
Interactive Cutting Operations for Generating
Anatomical Illustrations from Volumetric Data Sets

Jörg Mensmann Timo Ropinski Klaus Hinrichs
Department of Computer Science

University of Münster
Einsteinstraße 62

48149 Münster, Germany

{mensmann, ropinski, khh}@math.uni-muenster.de

ABSTRACT

In anatomical illustrations deformation is often used to increase expressivity, to improve spatial comprehension and to enable an
unobstructed view onto otherwise occluded structures. Based on our analysis and classification of deformations frequently found
in anatomical textbooks we introduce a technique for interactively creating such deformations of volumetric data acquired with
medical scanners. Our approach exploits the 3D ChainMail algorithm in combination with a GPU-based ray-casting renderer
in order to perform deformations. Thus complex, interactive deformations become possible without a costly preprocessing or
the necessity to reduce the data set resolution. For cutting operations we provide a template-based interaction technique which
supports precise control of the cutting parameters. For commonly used deformation operations we provide adaptable interaction
templates, whereas arbitrary deformations can be specified by using a point-and-drag interface.

Keywords: Volume rendering, volume deformation, volume cutting, illustration.

1 INTRODUCTION

In recent years medical imaging technologies such as
computed tomography (CT) or positron emission tomo-
graphy (PET) have revolutionized many areas of medical
diagnosis and other fields of medical practice. However,
medical students still learn from anatomical textbooks
and atlases, in which the style of illustrations has not
changed fundamentally for over a century.

While many research approaches aim at 3D volume
visualization, the aspect of creating illustrative images
from volume data by using computer-aided concepts
has found less consideration. Besides using a specific
overall drawing style, e. g., by the definition of a certain
color palette, anatomical illustrations often apply special
techniques to disclose complex spatial relationships. In
this context one of the main problems is to deal with
occlusions of important parts of a data set. A concept
frequently used by anatomical illustrators, but not often
considered in visualization, is deformation: soft tissue is
cut and flipped open to allow an occlusion-free view onto
underlying structures, organs are twisted to visualize
their shape, or blood vessels are pulled using pointed
hooks for accentuation.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Copyright UNION Agency – Science Press, Plzen, Czech
Republic

In this paper we propose an interactive system which
supports real-time cutting and deformation of a full
resolution volume object, and thus enables the user to
achieve effects similar to those found in anatomical illus-
trations. Since the volume data visualized corresponds
to real physical objects, the deformations should have a
physical foundation, possibly using voxel intensities to
specify material properties such as elasticity. However,
because the main focus is on the interactive generation
of cuts and deformations but not on simulation, physical
realism has to be balanced with needs of interactivity and
artistic freedom. An example of an illustration generated
by using our system is shown in Figure 1.

The remainder of this paper is structured as follows.
Section 2 examines work related to deformation and
illustrative rendering of volumetric data. In Section 3
we present a classification of typical deformations found
in anatomical atlases. The methods used for interactive
deformation and rendering are described in Section 4.
Section 5 presents interaction techniques for applying
deformations to real-world data. Results are discussed
in Section 6, and Section 7 concludes the paper.

2 RELATED WORK
Before introducing our approach, we discuss the hand-
ling of occlusions in illustrative visualization, algorithms
for volume deformation and rendering, and related inter-
action techniques.

2.1 Occlusion in Illustrative Visualization
Different techniques are used in medical or technical
illustrations to enable insights into occluded regions.
Cutaway views [Die03] represent the most basic form



Figure 1: Cutting and flipping open the hand using our
deformation and interaction techniques.

of simplifying a structure for illustration by discarding
irrelevant or obscuring parts of an object. In a medical
context this corresponds to the removal of (parts of) or-
gans or tissue. In general use, simple cutting planes are
very common while more complex cutaway shapes are
found less frequently. Ghosting [Bru05] may be inter-
preted as an extension to cutaway views, where parts of
an object are not completely removed but rather drawn
with a different degree of transparency, which retains
more context information. Most often found in technical
illustrations, exploded views [Bru06] separate parts of
an object by moving them to different positions. This
enables the viewer to comprehend spatial relationships
and, as in assembly instructions, get a mental image of
how parts fit together. With deformations not an object’s
position but rather its shape is modified to allow an un-
obscured view onto the deformed object itself or other
objects. Deformations are frequently used in medical
illustrations.

