT) datasets are highly suitable for show-
ing anatomical structures. However, when dynamic
processes have to be explored a single 3D volume
dataset is often insufficient. For example Positron
Emission Tomography (PET) imaging techniques
are used for exploring the dynamics of metabolism.
Successive scans produce a time series of images
each showing the distribution of molecules at a cer-
tain point in time. Time-varying volume data is also
produced when applying functional Magnetic Res-
onance (MR) imaging techniques to evaluate neuro-
logical reaction to certain stimuli.

In the subsequent sections we will use the term
“time-varying (volume) dataset” or just “dataset”
for a time series of 3D data volumes and “3D vol-
ume” for a single data volume at a specific point in
time.

Although 3D volumes can be displayed sepa-
rately to view the data for specific points in time,
the dynamics contained in a time-varying dataset
can only be extracted when considering all of
them. Therefore time-varying volume datasets are
often visualized by displaying the 3D volumes se-
quentially in the order they have been acquired.
When rendering these 3D volumes at a high frame
rate, the viewer is able to construct a mental im-
age of the dynamics. Current graphics hardware
supports rendering of time-varying datasets having
moderate dimensions with appropriately high frame
rates. However, often this rendering technique is
unappropriate, since it is preferable in some do-
mains to view still images rather than dynamic im-
age sequences. The following two problems arise
when dealing with image sequences of 3D volumes.
When several people watch an image sequence, to
exchange findings with the group a viewer usually
points at a specific feature within an image. Since
the images are dynamic, it is hard to pinpoint such
an item of interest, especially if it is moving, and the
animation needs to be paused. Another problem is
the exchange of visualization results. In medical de-
partments diagnostic findings are often exchanged
on static mediasuch as film or paper. However,
it is not possible to exchange time-varying volume
datasets in this manner. Although the sequential
viewing process could be simulated by showing all
3D volumes next to each other, this could lead to
registration problems, i.e., it would be more difficult
to identify a reference item across the 3D volumes.

This paper proposes visualization techniques
which allow to represent motion dynamics extracted
from a time series of 3D volumes within a single



static image. To this end we extract motion infor-
mation between successive 3D volumes in a pre-
processing step. Our visualization techniques de-
pict motion by composing the successive 3D vol-
umes and additional visualization elements. These
visualization elements are used to augment the ren-
dering of data extracted from the time-varying vol-
ume dataset at a specific point in time. For achiev-
ing effects adapted from cartoons in order display
motion we combine polygonal elements with the
volume rendering of the source datasets to obtain
the final image.

In the next section we discuss related work. Sec-
tion 3 briefly introduces the used motion estima-
tion technique. Section 4 describes the visualiza-
tion techniques used to depict the extracted motion
information especially the usage of transparency,
speedlinesand motion glyphs. After discussing the
application of our techniques to datasets from dif-
ferent domains in Section 5, the paper concludes in
Section 6.

2 Related Work

Mostly, non-photorealistic rendering techniques are
used for depicting motion in a single image. Ma-
such et al. [13] present an approach to visualize
motion extracted from polygonal data by speed-
lines, repeatedly drawn contours and arrows; differ-
ent line styles and other stylization give the viewer
the impression of a hand-drawing.

Nienhaus and D̈ollner [15] present a technique
to extract motion information from a behavior
graph, which represents events and animation pro-
cesses. Their system automatically creates cartoon-
like graphical representations.

Joshi and Rheingans [9] use speedlines and flow
ribbons to visualize motion in volume datasets.
However, their approach handles only feature ex-
traction data and is mainly demonstrated on experi-
mental datasets.

A lot of research in the area of dynamic volume
visualization has been dedicated to flow visualiza-
tion. Motion arrows are widely used [10], but are
often difficult to understand because information is
lost when performing a 2D projection to the screen.
Boring and Pang [4] tried to tackle this problem by
highlighting arrows, which point in direction speci-
fied by the user. Texture based approaches compute
dense representations of flow and visualize it [14].

First introduced for 2D flow, it has also been used
for 3D flow visualization, for example with vol-
ume line integral convolution used by Interrante and
Grosch [7]. Svakhine et al. [16] emulate traditional
flow illustration techniques and interactive simula-
tion of Schlieren photography.

