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ABSTRACT

GPU-based raycasting has emerged as the defacto standard for interactive volume rendering on off-the-shelf graphics hardware.
Even though in theory this technique can be easily extended by shadow feelers in order to support shadows, this obvious
approach has a major impact on the rendering performance. In this paper we will investigate shadowing extensions for GPU-
based volume raycasting and compare them with respect to their quality and their performance. In particular, we will consider
shadow rays, shadow mapping and deep shadow maps. For these techniques we will address their implementations using
current graphics boards, and we will compare their visual results as well as their runtime behavior.
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1 INTRODUCTION
Volume rendering has evolved into a mature area of
computer graphics. Many domains such as medical
acquisition or seismic sonography techniques produce
volumetric data sets which have to be explored inter-
actively. Besides an immediate visual feedback also
good perception of the spatial relationships is impor-
tant. It has been shown that the used lighting model has
a major impact on the spatial comprehension [LB00].
Besides diffuse interreflections also shadows serve as
an important depth cue [SSMK05]. While volume ren-
dering techniques developed in recent years mainly had
the goal to achieve interactive frame rates, the objec-
tive of realistic renderings has been neglected. Now
that interactive volume rendering is possible on stan-
dard graphics hardware [KW03] it is time to strive
for producing more realistic images in order to sup-
port better spatial comprehension. In this paper we
focus on shadow algorithms which can be integrated
into volume rendering in order to provide additional
depth cues (see Figure 1). We consider in particu-
lar those algorithms and implementations which have
the potential to permit interactive shadowing. How-
ever, for efficient shadow generation it is important to
adapt the used techniques to the volume rendering tech-
niques exploited for image generation. Although dif-
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ferent algorithms have been proposed for slice-based
volume rendering [KPHE02], we will concentrate on
techniques suitable to integrate shadows in GPU-based
volume raycasters [KW03], since GPU-based volume
raycasting has emerged as the state-of-the-art volume
rendering technique which is found in most recent vol-
ume rendering frameworks. While the benefits of GPU-
based raycasting include an easy as well as flexible im-
plementation, it is also often stated that GPU-based ray-
casting allows an easy integration of shadowing effects.
However, while the brute force approach for shadows
can be truly considered as easy to integrate, it is not effi-
cient at all. In fact, it is just an adaptation of the shadow
feeler rays known from conventional raytracers, with
all their downsides. To provide the reader with a more
detailed knowledge about shadows in volume render-
ing, this paper reviews different shadow algorithms and
their implementations in the context of GPU-based vol-
ume raycasting. In particular we will compare the brute
force approach, i.e., casting of shadow rays, with a
shadow mapping technique for GPU-based raycasting
as well as deep shadow maps.

The remainder of this paper is structured as follows.
In Section 2 we will discuss related work regard-
ing shadow generation by specifically addressing
algorithms suitable for interactive volume rendering.
In Section 3 our implementations of the shadow
algorithms are discussed, and they are compared in
Section 4. The paper concludes in Section 5 by giving
some overview over future work.

2 RELATED WORK
The underlying GPU-based volume raycasting tech-
nique, in the following called GPU-based raycasting,
has been introduced by Roettger et al. [RGWE03].



Figure 1: The engine data set (256×256×128 voxel)
rendered using phong shading in combination with
shadow mapping.

Krüger and Westermann have proposed extensions
to better exploit the capabilities of current graphics
hardware [KW03]. GPU-based raycasting enables very
efficient volume rendering on commodity graphics
hardware by casting rays through the volume data set,
which is represented as a 3D texture. To determine
the entry and exit points for the rays the bounding box
of the volume data set is rendered in a color coded
manner, such that the values in the RGB color channels
can be interpreted as volume texture coordinates.