2.2 Deformation Models
There exists a variety of deformation algorithms but
most of them work on meshes rather than directly on
volume data. Most are not suitable for real-time applica-
tions when using volume data sets of realistic sizes. An
overview of deformation models in computer graphics
is given by Gibson and Mirtich [Gib97b], and more re-
cently by Chen et al. [Che05] and Nealen et al. [Nea05].

A well-established geometry-based model is Free-
Form Deformation by Sederberg and Parry [Sed86],
where the object to be deformed is placed in a lattice of
grid points and the user manipulates these control points.
Correa et al. [Cor06] use predefined, purely geometric
deformation operators for illustrative visualization, with-
out consideration of physical properties. Mass-spring
systems represent a popular simplified physical model
and have been widely used for modeling deformable
objects. The Finite Element Method (FEM) approxi-
mates a continuous function which satisfies some equi-
librium expression. This leads to very accurate results

and therefore FEMs are in widespread use for modeling
deformations, including soft tissue deformation. But this
accuracy has a strong negative impact on performance
when processing large objects.

All these methods are problematic with regard to the
physical model, computational requirements, flexibil-
ity, or accuracy, making them unsuitable for real-time
deformation of medical volume data for our use case.
The 3D ChainMail algorithm as introduced by Gibson
[Gib97a, Sch98] uses a different approach, solving most
of these problems. The algorithm is based on a linked
volume representation in which each element of a vol-
ume data set is directly linked to its six neighbor el-
ements, and simple constraints are defined for these
links. To model elastic material correctly, additionally
a relaxation algorithm has to be applied to the results
of the ChainMail algorithm, which iteratively tries to
minimize an object’s energy configuration. While more
physically-inspired than physically-based, the algorithm
has the advantage of being very fast even for large data
sets, because it works locally. Successful usage in sev-
eral surgery simulation systems [Gib97c, Sch98] shows
that it can produce reasonable results—even though they
might not be physically correct.

2.3 Rendering of Deformed Volumes
While hardware-accelerated volume rendering using tex-
ture slices [Cul94] is still prevalent in visualization appli-
cations, GPU-based ray-casting [Krü03] is much more
flexible and becomes feasible due to significant improve-
ments in GPU shader performance. This method first
renders a proxy geometry in order to generate textures
containing the entry and exit points (EEP). Pixel colors
in the EEP textures encode start and end positions of
rays which are then casted through the volume using a
fragment shader.

The straight-forward approach for rendering deformed
volumes is to directly apply the deformation algorithm
to the data set and to render the resulting deformed vol-
ume. This revoxelization or forward-mapping requires
resampling to ensure voxels are positioned in a rectilin-
ear grid which is required for most rendering methods.
Schulze [Sch07] presents such a system based on the
ChainMail algorithm, which supports efficient defor-
mation for small parts of large data sets only. Besides
the high computational costs for resampling, additional
memory needed for the deformed volume and resam-
pling artifacts are problematic for general use.

An alternative approach is applying the deformation
implicitly during rendering with backward-mapping.
Kurzion and Yagel [Kur97] introduced the concept of
ray deflectors which deform view rays during the ren-
dering process rather than the volume data itself. Their
purely geometric algorithm has the disadvantage that
specifying deformations is not intuitive and, as complex
deformations have to be modeled by several ray deflec-



tors, performance may become an issue. Rezk-Salama et
al. [RS01] present a similar approach where the volume
object is adaptively subdivided into a set of sub-cubes,
and the deformation is then specified by transforming
texture coordinates.

Revoxelization is flexible and should give good qual-
ity results when choosing a sophisticated resampling
method, but performance is expected to be inadequate
in the general case. In addition, it is uncertain whether
optimization can help in practice without restricting the
model to only small deformations. Speed is an issue
for the ray deflector solution. Furthermore complexity
of implementation and usage, together with a lack of a
physical model, makes this method unsuitable.

