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The amount of volume data requiring analysis 
is rising signifi cantly in many domains. For 
example, in medicine, computed tomogra-

phy and magnetic resonance imaging have changed 
from seldom-applied special technologies to stan-
dard diagnostic tools. Visualization of the acquired 
volume data is challenging. Scanners used in medi-
cal research can create more than 1,000 slices per 
scan pass, which aren’t manageable with standard 
visualization techniques. Routine medical diagnos-
tics also need new visualization techniques for fast, 
reliable analysis of the huge amounts of data. Im-
portant information must be depicted concisely. To 
determine what information is important depends 
on what the medical question is and which scan-
ning technologies are used—effective visualizations 
are usually specialized.

To support interactive development of such spe-
cialized visualizations, our Voreen volume-rendering 
engine provides an rapid-prototyping environment 
for realizing GPU-based volume ray-casting tech-
niques.1 Voreen is an open source C++ framework 
consisting of processors—autonomous functional 
building blocks that each perform a specifi c task. 
Voreen’s users can fl exibly combine these processors 
into data-fl ow networks. The component-based ar-
chitecture ensures that users can exploit the real-
ized techniques in interactive applications without 
any performance penalty. Voreen provides processors 
for different volume-rendering and image-processing 
techniques. Users can extend it easily by integrating 
more processors—for example, to support a new vol-
ume-processing algorithm. Voreen supports several 
fi le formats for volume data—for example, DICOM, 
TIFF, or RAW. Users can easily modify processor 
properties through automatically generated GUI 
components and can use the designed visualiza-
tions through either a generic application provided 
by Voreen or customized applications. For more on 
rapid-prototyping environments, see the sidebar.

Managing Data and Execution
On a logical level, data fl ows from one Voreen pro-

cessor to another via ports—inports for input and 
outports for output. The type of port determines 
which inport/outport pairs are compatible and 
can thus be connected. Subtypes give further hints 
about the transferred data content. Although spe-
cifi c types of connected ports must match, this 
doesn’t apply to the subtypes.

Voreen’s design is object-oriented (OO), but this 
doesn’t apply to the architecture of OpenGL—the 
underlying graphics system. In a purely OO environ-
ment, objects would manage themselves by trans-
ferring control and data directly. However, because 
OpenGL isn’t OO, developers must carefully trade 
off between achieving high graphics performance 
and following OO design principles. For effi ciency, 
OpenGL’s state is determined by global variables, and 
data are accessible from anywhere in an OpenGL 
program. Encapsulating such data into objects would 
signifi cantly decrease performance. So, Voreen uses 
a central instance for managing graphics data and 
exchanges these data via references. The central con-
troller also schedules processor execution.

Coprocessors Supporting Processors
In some situations, data transfer via ports isn’t 
suitable. For example, if one consumer processor 
would like to use data that a producer processor 
provides, the data must be transferred from pro-
ducer to consumer. This transfer requires a generic 
data representation. However, such a representa-
tion isn’t always feasible, or creating it might be 
time-consuming. For specifi c restricted data usage, 
it’s often suffi cient if the consumer can access the 
data indirectly by calling a method of the pro-
ducer. So, we extend the data-fl ow principle: not 
only can data be transferred between processors 
via ports, processors also can access data by call-
ing the methods of special processors called copro-
cessors. A coprocessor class can be used to share 
functionality between different processor classes.

Processor Classes
Here, we describe some important processor classes. 
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Because Voreen is extensible, users can easily add 
new processors.

A VolumeSetSource processor lets other pro-
cessors access a data set. VolumeSelector selects 
a specific volume in the data set and specifies as 
a parameter the desired modality or index (in the 
case of a series of volumes).

An EntryExitPoints processor creates im-
ages containing color-coded entry and exit points 
using a proxy geometry. The color of each proxy 
geometry vertex encodes the corresponding vertex 
position. So, the GPU automatically calculates the 
color-coded entry and exit points when rendering 
the proxy geometry.1 For cube-shaped volumes, the 
proxy geometry is an RGB color cube.

Because the demands on a proxy geometry can 
differ, it isn’t created in EntryExitPoints itself, 
but the processor calls a coprocessor to render a 
certain proxy geometry. A simple ProxyGeometry 
coprocessor stores and renders a volume’s bound-
ing box. By modifying the proxy geometry, users 
can change the part of the volume data to be visu-
alized (see Figure 1). More complex effects can be 
achieved by applying a ProxyGeometry that uses 
a mesh representation and relaxes the relation be-
tween vertex positions and colors. So, keeping the 
colors constant and changing the vertex positions 
can produce a rendering of a deformed volume.