Various shadow algorithms have been developed in
the past. Crow has proposed a shadow volume tech-
nique for generating shadows for scenes containing
polygonal data [Cro77]. To compute shadows of an
object, its silhouette is extracted and extruded in di-
rection of the light rays in order to generate shadow
polygons which form the shadow volume of an object.
During rendering each object is tested whether it lies
inside or outside a shadow volume, and thus it can be
determined whether the object is shadowed. Due to
the polygonal nature of this algorithm, it is not suited
for volume rendering. Another common approach for
generating shadows when rendering polygonal data is
shadow mapping which has been presented in 1978 by
Williams [Wil78]. Shadow mapping is an image-based
approach which exploits an additional rendering pass
in which the scene is rendered from the light source’s
point of view in order to determine the structures closest
to the light source. With this knowledge, a fragment-
based shadow test can be introduced in the main ren-
dering pass, i.e., each fragment is tested whether it is
further away from the light source than the correspond-
ing texel in the shadow map. While shadow mapping
allows very efficient shadows on a fragment basis, it
does not support semi-transparent occluders which can
be found in volume rendering. In order to address semi-
transparent structures opacity shadow maps serve as a

stack of shadow maps, which store alpha values instead
of depth values in each shadow map [KN01].

A more compact representation for semi-transparent
occluders are deep shadow maps [LV00]. The used data
structure consists also of a stack of textures, but in con-
trast to the opacity shadow maps, an approximation to
the shadowfunction is stored in these textures. Thus
it is possible to approximate shadows by using fewer
hardware resources. Deep shadow mapping has already
been applied to volume rendering [HKSB06]. In this
paper we will propose an alternative implementation.

Although work has been done regarding shadows in
slice-based volume rendering approaches [BR98], to
our knowledge the integration of shadows into GPU-
based raycasting, which is considered the state-of-the-
art volume rendering technique, has not been addressed
so far. However, due to the similar ray paradigm, it
should be noted that shadows have been integrated in
volume ray-tracing systems [WKB+02, WFMS05]. An
overview of these techniques can be found in [MFS06].

While the previously cited work as well as this pa-
per focus on volume rendering, it should also be men-
tioned that some researchers address the combination
of polygonal and volumetric data when considering
light interactions [ZXC05]. Also soft-shadowing tech-
niques [CD03, ZC03, HLHS03] are not covered in this
paper, but it could be investigated how they can be ex-
tended to volume rendering.

3 IMPLEMENTATION OF SHADOW
TECHNIQUES

In this section we address the implemented shadow-
ing techniques, which we will compare in Section 4.
We review the concept and implementation details of
shadow rays (see Subsection 3.1), describe our imple-
mentation of shadow maps to exploit them efficiently in
GPU-based raycasting (see Subsection 3.2) and will de-
scribe our improved deep shadow map implementation
(see Subsection 3.3).

3.1 Shadow Rays
Shadow rays are the most obvious way to integrate
shadows into a GPU-based raycaster. For each sam-
ple along the viewing ray a shadow feeler is sent to the
light source in order to determine whether the current
sample is shadowed.

We have implemented three different variations of
this shadowing technique. To support opaque occlud-
ers only, each shadow feeler is cast until a sample is
reached where the intensity exceeds the shadow thresh-
old. If such a sample lies along the shadow feeler, the
current sample is assumed to lie in shadow. However,
due to the fact that only the first occurrence of a sample
exceeding the shadow threshold is taken into account,
shadowing becomes a binary effect, i.e., a sample is
either shadowed or unshadowed. To achieve different



Figure 2: The first hit points in color-coded volume co-
ordinates as seen from the light source (left) and the re-
sulting depth map (right). Both maps have a resolution
of 512× 512 texel and are generated during rendering
the visible human head data set (see Figure 8).

visual results, the shadowing threshold can be changed
through the GUI.

The straight-forward extension to support semi-
transparent occluders incorporates the intensities of
the samples along the shadow feelers. When casting
the shadow feelers, the rendering integral is evaluated
and for each sample the intensity is considered as the
alpha value describing the degree of absorption. Since
there is no early ray-termination as when using opaque
occluders only, this technique has a recognizable
impact on the performance.

For both shadow ray techniques, a shadow feeler
needs to be cast for each sample along a viewing ray.
Thus the runtime is directly proportional to the screen
resolution and the sampling rate. Especially when high
quality images are desired this may prevent interactive
frame rates. Therefore we have combined the shadow
ray technique allowing opaque occluders with a render
to 3D texture functionality to be able to cache the re-
sults of the shadow feelers: When casting the shadow
feeler for a sample, the resulting shadow value is stored
within a shadow lookup volume. By using this caching
the shadow feelers need only be casted when either the
light source or the occluders are changed.