2.4 Interaction
Virtual tools resembling scalpels, scissors, and forceps
and their associated interaction metaphors have the ad-
vantage of being understood easily. But relying on “real”
tools also limits interaction in the virtual system to what
is possible in the physical world, preventing the sys-
tem from exploiting the full potential of a computer-
based solution. Therefore the system by McGuffin et
al. [McG03] uses easily understandable interaction tools
which are based on physical instruments and have been
extended to allow a more light-weight interaction style.
Correa et al. [Cor07] present a deformation method
which requires only two-dimensional user input, but
restricts the possible deformations.

3 MEDICAL ILLUSTRATION
In this section we analyze and describe the usage of
deformation in anatomical atlases.

When classifying common types of deformations
found in medical illustrations we exclude (piece-wise)
rigid deformations, such as exploded views, which are
easier to model and found more often in technical than
in medical illustrations. Three main types of non-rigid
deformations can be distinguished: pulling, turning, and
cutting open. When an object such as a muscle or a vein
occludes another object lying further behind, instead of
cutting it away completely it can be pulled a small dis-
tance to provide an unobstructed view. An entire object
can also be turned to provide an unobstructed view or to
show it from the back. To show the internal structure of
an object, it can be cut and flipped open in one or more
directions. Finally, different deformation types can be
combined to form a more complex deformation.

This classification was developed by examining defor-
mations found in three common anatomical atlases, the
classical atlases by Netter [Net97] and Sobotta [Sob05],
and the newer Prometheus atlas [Sch05] which was
drawn using 2D graphics applications. All three are
regularly used in anatomy courses. It is notable that
their illustration plates do not make use of transparency

Source Plates Pull Turn Cut/Flip
Netter 29 19 6 6
Sobotta 57 33 7 23
Prometheus 37 22 16 15
Total 123 74 29 44

Table 1: Types of deformations found in some common
anatomical atlases. Given are the total number of illus-
tration plates containing deformations and the fraction
of specific deformation types. Some plates contain more
than one type of deformation.

or ghosting techniques, whereas cutaways are used ubiq-
uitously. Table 1 shows the results of analyzing the
illustrations which make use of deformations; listed are
the numbers of occurrences for the different types of
deformations. However, it should be noted that many
illustration plates show basically the same scene with
only minor variations. Therefore the numbers can only
give a rough hint about the actual use of deformation
techniques. Nevertheless it can be concluded that the
simple pulling deformations dominate. Cutting/flipping
is found less often, perhaps because simple cutaways
which remove parts of an object without any deformation
are very common. For the anatomical layman turning is
somewhat difficult to distinguish from pulling, since the
two deformation types mainly differ in the illustrator’s
intention, not the visual result.

4 OUR APPROACH TO VOLUME DE-
FORMATION

Based on the classification described in the previous sec-
tion we have designed a system for interactively creating
such deformations from medical volume data.

The following requirements for the system were de-
rived from analyzing classical illustration techniques and
methods for deformation and visualization. The goal is
physically comprehensible but not necessarily physically
correct behavior. It is the user’s task to ensure a realistic
result. This gives a certain degree of freedom that a
strict physical model would possibly prevent. Our main
contribution is the introduction of intuitive interaction
concepts supporting the user by reducing complexity
of six DoF interactions while still allowing interactive
frame rates. Thus, we had to ensure that deformation
and visualization achieve interactive frame rates without
time-consuming preprocessing, while the full data set
resolution is maintained. Full resolution is important
since sometimes fine structures of an object need to be
deformed, and down-sampling could make this impos-
sible. Finally, since medical illustrations usually do not
utilize transparency and ghosting, support for rendering
of semi-transparent objects is optional.

4.1 Proxy-Geometry Deformation
An important aspect of deformation is the visual rep-
resentation. In order to achieve interactive frame rates,



Figure 2: Overview of our deformation and rendering
approach. Based on the data set a linked volume is gen-
erated and deformed before a surface mesh is extracted
and used as proxy geometry for ray-casting.

we combine GPU-based ray-casting [Krü03] with the
ChainMail algorithm. A conceptual overview of our
approach is depicted in Figure 2.

With the exception of cutting operations, the Chain-
Mail algorithm always keeps a static list of elements
which form the object’s surface. Hence, no additional
computation is necessary to extract the surface elements
after each deformation step. GPU-based ray-casting usu-
ally makes use of a box as proxy-geometry for creating
the entry and exit points for each ray. Since all contribut-
ing voxels are located in the volume that is contained
within the object’s surface, the box proxy-geometry can
be replaced by the object’s surface without changing
the rendering algorithm. When doing so, deforming the
proxy-geometry has the effect of a space transformation,
as it modifies the entry and exit points which control the
position and direction of rays casted during rendering.