ProxyGeometry coprocessors illustrate the ad-
vantage of interaction between a processor and 
a coprocessor via a method call. If we used ports 
instead, we’d need the specific data representation 
to be transferred. Not forcing ProxyGeometry to 
provide information in a certain format relieves 

Figure 1. Rendering of a human head, with a clipped proxy geometry. 
You can download the visualization environment shown in this figure at 
www.voreen.org

Scientists frequently perform volume data analysis and 
visualization, and many libraries, applications, and rapid-

prototyping environments (RPEs) have been developed for 
this task. Libraries offer much flexibility but require much 
experience and effort to be beneficial. Applications are 
mostly easy to handle but aren’t extensible and are thus 
limited to the built-in tasks the developer has anticipated. 
RPEs combine the best of both approaches. They usually 
provide a set of modules, which users can combine to 
achieve their goals.

Many RPEs are available either commercially or for 
free—for example, Amira (www.amira.com), MeVisLab 
(www.mevislab.de), VisTrails (www.vistrails.org), and XIP 
(Extensible Imaging Platform; https://collab01a.scr.sie-
mens.com/xipwiki). Ingmar Bitter and his colleagues have 
compared some of these packages.1 Unlike Voreen (see the 
main article), these RPEs focus on the entire data analysis 
process; visualization is only the final step and sometimes 
a minor aspect. For visualization, they use mostly GPU-
based slicing approaches. However, slicing has inherent 
disadvantages resulting mainly from the inflexibility of the 
volume’s slice-by-slice traversal.

Ray casting solves these issues because it traverses 
the volume data set separately for each ray. So, it offers 

greater flexibility. The first GPU-based solutions for ray 
casting were quite slow. But with the huge improvement 
in GPU technology, ray casting can be extended with sev-
eral enhancements and still reach interactive frame rates. 
MeVisLab contains a GPU-based ray-casting module that 
supports renderer reconfiguration on a per-object basis.

The widely used VTK (Visualization Toolkit; www.vtk.
org) library supports GPU-accelerated volume render-
ing with slicing only. The same is true for other librar-
ies such as MITK (Medical Imaging Interaction Toolkit; 
www.mitk.org) or Mercury’s commercial Open Inventor 
implementation (www.vsg3d.com). Jesus J. Caban and his 
colleagues have compared several open source libraries 
and applications.2
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the implementation from any restrictions con-
cerning the internal representation, provided that 
it can render the stored shape.

A RayCaster processor receives entry and exit 
points as well as a volume data set. It then performs 
the ray casting in a fragment program on the GPU 
using the OpenGL Shading Language (GLSL). It 
supports different rendering modes—for example, 
isosurface rendering, maximum-intensity projec-
tion, and direct-volume rendering—by recompiling 
the shader program at runtime. However, small 
modifications such as changing parameters—for 
example, thresholds—don’t require recompilation 
because uniform variables can pass new values. 
Using OpenGL’s multiple-render-targets exten-
sion, the same rendering pass can produce mul-
tiple output images.

Once RayCaster renders the volumes into an 
image, further processors can be applied. When-
ever possible, the images contain not only the 
RGBA channels but also depth values. Most im-
age processors are regular filters as known from 
image-processing applications. The filters often 
benefit if depth values are available—for example, 
for edge detection. Multiple images can be com-
bined in several ways.
GeometryProcessors fuse images with render-

ings of polygonal objects. To save rendering passes, 
one processor processes multiple objects together, us-
ing different coprocessors for the actual renderings.
Caching and Coarseness processors increase 

a network’s rendering speed. Caching stores the 
output image obtained from its predecessor until 
that image becomes invalid. This can improve in-
teractivity for complex volume visualizations, for 
example, to edit annotations without rerendering 
everything on every frame. To guarantee immedi-
ate reaction to user input, Coarseness reduces 
its predecessors’ image resolution while the user 
interacts with the scene. Usually, this processor 
is only used for time-consuming subnetworks, so 
that inexpensive rendering processors still display 
in full resolution.

Creating New Processors
Creating new Voreen processors is easy. To dem-
onstrate the general principle, we create a simple 
processor that converts an RGB image into a gray-
scale image. The new processor class constructor 
sets up its inports and outports before loading and 
building the shader program (see Figure 2a).

