
AN ADVANCED VOLUME RAYCASTING TECHNIQUE
USING GPU STREAM PROCESSING

Jörg Mensmann, Timo Ropinski, Klaus Hinrichs
Visualization and Computer Graphics Research Group (VisCG), University of Münster

{mensmann, ropinski, khh}@math.uni-muenster.de

Keywords: Direct volume rendering, raycasting, stream processing, CUDA

Abstract: GPU-based raycasting is the state-of-the-art rendering technique for interactive volume visualization. The ray
traversal is usually implemented in a fragment shader, utilizing the hardware in a way that was not originally
intended. New programming interfaces for stream processing, such as CUDA, support a more general pro-
gramming model and the use of additional device features, which are not accessible through traditional shader
programming. In this paper we propose a slab-based raycasting technique that is modeled specifically to use
these features to accelerate volume rendering. This technique is based on experience gained from comparing
fragment shader implementations of basic raycasting to implementations directly translated to CUDA kernels.
The comparison covers direct volume rendering with a variety of optional features, e. g., gradient and lighting
calculations. Our findings are supported by benchmarks of typical volume visualization scenarios. We con-
clude that new stream processing models can only gain a small performance advantage when directly porting
the basic raycasting algorithm. However, they can be advantageous through novel acceleration methods which
use the hardware features not available to shader implementations.

1 INTRODUCTION
Raycasting is advantageous compared to other in-
teractive volume visualization techniques due to its
high image quality, inherent flexibility, and simple
implementation on programmable GPUs. Implemen-
tations usually apply general-purpose GPU program-
ming techniques (GPGPU), which skip most of the
geometry functionality of the hardware and use frag-
ment shaders to perform raycasting through the vol-
ume data set. Modern GPUs support stream process-
ing as an alternative programming model to classical
graphics APIs such as OpenGL. These stream pro-
cessing models, e. g., NVIDIA’s CUDA or OpenCL,
give a more general access to the hardware and also
support certain hardware features not available via
graphics APIs, such as on-chip shared memory.

Rendering approaches for volumetric data can be
classified as object-order and image-order traversal
techniques. Object-order techniques like slice ren-
dering simplify parallelization by accessing the vol-
ume data in a regular manner, but cannot easily gen-
erate high quality images and are rather inflexible
with regard to acceleration techniques. Image-order
techniques such as raycasting (Levoy, 1990), on the
other hand, can generate good visual results and can
be easily accelerated, e. g., with early ray termina-
tion (ERT) or empty space skipping. However, the
ray traversal through the volume leads to highly ir-
regular memory access. This can undermine caching

and also complicate efforts towards a parallel imple-
mentation. Volume raycasting implemented as a frag-
ment shader can give interactive results for reasonably
sized data sets, even with on-the-fly gradient calcu-
lation and local illumination. More advanced tech-
niques such as gradient filtering or ambient occlusion
are still problematic because of the large number of
volume texture fetches. In contrast to many other ap-
plications of stream processing that often reach high
speedup factors, volume raycasting already uses the
graphics hardware instead of the CPU. Hence, no ma-
jor speedups are expected simply by porting a ray-
casting shader to CUDA. However, fragment shader
implementations do not allow sharing of data or inter-
mediate results between different threads, i. e., rays,
which therefore have to be fetched or recalculated
over and over again. More general programming
models exploiting fast on-chip memory could allow a
massive reduction in the number of memory transac-
tions and therefore make such advanced visualization
techniques available for interactive use.

In this paper we first examine the general suitabil-
ity of stream processing for direct volume rendering
(DVR) by comparing CUDA- and shader-based ray-
casting implementations. Afterwards, we discuss ac-
celeration techniques that utilize the additional device
features accessible through CUDA and introduce a
novel slab-based approach, going beyond what is pos-
sible with shader programming.

2 RELATED WORK

GPU-based volume raycasting GPU-based vol-
ume raycasting techniques were first published by
Röttger et al. (2003) and by Krüger and Westermann
(2003). These approaches use a proxy geometry, most
often resembling the data set bounding box, to specify
ray parameters, either through an analytical approach
or by rendering the proxy geometry into a texture.