Hanson and Cross [6] present an approach to
visualize surfaces and volumes embedded in four-
dimensional space. Therefore they use 4D illumi-
nated surface rendering with 4D shading and occlu-
sion coding. Woodring et al. [18] interpret time-
varying datasets as four-dimensional data fields and
provide an intuitive user interface to specify 4D hy-
perplanes, which are rendered with different tech-
niques. Ji et al. [8] extract time-varying isosurfaces
and interval volumes considering 4D data directly.

Our work is based partially on a block matching
algorithm to extract motion information from time-
varying volume datasets presented by de Leeuw and
van Liere [11]. They rendered the estimated mo-
tion using polygonal models which are combined
with volume rendering results. In contrast to their
approach we detect and visualize object motion in-
stead of flow introduced by single voxels.

3 Extracting Dynamics from Time-
Varying Volume Datasets

To visualize dynamics expressively, motion infor-
mation needs to be retrieved from the underlying
data. Usually motion is not accessible directly and
has to be extracted by applying appropriate algo-
rithms. For our visualization we use an algorithm
introduced by de Leeuw and van Liere [11]. Here
we will give only a brief overview of the underly-
ing concepts, while a complete explanation can be
found in the original paper.

The goal is to extract dynamic motion from time-
varying volume datasets. For each voxel in one
3D volume the algorithm searches for a correspond-
ing voxel with a similar intensity in the successive
3D volume and interprets the spatial difference as
motion. However, considering only one voxel for
the comparison would be insufficient. Hence, all
voxels in a block around the two candidates are
used, which works similar to a block matching al-
gorithm as used in 2D video compression [1].

Since comparing a voxel block with each voxel
block in the next 3D volume is not very efficient,
only those blocks of the successive 3D volume are



tested, which lie in the neighborhood region of the
current block. This test region is called the search
window and its size is dataset dependent.

Comparing the blocks is done by using a match-
ing operator	. The result of	 is greater when
comparing less similar blocks and smaller for more
similar ones. We calculate the absolute differences
for each corresponding voxel and scale it with the
result of a Gaussian weighting function, centered in
the appropriate block matching region. This factor
expresses that we are interested in the motion at a
particular position—so nearby voxels are more im-
portant than those farther away.

We have adapted the 3D block matching algo-
rithm to be better suitable for our visualization tech-
niques, because a meaningful estimation was not
possible for all blocks. Hence we discard blocks
having only sparse content, i.e., having only a small
number of voxels with an intensity not equal to zero.
This elimination avoids that these sparse blocks
might match to arbitrary destination blocks. For
example a block containing only a single voxel ly-
ing on the border of an object may match to several
other blocks, containing only one voxel with a sim-
ilar intensity value.

Furthermore in cases in which more than one
candidate with the same best matching value exist,
we decided to choose the candidate with the mini-
mal distance.

4 Illustrating Dynamics

When visualizing time-varying volume datasets we
do this by using the current 3D volume—which
would be rendered when rendering the 3D volumes
sequentially—as a frame of reference. This frame
is visualized by applying direct volume rendering
techniques and contributes the most to the image.
The information obtained from preceding and suc-
cessive 3D volumes is used in order to augment
the image. In the following subsections we explain
three different techniques for performing this aug-
mentation. The first subsection explains how to
merge the information directly contained in differ-
ent 3D volumes, while the following two subsec-
tions explain how to use the meta information ex-
tracted from the dataset.

Figure 1: Three visualization techniques to depict
the motion of the golfball volume dataset. The cur-
rent 3D volume is rendered using isosurface shad-
ing. Edges of preceding and successive 3D volumes
are shown (top), preceding 3D volumes are ren-
dered semi-transparent (center), dynamic motion is
depicted with speedlines (bottom). Renderings of
ten time steps extracted from the dataset are shown
(left).

4.1 Depicting Multiple Datasets

To directly visualize the content of preceding or
successive 3D volumes while rendering the current
frame with direct volume rendering techniques we
propose a combination of transparency and edge
detection. In contrast to motion blur these tech-
niques avoid blurring the information contained in
the preceding resp. successive 3D volume. Both
techniques can be parameterized based on the dif-
ference in time between the preceding/successive
3D volume and the point in time given by the cur-
rent 3D volume.