To instantiate the new processor objects at 
runtime, ProcessorFactory requires a unique 
processor name and a create() method (see 
Figure 2b).

 1 Grayscale::Grayscale()
 2 {
 3  createInport("image.input");
 4  createOutput("image.outport");
 5  program_=ShdrMgr.load("grayscale.frag");
 6  program_–>build();
 7 }

(a)

 1 Identifier Grayscale::getClassName()
 2 {
 3  return ("PostProcessor.Grayscale";
 4 }
 5
 6 Processor* Grayscale::create()
 7 {
 8  return new Grayscale
 9 }

(b)

 1 void Grayscale::process(PortMapping* pm)
 2 {
 3  int source = pm–>getTarget("image.input");
 4  int dest = pm–>getTarget("image.output");
 5
 6  glBindTexture(getGLTexTarget(source), 
 7    getGLTexID(source));
 8  setActiveTarget(dest);
 9  program_–>activate();
 10  program_–>setUniform("tex_", 0);
 11  program_–>setUniform("texSize_", size_);
 12  renderQuad();
 13  program_–>deactivate();
 14 }

(c)

 1 uniform sampler2D tex_;
 2 uniform vec2 texSize_;
 3
 4 void main()
 5 {
 6  vec4 rgba = texture2D(tex_,
 7    gl_FragCoord.xy/texSize_);
 8  float g = 0.3*rgba.r + 0.59*rgba.g +
 9   0.11*rgba.b;
 10  gl_FragColor = vec4(g, g, g, rgba.a);
 11 }

(d)

Figure 2. New processors can be integrated easily into Voreen. This 
example shows the realization of a simple grayscale image processor. 
Creating a processor that converts an RGB image to a grayscale image: 
(a) setting up the inports and outports, (b) adding the unique processor 
name and a create() method, (c) implementing the process() 
method, and (d) the shader program.
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Figure 2c shows the process() method imple-
mentation. Lines 3 and 4 indicate the input and 
output images’ storage locations. Lines 6 and 7 
bind the input image as a texture to make it ac-
cessible in the shader program. The code then ac-
tivates the output image as the destination for any 
OpenGL output. Lines 9–11 initialize the shader 
program, which line 12 executes indirectly by 
drawing a screen-aligned quad.

Figure 2d shows the shader program. Lines 6 and 
7 read the current fragment’s color; lines 8 and 9 
convert that color into a grayscale value, which 
line 10 writes to the output image.

A Basic Ray-Casting Network
Figure 3 shows a network that performs volume 
rendering by using a proxy geometry to calculate 
the ray entry and exit points and then feeding them 
into the ray caster. The VolumeSetSource proces-
sor specifies the data set. Then, VolumeSelector 
selects from the data set the volume to be rendered 
and delivers it to RayCaster and the ProxyGeom
etry coprocessor, which adapts the proxy geom-
etry’s size to the data-set size. EntryExitPoints 
obtains viewport information from the camera and 
creates the textures for entry and exit points using 
ProxyGeometry. RayCaster uses these textures 
to produce a volume rendering. GeometryPro
cessor adds some polygonal objects by delegating 
their rendering to the ClippingPlanes, Bound
ingBox, and LightSource coprocessors, which 
retrieve the required geometric information by 
calling a method of ProxyGeometry. The light 
source and the colored bounding-box arrows are 
interactive elements. So, the user can move the 
light source or shift the axis-aligned clipping 
planes. Finally, Background creates a background 
for the volume rendering.

Application Examples
Here, we describe three visualization techniques 
from different domains that we realized with Voreen.

Automatic Label Placement
Medical visualizations widely use illustrations—for 
example, to communicate anatomical structures 
in medical textbooks. With the advent of high-
resolution medical scanners, creating medical il-
lustrations using acquired data has become more 
common. In such illustrations, textual annota-
tions are important to add descriptive labels to the 
objects of interest.