4.2 Functional Units in Proxy-Geometry
Deformation

In the following we describe how we utilize the Chain-
Mail algorithm, how we extract the object’s surface from
the deformed data structure, how we generate entry and
exit points for the rendering, and how we ensure correct
shading for deformed volumes.
ChainMail Deformation The linked volume data struc-
ture can be created directly from a volume given as a
three-dimensional array. Neighborhood information is
given implicitly by the rectilinear array. When the user
has selected one or more elements for movement, the
algorithm tests for constraint violations, while working
on each element at most once per deformation step. For
non-homogeneous material, a mapping from the inten-
sity saved for each voxel to certain material properties
can be made.

While the soft tissue found in medical volume data
sets often shows elastic properties, adding elastic re-
laxation does not automatically provide a realistic sim-
ulation, as human tissue may show a more complex
behavior (see e. g. Fung [Fun05]). For illustrative ap-
plications elasticity is not needed in general. Just like

Figure 3: Entry and exit points textures for a proxy-
geometry generated from the hand data set.

artists prefer modeling clay to a rubber-like material,
elastic relaxation may interfere when artistic freedom is
more important than physical realism.

Making cuts into the volume is realized by simply
removing the link between two adjacent elements and
adding them to the list of surface elements. This modi-
fies the logical object surface, but no other modifications
or special actions are necessary.
Surface Extraction For extracting a surface
mesh from the linked volume, the marching cubes
algorithm [Lor87] seems appropriate, although its
computational requirements are quite high, as the
basic marching cubes algorithm cannot make use of
the available information about elements located on
the object surface. However, without considerably
increasing the number of generated triangles the
marching cubes algorithm cannot ensure that the
generated proxy-geometry completely encloses all
object voxels, and thus for our case marching cubes is
unsuitable.

Taking into account all information about surface el-
ements and the grid-like structure of the data a simpler
approach can be chosen. Although deformations may
change the overall object shape, the ChainMail con-
straints limit relative movement of adjacent elements
and ensure that the deformed linked volume may still
be treated as a rectilinear grid. Our surface extraction
algorithm successively looks at the ChainMail structure
from all six principal directions and searches for cycles
formed by four connected surface elements, for each
adding a quad to the output geometry while removing
redundant quads. Although the computation time of the
surface extraction algorithm is proportional to the num-
ber of surface elements, which is significantly lower than
the total number of volume elements, it could still be
difficult to reach interactive performance for large vol-
umes. Fortunately, it is not necessary to run the surface
extraction after every deformation step. The relation
between a volume element in the ChainMail structure
and a vertex in the extracted surface persists as long
as no topology changes take place. Therefore only the
positions of vertices corresponding to displaced volume
elements have to be updated. After a cut has been made
the surface extraction must be repeated, taking into ac-
count the modified list of surface elements.



Entry and Exit Points Generation The entry and
exit points are generated from the proxy-geometry cre-
ated in the previous surface extraction step, as shown
in Figure 3. Each vertex in the proxy-geometry surface
relates to a specific voxel of the volume. To generate en-
try points, the geometry is rendered with the associated
original voxel positions encoded as vertex colors. These
colors are linearly interpolated over the entire surface
by the graphics hardware. When a volume element is
moved by deformation, the associated vertex is moved
as well. But its color still encodes the original position
of the volume element, while for each fragment in the
entry points image of an undeformed proxy-geometry
the fragment position and the position encoded in the
fragment color are equal.