The edge detection we apply is an image-based
technique which allows us to emphasize the silhou-
ette of objects contained in a 3D volume by ap-
plying appropriate filter kernels. To select which



Figure 2: Hand-drawn speedlines are used. To en-
hance the desired cartoon-like impression they are
disturbed during rendering.

edges should be emphasized we introduce an edge
threshold. This threshold ensures that only edges
exceeding a certain thickness end up in the final im-
age. The color of the edges is parameterized de-
pending on the point in time of the 3D volume to
be processed. In Figure 1 (top) cold colors are used
to depict the silhouettes of preceding 3D volumes,
while warm colors are used to emphasize the silhou-
ettes of object contained in successive 3D volumes.
For the preceding 3D volumes the edge threshold is
set depending on the difference in time, such that
3D volumes with a greater difference in time are
depicted by using thinner edges.

Inspired by an advertisement illustration (see
Figure 9) we have also applied transparency tech-
niques in order to show the preceding 3D volumes.
In these cases the transparency used to show the ob-
jects contained in the 3D volumes varies depend-
ing on their corresponding points in time. An im-
age which has been generated with this technique is
shown in Figure 1 (center).

Once the current 3D volume as well as the de-
sired preceding and successive 3D volumes are ren-
dered, the images need to be composed in order to
obtain a single image as the final result. For this
composition we can either blend the results or mask
them by considering the background color.

4.2 Speedlines

Speedlines are a very common approach to depict
past motion in cartoons. We have developed an
algorithm to automatically generate speedlines for
3D volumes by using motion information extracted
in a pre-processing step.

4.2.1 Direction and Shape Estimation

Our algorithm starts by first estimating the motions’
preeminent direction−→m. If all voxels move with ap-
proximately the same speed, we can simply use the
motion vector with median slope among all vectors.
For vector fields that exhibit a significant variance
with respect to the absolute speed of the objects, we
compute theweightedmedian of the slopes where
each slope is weighted with the (normalized) length
of the corresponding motion vector. Both variants
of median-finding can be implemented by first sort-
ing the slopes according to their polar angle fol-
lowed by no more than a single scan over the sorted
set of slopes [5, Ch. 9].

We then compute the convex hull of the motion
vectors; the convex hull will be used as a conser-
vative approximation of the vector field’s shape.
Based upon the estimated direction and shape, we
compute the linè that is orthogonal to−→m and tan-
gent to the convex hull such that the extension of
−→m to a ray does not intersect`. Finally, we project
the convex hull along−→m onto `. For reasons that
become evident later, the interval obtained by this
projection is shrunk to 85% of its original length,
resulting in an interval̀̄—see Figure 3.
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Figure 3: Projection of the convex hull along the
median slope−→m (fat) and shrunken interval̄`.

4.2.2 Speedline Positioning

The numberk and actual position of the speed-
lines can be controlled by the user. The algorithm
first subdivides̄̀ intok equal-sized subintervals and
constructs for each of thek+1 interval end points a
support line parallel to−→m (dotted lines in Figure 4).

Finally, a speedline is positioned on each of
the k + 1 support lines such that it is at the dis-
tanceε selected by the user from the convex hull.
The position is slightly blurred and a randomly se-
lected, hand-drawn model is used as speedline to
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Figure 4: Influence of parametersk andε.

enhance the visual impression (see Figure 2). An
application of the speedlines technique is shown in
Figure 1 (bottom).

If we had not shrunk the interval̄`, an extreme,
yet not unlikely, configuration where the slope of
the top- or bottommost edge of the convex hull is
close to−→m would result in a visually irritating ef-
fect: the top- or bottommost speedline would be
positioned relatively far away from the other speed-
lines since their support lines would run almost par-
allel to the top- or bottommost edges of the convex
hull—see, e.g., the gray lines in Figure 3.

4.2.3 Implementation Details

Our implementation of the convex hull algorithm
is based upon Andrew’s algorithm [2], a convex
hull algorithm that is especially efficient if the given
point set is presorted in some lexicographically con-
sistent way. We obtain such an order by comput-
ing the projection of the points, i.e., the origins and
the tips of the vectors, on the line orthogonal to−→m.
Furthermore, since the speedlines will be drawn on
only one “side”, say on the left side, of the convex
hull, it is sufficient to actually compute the corre-
sponding left hull of the motion vectors. Thus, we
can prune all points to the right of the line through
the minimal and maximal points with respect to the
above projection and simply compute the left hull
of the remaining points—see Figure 5.

maximal point

minimal point

left hull

Figure 5: Computation of a partial convex hull.