3.2 Shadow Mapping
Shadow mapping can be used as an alternative approach
to the shadow rays supporting opaque occluders. In this
section we describe our shadow mapping implemen-
tation adapted for GPU-based raycasting. In analogy
to the general shadow mapping approach (see Subsec-
tion 2), we generate a depth map in order to store light
source visibility. Therefore we compute the first hit po-
sitions as seen from the light source and use them to
compute the light source distance (see Figure 2). When
rendering polygonal models a depth value is properly
defined. In contrast, volume rendering does not pro-
vide depth values in general. Therefore we again intro-
duce a shadow threshold value, which can be controlled
using the GUI. Thus the intensity values representing

opaque geometry can be changed, and with it the con-
tent of the generated shadow map. The example shadow
map shown in Figure 2 has the same resolution as the
viewport, i.e., 512× 512 pixel, which allows to gener-
ate shadows without introducing aliasing artifacts (see
Figure 8).

In comparison to shadow rays, shadow mapping is
expected to run faster, since the light source visibil-
ity does not need to be recalculated for each sample,
but for each light ray only. This results in the fact that
no semi-transparent occluders can be supported. How-
ever, the benefit of shadow mapping is that soft shadows
can be approximated by exploiting percentage closer
filtering [RSC87]. This is demonstrated in Figure 3,
where the visible human torso data set is rendered with
both, hard shadows (left) and fake soft shadows (right).
Furthermore, when using shadow mapping the combi-
nation with polygonal models can be supported much
more easily, since the geometry can also be represented
within the shadow map.

3.3 Deep Shadow Maps
As mentioned above, deep shadow maps allow to
capture shadows of semi-transparent occluders. For
demonstration purposes we have applied our imple-
mentation to a simple synthetic scene consisting of
128× 128× 128 voxel (see Figure 4). The blue ball,
which is set to be semi-transparent by modifying the
transfer function, casts a transparent shadow on the
back wall. The difference to the shadow of the opaque
purple box can be noticed, especially when looking at
the shadow borders.

In our implementation the deep shadow map consists
of eight layers, which are shown on the right in Fig-
ure 4. Similar to the approach proposed in [HKSB06],
we exploit current graphics hardware in order to gen-
erate the shadow layers on-the-fly by using multiple
render targets. Although current graphics hardware al-
lows to address up to eight rendering targets in a sin-

Figure 3: The visible human torso data set (256×
256×512 voxel) rendered with hard shadows (left) and
with fake soft shadows by using shadow mapping ex-
ploiting percentage closer filtering (right).



Figure 4: A synthetic scene (128× 128× 128 voxel) rendered using deep shadow mapping. The shadow of the
semi-transparent blue ball is correctly captured. The images on the right show the successive layers of the deep
shadow map.

gle pass, we only use four rendering targets and create
eight deep shadow layers by performing simple chan-
nel splitting. While the original deep shadow map ap-
proach [LV00] stores the overall light intensity in each
layer, we store the absorption given by the accumulated
alpha value in analogy to the volume rendering inte-
gral. For each shadow ray, we analyze the alpha func-
tion, i.e., the function describing the absorption, and
approximate it by using linear functions. Unlike the
implementation described in [HKSB06] we restrict the
depth interval approximated by a linear function to a
maximum number of samples, in our case 255 samples.
This is necessary in order to have a termination criterion
for the fragment shader which performs the processing.
However, when it is determined that the currently ana-
lyzed voxels cannot be approximated sufficiently by a
linear function, smaller depth intervals are considered.
Thus, the approximation works as follows. Initially, the
first hit point for each shadow ray is computed, similar
as done for the shadow mapping described above. Next,
the distance to the light source of the first hit point and
the alpha value for this position are stored within the
first layer of the deep shadow map. Since we are at
the first hit position, the alpha value usually equals zero
when the shadow threshold is set accordingly. Starting
from this first hit point, we traverse each shadow ray
and check iteratively wether the samples encountered
so far can be approximated by a linear function. In case
this cannot be done, the distance of the previous sam-
ple to the light source as well as the accumulated alpha
value at the previous sample are stored in the next layer
of the deep shadow map. This is repeated until all eight
layers of the deep shadow map have been created.

The light source distance and the alpha value are
stored in two successive channels, i.e., R and G as well
as B and A. Thus, we can represent two shadow layers
by using only one RGBA texture. However, for illus-
tration purposes, we wrote these values into the R and
G channels when generating the pictures shown in Fig-
ure 4.