The depth buffer can be used to retrieve all fragments
with maximum z-value to get exit points and with min-
imum z-value to get entry points. To be able to use
transparency in the volume rendering, a more complex
depth-peeling approach [Eve02] with multiple rendering
passes would have to be incorporated, but this feature is
not required for our use case. After generating entry and
exit points the standard ray-casting process can be used
without any modifications. For an undeformed volume
the visual result is exactly the same as with a simple
cube proxy-geometry.
Shading Ray-casting allows to apply shading to the
rendering by deriving normal vectors from volume gra-
dients. These normals are then used within a local il-
lumination model for each sample along a view ray.
While giving good results for an undeformed volume,
this technique is not applicable after deformation. The
problem is that gradients would have to be recalculated
after each deformation, but this is not possible since the
deformation is applied only implicitly during rendering.
Gradient calculation requires analyzing neighboring vox-
els, but after deformation it is hard to localize a voxel’s
neighbors. When using the old gradients, all deformed
surfaces would be shaded as if they were still located in
their original position which results in shading artifacts.

Consequently, a different shading approach must be
chosen; more specifically an improved normal estima-
tion is necessary. Yagel et al. [Yag92] have analyzed
several image-space algorithms for calculating normals
based on a depth image. An approach using averaged
forward differences reduces sensitivity to noise and dis-
cretization artifacts:

ñi, j =

(
1
N

N

∑
k=1

Pi+k, j−Pi, j

)
×

(
1
N

N

∑
k=1

Pi, j+k−Pi, j

)
,

with ñi, j,Pi, j ∈R3, and where Pi, j is the position of the
fragment at screen coordinates (i, j). As an optimization,
it is decided on a per-fragment basis whether to use gra-
dients or normal estimation. When a ChainMail element
is moved by deformation, this is encoded in the alpha

(a) single (b) L-form (c) U-form (d) cross

Figure 4: Some of the predefined cutting templates.

value of the corresponding vertex in the proxy-geometry,
influencing the alpha value of the resulting EEP frag-
ments and therefore selecting normal calculation in the
ray-casting shader. Figure 9 shows the successive im-
ages created and used during the shading process. Notice
the incorrect normals for the deformed part of the object
in Step 2 in contrast to the correct estimated normals in
Step 4.

5 INTERACTION
In our system, user interaction mainly consists of two
operations: specifying and applying a cut, as well as
deforming the newly cut object. These operations are
usually applied sequentially and can therefore be han-
dled independently during the interaction process.

The common problem is that a three-dimensional
object is transformed, while the user only sees a two-
dimensional projection onto the screen and is using a
two-dimensional input device, i. e., the mouse. In sys-
tems for CAD or 3D modeling, this lack of depth in-
formation is often solved by splitting the screen into
four views, one orthogonal to each principal axis, plus
a three-dimensional view. But this is unsuitable and
unintuitive for a visualization application where only a
single main view is in use.
Cutting As mentioned above, only a small number
of different cuts are actually used in anatomical atlases.
McGuffin [McG03] notes that there is “at least anecdotal
evidence” that anatomists prefer to remove tissue seman-
tically layer by layer, rather than making arbitrary planar
cuts. This claim is supported by our findings described
in Section 3. Therefore the user interface can be sim-
plified by just providing a small set of predefined cuts,
specified by cutting templates, which may be resized
and positioned freely within the scene. These templates
share some resemblance with a cookie cutter, with the
main difference that they do not start cutting as soon as
they touch an object, but only when the user explicitly
initiates the cut. Some of the cutting templates defined
in our system are shown in Figure 4.

An easy way for realizing placement of cutting tem-
plates would be dragging an associated 3D widget for
translation and rotation, as shown in Figure 5 (left).
While this permits unrestricted placement, such a user
interface may get cumbersome as it requires several
changes of perspective to verify the correct position.
Since most often the cutting templates need to be placed
on an object surface, a geometric constraint can simplify
this task. When activated, clicking on the 2D rendering



of the volume places a cut onto the surface, centered
at the position of the picked voxel. Its orientation is
calculated from the voxel’s gradient, giving a surface
normal. After the initial placement the cutting template
may be dragged and moved to a different position, while
always remaining on the object’s surface. The imple-
mentation of the cut placement requires only two 2D
images as input: a rendering where each pixel encodes
the position of the first non-transparent voxel hit by the
ray, and a similar rendering encoding the voxel’s nor-
malized gradient, i. e., the normal. Both images can be
created simultaneously in a single rendering pass using
OpenGL’s multiple render targets extension, see Figure 9
Step 2 and 3 for an example.