To speed up rendering, or to support data sets
not fitting in GPU memory, the volume can be sub-
divided into bricks (Scharsach et al., 2006) through
which rays are cast independently, while composit-
ing the results afterwards. Law and Yagel (1996) pre-
sented a bricked volume layout for distributed parallel
processing systems that minimizes cache thrashing by
preventing multiple transfer of the same volume data
to the same processor in order to improve rendering
performance. Grimm et al. (2004) used this approach
to get optimal cache coherence on a single processor
with hyper-threading.

GPU stream processing New programming inter-
faces for stream processing allow to bypass the graph-
ics pipeline and directly use the GPU as a massively
parallel computing platform. The stream processing
model is limited in functionality compared to, e. g.,
multi-CPU systems, but can be mapped very effi-
ciently to the hardware.

NVIDIA introduced CUDA as a parallel comput-
ing architecture and programming model for their
GPUs (Nickolls et al., 2008). AMD/ATI support sim-
ilar functionality through their Stream SDK (AMD,
2009). To have a vendor-neutral solution, OpenCL
was developed as an industry standard (Munshi,
2008), but at the time of writing this paper stable im-
plementations were not yet publicly available. For
this paper, we have chosen CUDA as a platform
for evaluating raycasting techniques because it is the
most flexible of the current programming models, it
is available for multiple operating systems, and it
shares many similarities with the OpenCL program-
ming model.

Besides for numerical computations, CUDA has
been used for some rendering techniques, including
raytracing (Luebke and Parker, 2008). A simple vol-
ume raycasting example is included in the CUDA
SDK. Maršálek et al. (2008) also demonstrated proof
of concept of a simple CUDA raycaster and did a
performance comparison to a shader implementation.
Their results showed a slight performance advantage
for the CUDA implementation, but they did not in-
corporate lighting or other advanced rendering tech-
niques. Kim (2008) implemented bricked raycasting
on CUDA, distributing some of the data management

work to the CPU. He focused on streaming volume
data not fitting in GPU memory and did not use all
available hardware features for optimization, such as
texture filtering hardware. Smelyanskiy et al. (2009)
compared raycasting implementations for Intel’s up-
coming Larrabee architecture and CUDA, focusing
on volume compression and not using texture filter-
ing. Kainz et al. (2009) recently introduced a new
approach for raycasting multiple volume data sets us-
ing CUDA. It is based on implementing rasterization
of the proxy geometry with CUDA instead of relying
on the usual graphics pipeline.

3 RAYCASTING WITH CUDA

3.1 CUDA Architecture
While using the same hardware as shader programs,
CUDA makes available certain features that are not
accessible by applications through graphics APIs. In
contrast to shader programs, a CUDA kernel can read
and write arbitrary positions in GPU global memory.
To achieve maximum bandwidth from global mem-
ory, the right access patterns have to be chosen to
coalesce simultaneous memory accesses into a single
memory transaction.

Each multiprocessor on a CUDA device contains
a small amount of on-chip memory that can be ac-
cessed by all threads in a thread block and can be as
fast as a hardware register. This shared memory is
not available to shader programs. The total amount
of shared memory in each multiprocessor—and there-
fore the maximum amount available to each thread
block—is limited to 16 kB with current hardware.

The size and distribution of CUDA thread blocks
must be controlled manually. The block size is lim-
ited by the available hardware registers and shared
memory. Each thread block can use a maximum of
16,384 registers, distributed over all its threads. With
a block size of 16×16 this would allow 64 registers
per thread, while with a smaller block size of 8×8 the
available registers increase to 256. At most half of
these should be used per block to allow running mul-
tiple thread blocks on a multiprocessor at the same
time. This means that a complex kernel must be run
with a smaller block size than a simple one. A similar
restriction applies to the use of shared memory.

3.2 Accelerating Raycasting
While easy to implement, the basic raycasting al-
gorithm leaves room for optimization. Many tech-
niques have been proposed for DVR, from skipping
over known empty voxels (Levoy, 1990) to adaptively
changing the sampling rate (Röttger et al., 2003).