To efficiently sort the vectors according to their
slopes, we use the “orientation” predicate [3] which
provides an elegant way of implicitly dealing with
“infinite” slopes. However, since the “polar angle”
order is a circular order, we have to define a zero
direction such that for any two directions the cir-
cular order yields an unambiguous result. For the
rendering of the first frame, we set this direction
to be the direction of the negativex-axis, and for
each consecutive frame, we assume a temporal co-
herence and set it to be the inverse direction of the
median−→m used in the previous frame.

4.3 Motion Arrows

Since speedlines require to have a main direction
of motion within the 3D volume, different visual-
ization techniques are needed for cases where arbi-
trary directions are present. Motion arrows provide
a good alternative for these cases. Furthermore they
can be used to show multiple arbitrary motion direc-
tions overlaying the main direction of movement.

Arrows are appropriate because they can visu-
alize the direction of motion and—encoded as ar-
row length—its velocity. However, to avoid visual
clutter only a subset of the arrows should be visual-
ized. Another important aspect is the three dimen-
sional character of the arrows. This is especially
hard to communicate when the arrow size falls be-
low a certain minimum value, as it is often the case
when combining arrows with volume renderings in
order to avoid occlusions. Thus it has to be ensured
that the depth information of arrows being almost
collinear with the view vector is communicated.

4.3.1 Arrow Selection

First we address the problem of selecting a subset
of the arrows for rendering. We use a two step ap-
proach. In the first step position dependent infor-
mation, in the second step motion and orientation
dependent information is considered.

To classify the arrows based on their position, the
probably simplest idea is to use a three dimensional
raster, selecting only eachn-th arrow in each di-
mension of the 3D volume. However, this may re-
sult in several arrows occluding each other and thus
confusing the observer. Nevertheless this approach
is sometimes adequate to obtain an overview of the
motion in the dataset—especially when the motion
direction is almost uniform.



Figure 6: Visualization of the Hurricane Isabel. Using speedlines to show simultaneously the motion of the
hurricane and the distribution of rain (left). Volume Rendering of the clouds modality by visualizing the
silhouettes of the next two steps using edge detection (right).

An alternative approach is to select only the ar-
rows, lying on an isosurface given by the visualized
object(s). Note that this surface cannot be com-
puted in a pre-processing step because it is highly
dependent on various rendering parameters such as
thresholding and the applied transfer function. Thus
before ray-casting the 3D volume, we compute en-
try points at the corresponding isosurface of the vol-
ume. Since we are using GPU-based ray-casting we
obtain these parameters in image space. Further to
avoid cluttering we use a two dimensional raster to
select only everyn-th motion information. Since
we are working in image space, we thus obtain ap-
propriately placed arrows.

In the second step of the selection process we
take into account motion velocity or the motion di-
rection to discard certain arrows. Meaningful pa-
rameters are minimal and maximal velocity for the
first case, and angle and variance for the second
case. The user has to keep in mind, that there are
probably ”unwanted” motion information. To give
a hint we can render these arrows in another color.

4.3.2 Arrow Rendering

We first render the 3D volume and then overlay it
with the arrows. As mentioned above rendering
3D arrows may incorporate some problems for the
user when recognizing the arrows direction. This
recognition problem can be reduced by rendering
only a few, relative large arrows having an orienta-

tion that is easier to perceive. In cases where these
larger arrows are not sufficient due to size restric-
tions, we decided to render 2D arrows aligned in
image space.

5 Use Cases

5.1 Hurricane Isabel

Hurricane Isabel was the only Category 5 hurricane
in the 2003 Atlantic hurricane season. A simu-
lation of different variables of this hurricane—as
rain, snow, or wind speed—has been done by the
National Center for Atmospheric Research in the
United States. In 2004 this simulation has been used
in the IEEE Visualization Contest. The data for
each variable consists of 48 time steps, each con-
taining500×500×100 voxels with float precision.
Almost all of the participating teams used a com-
bination of volume and polygonal rendering. Only
one team rendered voxels as semi-transparent quads
and spheres in different colors. Another team tried
to use vortex detection algorithms but they were not
convinced by the results of this approach. How-
ever, their automatic detection of the central region
of the hurricane succeeded. The winning team ex-
tracted data with complex attributes (“high velocity
andclouds”) and rendered various properties of the
hurricane.