In order to superimpose a cut on a surface, the cutting
template not only has to be placed and oriented correctly,
but also has to be fitted to the shape of the surface. In
the following we only consider two-dimensional cutting
templates consisting of cutting lines which are fitted to
the surface and extruded later on to obtain the desired
three-dimensional cutting template. Usually a cut is de-
termined by several cutting lines on the surface of the
object which meet in a common center point, similar to
spokes of a wheel which meet in its center. First the (pla-
nar) cutting template is positioned on the object’s surface
in such a way that the center point coincides with the
location selected by the user, and then it is oriented ac-
cording to the surface normal at this position. In general
only the common center point of the cutting lines will lie
on the surface, but not the entire cutting line. Since no
neighborhood information can be retrieved directly from
a surface voxel, we use an image-based technique to
map the cutting lines to the surface efficiently, as shown
in Figure 6. For each cutting line its start and end point
is projected to screen space and the next pixel on the line
connecting these two points is sampled. Based on this
sampling the position and the normal of the current pixel
are retrieved and taken into account when reprojecting
the end point. This reprojection is necessary in order to
allow an alignment of the lines along the surface. The
reprojection process is repeated for further pixels until
the length of the 3D polygonal chain formed by the cor-
responding points in voxel space exceeds the length of
the cutting line. The cut is determined by the polygonal
chain constructed during this process.

The line segments forming the polygonal chain are
extruded in the direction opposite to the surface normal
to create the desired 3D cutting template, while the user
controls the amount of extrusion and thereby the cutting
depth. Due to noise in normal calculation for adjacent
surface voxels, multiple normal vectors are averaged to
give the direction for this extrusion. This results in the
final 3D cut which can then be applied to the data.

Deformation The next step after a cut has been applied
is the specification of the desired deformation. A point-
and-drag interface is intuitive and suitable for simple

Figure 5: Placing a cutting template using 3D widgets
(left) and our surface-based placement technique (right).

Figure 6: Surface-based cutting template placement.

deformations such as pulling. For more complex cases
the 2D interface proves unsuitable, as the deformation
has to be performed in multiple steps. After each step the
camera orientation has to be changed in order to check
the deformation achieved so far. This becomes even
more difficult when multiple points have to be dragged
simultaneously. Deformation templates can help to solve
this problem. Similar to cutting templates they can be
moved in the volume specifying a certain type of defor-
mation with several editable parameters. For example, a
deformation template for a flip-open deformation would
be used after a corresponding cutting template has been
applied, with parameters such as the number of inci-
sions, size, and amount of aperture. The deformation
is determined by control points on the object’s surface
which are initially placed close to the center point of
the template, shown in the leftmost image in Figure 10.
When the user specifies the amount of deformation, the
points head in different directions, each moving on a
circle segment, and thus pulling the ChainMail structure
and applying the deformation. This is demonstrated by
the image sequence in Figure 10.

6 RESULTS
In Figure 1 a surface-based cutting template with four
cutting lines was applied to a hand data set before the
skin was deformed using a deformation template. Phong
shading is used for rendering the skin, while the internal
structure with blood vessels is rendered in a second
pass using cel-shading and a different transfer function.
The images from the two passes are merged by taking
into account the calculated depth values for each pixel.
A simpler pulling deformation of the same data set is
depicted in Figure 7. Here the cutting template shown in
Figure 4(a) was manually placed on the object; the cut
was then dilated by pulling on both sides. For Figure 8



Figure 7: Applying a single cut with manual deforma-
tion using the point-and-drag interface, compared to a
similar hand-drawn illustration (by Howell MediGraph-
ics, http://www.medigraphics.com).

Figure 8: The head of the Visible Human (courtesy
of the United States National Library of Medicine) is
flipped open using a three-way cutting template.

a surface-based cutting template with three cutting lines
was applied to the head of the Visible Human data set,
and then manually deformed.