To determine wether the currently analyzed samples
can be approximated by a linear function an error value
is introduced. In analogy to the original deep shadow
mapping technique [LV00], this error value constrains
the variance of the approximation. This is done by
adding (resp. subtracting) the error value at each sam-
ple’s position. When the alpha function does not lie
anymore within the range given by the error value, a
new segment to be approximated by a linear function is
started. The effect of choosing a too small error value is
shown in Figure 5. As it can be seen, a small error value
results in a too close approximation, and the eight lay-
ers are not sufficient anymore to represent shadow rays
having a higher depth complexity. Thus especially in
regions, were the two occluders both intersect a shadow
ray, shadow artifacts appear. Obviously this drawback
can be avoided by introducing additional shadow lay-
ers. This would allow a more precise approximation
of the shadow function, but would also result in de-
creased rendering performance since additional render-
ing passes are required.

Similar to the previous techniques, we have com-
bined our deep shadow map algorithm with the genera-
tion of a shadow volume. Thus, when shadows do not
change, the shadow values can be directly fetched from
a 3D texture for each sample.

Figure 5: Different error values for deep shadow map-
ping: 0.00005 (left), 0.01 (right). Artifacts appear when
using too small error values.



Shadow Mode RC without RC
shadow rays (B) 7.98 7.98
shadow rays (A) 6.70 6.70
shadow rays (B + PP) 4.25 14.90
shadow mapping (B) 12.50 15.00
deep shadow map (A) 10.00 14.90
deep shadow map (A + PP) 8.85 14.90

Table 1: Average frame rates for the different tech-
niques as captured using a GeForce 8800GTX graphics
board without optimized graphics settings.

4 PERFORMANCE AND RESULTS
To compare not only the capabilities and limitations of
each discussed shadowing technique, we have also con-
ducted performance tests. We have scripted an anima-
tion which lets the virtual camera rotate around the en-
gine data set shown in Figure 1. The data set has a res-
olution of 256×256×128 voxel and has been rendered
on a standard desktop computer, having an Intel Core2
CPU 6600 running at 2.40 GHz, 2 GB of main memory,
and an nVidia GeForce 8800GTX graphics board.

The results of our performance tests are shown in
Table 1 and Table 2; Table 1 shows the frame rates
when the graphics drivers are tuned to achieve maxi-
mum quality, and Table 2 shows the results when set-
ting the driver to maximum performance. Since this
option allows accelerated texture fetches, a vast perfor-
mance gain can be achieved, though major display arti-
facts could not be noticed (see Table 2).

The different implementations compared in the tables
are three versions of shadow rays, shadow mapping as
well as two versions of deep shadow maps. The iden-
tifier A denotes that semi-transparent occluders with an
alpha value unequal to 1 have been supported, while B
means only opaque occluders are supported. PP means
that the shadow values are only computed for the first
frame and then stored in a 3D texture, which is later
on fetched during rendering of successive frames. This
caching mechanism can be used for rendering succes-
sive frames, when only the camera position is changed.
RC means that shadow computation is done for every
frame, i.e., also when neither the light source nor an
object has been modified. Thus, the frame rates shown
in the column RC are the ones to be expected, when
light source and/or objects are changed, while the col-
umn without RC shows the frame rates when for in-
stance only the camera is modified and shadows do not
change. This has only an impact on those techniques
in which a data structure is used to store the shadow-
ing state, but not for the shadow ray traversal in which
no knowledge of prior frames can be exploited during
rendering.

The results indicate that confining shadow rays to
support only opaque occluders does not have a ma-

Shadow Mode RC without RC
shadow rays (B) 10.03 10.03
shadow rays (A) 10.00 10.00
shadow rays (B + PP) 5.59 46.00
shadow mapping (B) 29.08 45.50
deep shadow map (A) 15.76 34.50
deep shadow map (A + PP) 13.06 45.20

Table 2: Average frame rates for the different tech-
niques as captured using a GeForce 8800GTX graphics
board with optimized graphics settings.