If possible, a label should be fitted to the object’s 
surface to allow immediate identification. We’ve 
proposed an algorithm that automatically places 

VolumeSetSource

VolumeSelector

ProxyGeometry

ClippingPlanes

BoundingBox GeometryProcessor

Background

Canvas

LightSource

RayCaster

EntryExitPoints

(b)

(a)

Figure 3. Networks can be generated by combining many existing 
processors. (a) To visualize a human heart, (b) a basic ray-casting network 
uses processors for generating a bounding box, as well as a clipping 
plane and a light-source widget (the colors of the ports indicate their 
type; red ports transmit volume data, and blue ports transmit images, 
whereas green ports indicate coprocessor connections).
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3D labels on the surfaces of objects in a segmented 
volume data set.2

The algorithm extends a 2D shape-fitting ap-
proach to ensure that a label’s path matches the 
shape of the corresponding object’s projection in 
image space. By analyzing the depth structure of 
the image, we extend the generated 2D path to 
a 3D path on the object’s surface. The algorithm 
uses this 3D path to generate Bézier patches fit-
ting the object’s surface, on which the label is then 
rendered (see Figure 4a).

Figure 4b shows the network for the image in 
Figure 4a. For 2D shape fitting, the algorithm uses 
ProxyGeometry, EntryExitPoints, and IDRay
Caster to render a segmented volume from the 
current view (from the right Volume Selector in 
Figure 4b) into an ID map. IDRayCaster calculates 
the first-hit points in the volume and stores for each 
one the depth information and the color-coded 
unique ID assigned to the corresponding segment 
in the ID map. An object having front-facing parts 
partially covered by other parts of the object re-
sults in a segment having discontinuities in its 
depth values. To ensure that this object’s label 
fits smoothly to its surface and doesn’t cross such 
discontinuities, EdgeDetector performs depth-
based contour detection to identify these disconti-
nuities. Then, that processor splits the segment by 
changing the color-coded ID values corresponding 
to the discontinuous positions.

The resulting image goes to Labeling, which 
applies a distance transform to produce a distance 
map. For each pixel, this map contains the color-
coded, closest distance to the segment border the 
pixel belongs to. Labeling then calculates the 
medial axes contained implicitly in the distance 
map and converts them to 2D curves. If Label
ing is configured for 2D labeling, it renders the 
labels immediately along these 2D curves. For 3D 
labeling, Labeling can easily obtain the neces-
sary 3D segments’ structure if the ray casting’s 
color-coded, first-hit positions are stored in a first-
hit positions map. IDRayCaster can perform 
this action in parallel. Labeling identifies the 2D 
points of each medial axis with the correspond-
ing points in the first-hit positions map, creates a 
3D path for each medial axis, and approximates 
it with a Bézier spline. The surface in the proxim-
ity of each spline curve is then approximated with 
Bézier patches, onto which the label is rendered.

For visualization of the anatomical objects, our 
algorithm performs a regular ray casting using the 
actual volume (through ProxyGeometry, En
tryExitPoints, and RayCaster). Optionally, 
RegionModifier can highlight a certain seg-

VolumeSelector
(volume)

VolumeSelector
(segmentation)

ProxyGeometry EntryExitPoints

RayCaster IDRayCaster

LabelingCaching

RegionModi�er EdgeDetector

Combine

Background

Canvas

VolumeSetSource

(a)

(b)

Figure 4. Using Voreen for automatic label placement: (a) a labeled 
image of the human hand and (b) the corresponding data-flow network. 
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ment. Caching caches the result to prevent un-
necessary renderings, when users drag labels with 
the mouse. Finally, Combine blends the images 
and Background adds a background.

Multivariate Visualizations Using Glyphs
Scientists widely use glyphs to visualize various 
data modalities simultaneously. For example, in 
a diagnosis of coronary artery disease based on 
SPECT (single photon emission computed tomog-
raphy), physicians must consider various param-
eters such as blood supply under stress and rest or 
cardiac-wall parameters.

Figure 5 shows a glyph-based visualization that 
supports physicians performing diagnoses, and 
its corresponding network.3 GlyphPlacing uni-
formly distributes glyphs over the cardiac wall’s 
surface (provided by the right VolumeSelector). 
The GlyphGenerator coprocessor determines each 
glyph’s shape and color to depict cardiac parameters 
(taken from the left and middle VolumeSelector 
processors) at the glyph’s position. Using a copro-
cessor for glyph generation lets us provide differ-
ent implementations for different glyph types. 
Combine blends the glyph image with a rendering 
of the cardiac wall’s surface (created by MeshRen
derer), and Background adds a background.

In this network, geometric objects (that is, ver-
tices and edges), rather than volumetric data, are 
transferred between processors. Processors sup-
porting glyphs in combination with volume ren-
dering are also available.

Visualizing Motion in Still Images
Scientists often visualize time-varying volume data 
sets by displaying the 3D volumes sequentially in 
the order in which the volumes were acquired. Al-
though rendering the data sets at high frame rates 
lets viewers construct a mental image of the tem-
poral changes, in many situations, viewing a static 
image is more convenient.