For testing of our methods we applied an appro-



Figure 7: Cut through a beating human heart. The
green and blue edge depict the next two timesteps
(see color plate).

priate scaling to obtain a datasize of one byte per
voxel, but we did not change the resolution.

Our first aim was to visualize the main motion
direction of the hurricane with speedlines while
simultaneously visualizing rain. We applied our
motion estimation to the “rain dataset”. To filter
out disturbances, we selected the motion arrows by
length and then used our speedline algorithm. For
visualizing the rain distribution we used direct vol-
ume rendering by applying an appropriate transfer
function combined with edge enhancement. Addi-
tionally the motion within the hurricane was visu-
alized with 2D arrows. To ease the spatial compre-
hension, a map of the region is displayed below the
volume rendering (see Figure 6 (left)).

We have also visualized three time steps of the
“cloud dataset”. The first time step is rendered us-
ing direct volume rendering, the second and third
time step are rendered by displaying the silhouette
and a semi-transparent filling using different shades
of gray. Again we use the map layer to improve
spatial comprehension. This method produces good
results from a top view (see Figure 6 (right)).

Viewing the dataset from south northward allows
interesting insights into the temporal cloud distribu-

tion. As can be seen in Figure 8, the current cloud
will expand to the shape depicted by the red edges
and then further expand as indicated by the blue
edges.

The examination of the dataset can further be
enhanced by using a clipping plane aligned to the
viewing plane, in such a way that only one slice of
the hurricane is visualized.

5.2 Heart Motion

In the area of medical visualization we have ex-
perimented with our technique in order to visual-
ize heart motion. We have used a segmented time-
varying volume dataset, that we have cut with a
clipping plane to show motion of only the left ven-
tricle. Again we used the edge detection technique
to display one time step while we used silhouettes
for the other time steps. In this case we also give
some context information by rendering the organs
behind the clipping plane using toon shading. As
it can be seen in Figure 7, heart motion is clearly
visible. To achieve an impression similar to visu-
alizations used in medical illustrations we added a
rendering of the body’s silhouette behind the vol-
ume rendering.

6 Conclusions and Future Work

In this paper we have presented visualization tech-
niques for depicting dynamics in still renderings of
time-varying volume datasets. To extract motion in-
formation from these datasets, we have applied a
slightly modified version of the three dimensional
block matching algorithm.

Three different techniques have been proposed to
visualize motion: (1) Applying edge enhancement
and transparency techniques when rendering multi-
ple 3D volumes, (2) overlaying speedlines and (3)
rendering of motion arrows. All these techniques
are applied automatically and do not need any user
input. In order to obtain interactive frame rates they
have been implemented as extensions to GPU-based
ray-casting. To demonstrate the usability of our vi-
sualization techniques we have described the appli-
cation to real world datasets.

With the presented techniques it is possible to
present a reasonable subset of the motion informa-
tion contained in a time-varying dataset in a single
image. Thus this information can be communicated



more easily since it can also be visualized on static
media.

Our approach has the drawback that using speed-
lines with volume data containing different objects
moving in several directions will result in wrong
speedline positioning. We will address this problem
by extending the motion detection to support the use
of clustering. Thus it will be possible to track only
specific regions of interest within the dataset to ob-
tain better results when dealing with morechaotic
data or to show different speedlines with distinct di-
rections for the specific objects.
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Figure 8: Sideview of the cloud dataset superimposed with edges. In each subfigure the first volume is
rendered using direct volume rendering. Of the second and third volumes only the silhouette is shown in
dark resp. bright red.

Figure 9: A golf hangar advertisement depicting
motion by showing preceding golfballs.(Image cour-
tesy of Golf Hangar at the D̈usseldorf Airport, Germany.)

Figure 10: Color version of the cut through a beat-
ing human heart. The green and blue edge depict
the next two timesteps.

Figure 11: Color version of the visualization of the
Hurricane Isabel. Using speedlines to show simul-
taneously the motion of the hurricane and the dis-
tribution of rain (top). Volume Rendering of the
clouds modality by visualizing the silhouettes of the
next two steps using edge detection (bottom).