The hand data set consists of 256× 128× 256 vox-
els, from which a ChainMail structure with 2,710,516
elements was generated. About 4.3% of those elements
lie on the surface, therefore the surface-extraction algo-
rithm generates a proxy-geometry with 693,200 vertices.
The head data set with 2563 voxels resulted in 6,040,852
ChainMail elements, 3.9% on the surface resulting in
1,529,000 vertices. Providing meaningful frame rates
when performing a deformation is difficult, but it is safe
to say that the time needed for deformation depends
linearly on the number of ChainMail elements involved.
For all scenes and deformations shown in this paper
the system stayed responsive and supported smooth in-

teraction. Frame rates for rendering have been mainly
unaffected by the deformation, the hand data set reach-
ing 38 FPS, the head data set 23 FPS, for a rendering
with 512× 512 pixels. All tests were conducted on a
machine with an Intel Core 2 Duo E6300 CPU, 2 GB
of RAM, and an NVIDIA GeForce 7900 GTX graphics
board.

7 CONCLUSION
In this paper, techniques for generating interactive
computer-based medical illustrations have been
introduced, with the focus on interactively applying
deformation to anatomical objects.

The deformation technique developed in this paper
utilizes the 3D ChainMail algorithm to deform a vol-
ume object and renders the result using ray-rasting. It
has been shown that the 3D ChainMail algorithm can
give real-time results for reasonably sized data sets. The
simple yet flexible data structure has proven useful for
applications besides deformation, such as cutting and
surface extraction. Some deformations can make use of
the physically-inspired behavior of the linked volume,
especially pulling, because they are similar to the Chain-
Mail deformations, where a given element is grabbed
and pulled. With adequate data sets, material properties
based on real data can be used to define deformation
constraints for the 3D ChainMail algorithm, exploiting
its support for non-homogeneous material. The advan-
tages of a more realistic physical model (e. g. FEM or
mass-spring systems) could also be evaluated, but a good
balance between realism and interactivity is necessary.
However, it seems that current methods cannot fulfill
these requirements.

Although the focus was on techniques for interactively
performing cuts as well as deformations, a rendering ap-
proach has been presented which applies a deformation
to the proxy-geometry which is used by GPU-based
ray-casting. This technique allows to include the system
into an existing ray-caster, without notable impact on the
overall rendering performance. The implemented simple
surface extraction algorithm is insufficient for surfaces
of objects consisting of only few voxels, e. g., nerves
or skin, nor can the 3D ChainMail algorithm accurately
deform such objects. While the presented rendering
technique allows to interactively change all deforma-
tion parameters, the image quality could be improved.
An improvement would be achieved by resampling the
ChainMail data structure into a new volume data set,
which could be rendered using standard volume ren-
dering techniques. Although this approach would lack
interactivity, it would be suitable for rendering a single
final image after all deformation parameters have been
specified interactively. Finally, the ChainMail algorithm
could be improved to not produce the visible deforma-
tion artifacts due to the rectilinear composition of the
used data structure.



Figure 9: Shading process with normal estimation.

Figure 10: Applying a deformation template on a cube consisting of 1283 voxels.

ACKNOWLEDGEMENTS
This work was partly supported by grants from Deutsche Forschungs-
gemeinschaft (DFG), SFB 656 MoBil Münster, Germany (project Z1).
The presented concepts have been integrated into the VOREEN volume
rendering engine (http://www.voreen.org).

REFERENCES
[Bru05] Bruckner, S. and Gröller, M. E. VolumeShop: An interac-

tive system for direct volume illustration. In Proceedings
of IEEE Visualization 2005, pp. 671–678. 2005.

[Bru06] Bruckner, S. and Gröller, M. E. Exploded views for volume
data. IEEE Transactions on Visualization and Computer
Graphics, 12(5):1077–1084, 2006.

[Che05] Chen, M., Correa, C., Islam, S., Jones, M. W., Shen, P.-Y.,
Silver, D., Walton, S. J., and Willis, P. J. Deforming and
animating discretely sampled object representations. In
Eurographics 2005, State of the Art Reports, pp. 71–94.
2005.

[Cor06] Correa, C., Silver, D., and Chen, M. Feature aligned vol-
ume manipulation for illustration and visualization. IEEE
Transactions on Visualization and Computer Graphics,
12(5):1069–1076, 2006.

[Cor07] Correa, C., Silver, D., and Chen, M. Volume deformation
via scattered data interpolation. In Proceedings of Euro-
graphics/IEEE VGTC Workshop on Volume Graphics 2007,
pp. 91–98. 2007.

[Cul94] Cullip, T. J. and Neumann, U. Accelerating volume re-
construction with 3D texture hardware. Technical report,
University of North Carolina at Chapel Hill, 1994.