jor impact on the frame rates. However, using ren-
der to 3D texture functionality in order to generate a
3D shadow lookup texture has a major influence on
the performance. When recomputing this 3D shadow
texture for each frame, it slows down the system sig-
nificantly. This is due to the fact that the render to
3D texture functionality only allows to render into one
slice of the 3D texture after another. However, when
no frequent recomputation is required, the frame rates
can be improved when using PP. Therefore it should
be investigated in how far the shadow recomputation
might be predictable for certain cases in order to de-
cide whether the 3D shadow texture should be gener-
ated or not. As shown in the tables, shadow mapping
allows frame rates which are superior to those achieved
by shadow rays. This is due to the fact that a 3D tex-
ture fetch is an expensive operation on current graph-
ics boards. Thus, when only opaque occluders are sup-
ported, shadow mapping is definitely the technique of
choice. When semi-transparent occluders should be
taken into account, deep shadow maps also allow a per-
formance gain. However, generating 3D shadow tex-
tures does not seem to be as beneficial as when using
shadow rays. The reason for this is probably the fact
that shadow rays have to operate on 3D textures any-
way, while our deep shadow mapping implementation
uses 2D textures only when PP is disabled.

A comparison of shadow mapping and deep shadow
maps with both opaque and semi-transparent occlud-
ers is shown in Figure 6. In the Figures 7-10 a visual
comparison of the discussed shadowing techniques is
shown side by side for different data sets. Compared
to the unshadowed images, using shadows results in a
higher degree of realism and objects appear less flat.
While the shadow rays and the deep shadow maps al-
low to capture shadows of semi-transparent occluders,
shadow mapping supports opaque occluders only. As
it can be seen especially in Figure 8 and in Figure 9,
deep shadow maps introduce artifacts when thin oc-
cluder structures are present. The shadows of these
structures show transparency effects although the ob-
jects are opaque. This results from the fact that an ap-
proximation of the alpha function is exploited. Espe-



Figure 6: Volume rendering of a synthetic scene (256× 256× 256 voxel) with shadow mapping (left) and deep
shadow mapping (right). The transfer function has been changed for both techniques in order to change the ball
from being opaque to semi-transparent. Shadow mapping is not sufficient to correctly mimic shadows of semi-
transparent shadow casters.

cially thin structures may diminish when approximating
over too long depth intervals.

5 CONCLUSIONS AND FUTURE
WORK

In this paper we have compared different techniques
for combining shadows with GPU-based raycasting. As
expected, we were able to show that the most obvious
way for generating shadows, i.e., casting shadow rays
as done in ray tracing systems, is by far not the opti-
mal technique. However, besides deep shadow map-
ping it is the only technique which is capable of plau-
sibly capturing shadows cast by semi-transparent ob-
jects. We have proposed an efficient implementation
of deep shadow maps, which is sufficient to generate
the deep shadow map layers in a single rendering pass.
Since deep shadow mapping depends on the chosen er-
ror values, which are data set dependent, it also can
not be considered as the best solution for the general
case. Especially when fine structures should cast shad-
ows, deep shadow mapping requires additional effort
to provide sufficient results. However, when using the
performance improvements proposed in this paper and
carefully choosing the error value, deep shadow map-
ping can produce convincing results.

Because of the identified drawbacks, further research
on interactive shadowing techniques is needed in the
future. It should be examined in how far deep shadow
mapping can be extended to support rather fine struc-
tures casting shadows without introducing visual arti-
facts. Furthermore, it should be investigated in how
far a combination of the existing shadowing techniques
might help in order to simulate shadows for a wider
range of applications. A rather simple extension to the
proposed deep shadow mapping technique would be the
integration of colored shadows.

Since a lot of research has targeted shadow algo-
rithms for polygonal data sets, it should be examined
in how far these concepts can be transferred to volume
data sets. For instance, rendering of soft shadows for
volumetric data sets has not yet been addressed.
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Figure 7: The NCAT phantom data set (128×128×128 voxel) rendered without shadows, with shadow rays (A),
with shadow mapping and with deep shadow maps (from left to right).

Figure 8: The visible human head data set (512×512×294 voxel) rendered without shadows, with shadow rays
(A), with shadow mapping and with deep shadow maps (from left to right). The generated shadow map is shown
in Figure 2.

Figure 9: The hand data set (244× 124× 257 voxel) rendered without shadows, with shadow rays (A), with
shadow mapping and with deep shadow maps (from left to right). Semi-transparent shadows become visible when
using shadow rays or deep shadow maps.

Figure 10: The bonsai data set (256× 256× 256 voxel) rendered without shadows, with shadow rays (A), with
shadow mapping and with deep shadow maps (from left to right).