We’ve introduced three techniques for visualiz-
ing dynamics in a single still image.4 Figures 6 and 
7 illustrate these techniques.

The first technique overlays a 3D volume render-
ing with silhouettes of the preceding and succes-
sive 3D volumes (see Figure 6a). Because we must 
visualize subsequent volumes of the same data set, 
we use a common ProxyGeometry and EntryEx
itPoints (see Figure 6c). The middle RayCaster 
generates the image for the current time step (taken 
from the middle VolumeSelector). To obtain the 
silhouettes, the left and right RayCasters perform 
the ray casting, and the two EdgeDetectors ap-
ply edge detection. (For brevity, we simplified the 

(a)

VolumeSetSource

VolumeSelector
(variable 1)

VolumeSelector
(variable 2)

GlyphPlacing

GlyphGenerator GlyphRenderer MeshRenderer

Combine

Background

Canvas

VolumeSelector
(surface)

(b)

Figure 5. Voreen’s functionality also lets you easily prototype visualizations 
containing mesh data. In this example case, (a) glyphs are used to visualize 
multiple data values simultaneously to help physicians diagnose coronary 
artery disease, and (b) shows the corresponding network.
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network diagram; the actual network contains 
three RayCasters and EdgeDetectors each for 
the preceding and subsequent time steps.) Com
bine combines the resulting images in the proper 
order so that newer silhouettes cover older ones.

The second technique uses semitransparency 
to show preceding 3D volumes (see Figure 6b). It 
uses RayCasters to render the volumes, attenu-
ates the volumes depending on their point in time, 
and combines the resulting images.

Our third technique uses speedlines, a technique 
that cartoons use to depict past motion, to visu-
alize the movement of a simulation of hurricane 
Isabel (see Figure 7). A preprocessing step calculates 
each voxel’s motion between two time steps. The 
network first uses a ray-casting sequence (Proxy
Geometry, EntryExitPoints, and RayCaster) 
to produce a volume rendering of the rain’s inten-
sity (taken from the right VolumeSelector). The 
input for SpeedlineRenderer is the motion in-
formation derived from the rain’s intensity (taken 
from the left VolumeSelector). This technique 
uses the collected motion vectors to calculate the 
speedlines’ positions and directions. Vectorfield
Renderer visualizes motion in the hurricane. Edge
Detector processors configured to produce a halo 
effect process all three output images. Furthermore, 
TextureRenderer loads and renders a texture con-
taining a geographic map, and Combine combines all 
the images into the final visualization.

By splitting a complex ray-casting process into 
different tasks performed on different proces-

sors, Voreen provides a lot of flexibility because 
users can intervene at different points during ray 
casting. Voreen’s OO design lets users easily create 
customized processor classes that cooperate seam-
lessly with existing classes. A user-friendly GUI 
supports rapid prototyping of visualization ideas.

We’ve implemented several applications based on 
our library—for example, for specific tasks in routine 
medical diagnostics. One example in this area is a 
system for diagnosing coronary artery disease based 
on SPECT data, while another one allows multi-
modal vessel inspection based on PET/CT (positron 
emission tomography/computed tomography) data. 
Voreen’s source code, the networks we described, 
and sample data sets are freely available at www.
voreen.org. In the future, we’d like to further ex-
tend Voreen’s capabilities to make visualization pro-
totyping even easier on all abstraction levels. Thus, 
we plan to realize a set of dedicated processor skel-
etons, which are solely configured through shader 
programs and can thus be modified at runtime. 

VolumeSelector
(t = –3)

VolumeSelector
(t = 0)

VolumeSelector
(t = 3)

ProxyGeometry EntryExitPoints

RayCaster RayCaster RayCaster

EdgeDetectorEdgeDetector

Combine

Canvas

VolumeSetSource

(a)

(b)

(c)

Figure 6. Two ways to visualize motion in a single still image. The 
volumetric data set contains a moving golf ball; we visualize its motion 
using (a) edges and (b) semitransparency. (c) The network for edge-
based visualization is simplified for brevity.
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Figure 7. Using speedlines to visualize motion in still images.  
(a) Visualization of motion in a hurricane Isabel data set. (b) The network 
uses volume rendering to visualize the rain’s intensity, speedlines to 
depict the overall motion, and arrows to show motion in the hurricane.