[Die03] Diepstraten, J., Weiskopf, D., and Ertl, T. Interactive cut-
away illustrations. Computer Graphics Forum, 22(3):523–
532, 2003.

[Eve02] Everitt, C. Interactive order-independent transparency.
Technical report, NVIDIA Corporation, 2002.

[Fun05] Fung, Y.-C. Biomechanics: Mechanical Properties of Liv-
ing Tissues. Springer-Verlag, 2nd edition, 2005.

[Gib97a] Gibson, S. 3D Chain Mail: A fast algorithm for deforming
volumetric objects. In Proceedings of 1997 Symposium on
Interactive 3D Graphics, pp. 149–154. 1997.

[Gib97b] Gibson, S. and Mirtich, B. A survey of deformable mod-
eling in computer graphics. Technical report, Mitsubishi
Electric Research Laboratory, 1997.

[Gib97c] Gibson, S., Samosky, J., Mor, A., et al. Simulating arthro-
scopic knee surgery using volumetric object representa-
tions, real-time volume rendering and haptic feedback. In
CVRMed-MRCAS ’97, pp. 369–378. Springer-Verlag, 1997.

[Krü03] Krüger, J. and Westermann, R. Acceleration techniques
for GPU-based volume rendering. In Proceedings of IEEE
Visualization 2003, pp. 287–292. 2003.

[Kur97] Kurzion, Y. and Yagel, R. Interactive space deformation
with hardware-assisted rendering. IEEE Computer Graph-
ics and Applications, 17(5):66–77, 1997.

[Lor87] Lorensen, W. E. and Cline, H. E. Marching Cubes: A high
resolution 3D surface construction algorithm. In Proceed-
ings of SIGGRAPH ’87, pp. 163–169. 1987.

[McG03] McGuffin, M. J., Tancau, L., and Balakrishnan, R. Using
deformations for browsing volumetric data. In Proceedings
of IEEE Visualization 2003, pp. 401–408. 2003.

[Nea05] Nealen, A., Müller, M., Keiser, R., Boxerman, E., and Carl-
son, M. Physically based deformable models in computer
graphics. In Eurographics 2005, State of the Art Reports,
pp. 113–140. 2005.

[Net97] Netter, F. H. Atlas der Anatomie des Menschen. Thieme,
1997.

[RS01] Rezk-Salama, C., Scheuering, M., Soza, G., and Greiner,
G. Fast volumetric deformation on general purpose hard-
ware. In HWWS ’01: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS Workshop on Graphics Hard-
ware, pp. 17–24. 2001.

[Sch98] Schill, M., Gibson, S., Bender, H.-J., and Männer, R.
Biomechanical simulation of the vitreous humor in the
eye using an enhanced ChainMail algorithm. In MICCAI

’98, pp. 679–687. Springer-Verlag, 1998.

[Sch05] Schünke, M., Schulte, E., Schumacher, U., Voll, M., and
Wesker, K. Hals und Innere Organe. Prometheus Lernatlas
der Anatomie. Thieme, 2005.

[Sch07] Schulze, F., Bühler, K., and Hadwiger, M. Interactive
deformation and visualization of large volume datasets.
In 2nd International Conference on Computer Graphics
Theory and Applications (GRAPP) 2007, pp. 39–46. 2007.

[Sed86] Sederberg, T. W. and Parry, S. R. Free-form deformation
of solid geometric models. In Proceedings of SIGGRAPH

’86, pp. 151–160. 1986.

[Sob05] Sobotta, J. Kopf, Hals, obere Extremität, volume 1 of Atlas
der Anatomie des Menschen. Urban & Fischer, 21st edition,
2005.

[Yag92] Yagel, R., Cohen, D., and Kaufman, A. Normal estimation
in 3D discrete space. The Visual Computer, 8(5/6):278–291,
1992.

http://www.voreen.org

	Introduction
	Related Work
	Occlusion in Illustrative Visualization
	Deformation Models
	Rendering of Deformed Volumes
	Interaction

	Medical Illustration
	Our Approach to Volume Deformation
	Proxy-Geometry Deformation
	Functional Units in Proxy-Geometry Deformation

	Interaction
	Results
	Conclusion