Most of these techniques are also applicable to a
CUDA implementation. In this paper, we rather fo-
cus on techniques that can use the additional capabil-
ities of CUDA to get a performance advantage over a
shader implementation.

Many volume visualization techniques take a
voxel’s neighborhood into account for calculating its
visual characteristics, starting with linear interpola-
tion, to gradient calculations of differing complexity,
to techniques for ambient occlusion. As the neigh-
borhoods of the voxels sampled by adjacent rays do
overlap, many voxels are fetched multiple times, thus
wasting memory bandwidth. Moving entire parts of
the volume into a fast cache memory could remove
much of the superfluous memory transfers.

As noted in Section 3.1, each multiprocessor has
available 16 kB of shared memory, but less than half
of this should be used by each thread block to get op-
timal performance. Using the memory for caching
of volume data would allow for a subvolume of 163

voxels with 16 bit intensity values. While access-
ing volume data cached in shared memory is faster
than transferring them from global memory, it has
some disadvantages compared to using the texturing
hardware. First, the texturing hardware directly sup-
ports trilinear filtering, which would have to be per-
formed manually with multiple shared memory ac-
cesses. Second, the texturing hardware automatically
handles out-of-range texture coordinates by clamping
or wrapping, and removes the need for costly address-
ing and range checking. Finally, the texture hardware
caching can give results similar to shared memory, as
long as the access pattern exhibits enough locality.

When a volume is divided into subvolumes that
are moved into cache memory, accessing neighbor-
ing voxels becomes a problem. Many per-voxel op-
erations like filtering or gradient calculation require
access to neighboring voxels. For voxels on the bor-
der of the subvolumes much of their neighborhood is
not directly accessible any more, since the surround-
ing voxels are not included in the cache. They can
either be accessed directly through global memory, or
included into the subvolume as border voxels, thus re-
ducing the usable size of the subvolume cache. Mov-
ing border voxels into the cache reduces the usable
subvolume size to 143, with 33% of the cache occu-
pied with border data. Hence this would substantially
reduce the efficiency of the subvolume cache.

Bricking implementations for shader-based vol-
ume raycasting often split the proxy geometry into
many smaller bricks corresponding to the subvolumes
and render them in front-to-back order. This requires
special border handling inside the subvolumes and
can introduce overhead due to the multitude of shader

Figure 1: Building blocks for raycasting algorithms.

calls. A CUDA kernel would have to use a less flexi-
ble analytical approach for ray setup, instead of utiliz-
ing the rasterization hardware as proposed by Krüger
and Westermann (2003), or implement its own ras-
terization method (Kainz et al., 2009). As described
above, due to the scarce amount of shared memory,
the total number of bricks would also be quite high,
increasing the overhead for management of bricks
and compositing of intermediate results. The bricking
technique described by Law and Yagel (1996) is spe-
cially designed for orthographic projection, for which
the depth-sorting of the bricks can be simplified sig-
nificantly, compared to the case of perspective pro-
jection. Their technique also relies on per-brick lists,
where rays are added after they first hit the brick and
removed after leaving it. This list handling can be effi-
ciently implemented on the CPU, but such data struc-
tures do not map efficiently to the GPU hardware.
Kim (2008) works around this problem by handling
the data structures on the CPU. As his aim is stream-
ing of data not fitting into GPU memory, the addi-
tional overhead is of no concern, in contrast to when
looking for a general approach for volume rendering.

To summarize, a direct bricking implementation
in CUDA is problematic because only a small amount
of shared memory is available and the ray setup
for individual bricks is difficult. Therefore we will
introduce an acceleration technique which is better
adapted to the features and limitations of the CUDA
architecture in Section 5.

4 BASIC RAYCASTING
As illustrated in Figure 1, the basic raycasting algo-
rithm can be divided into three parts: initialization
and ray setup, ray traversal, and writing the results. A
fragment shader implementation uses texture fetches
for retrieving ray parameters, applying transfer func-
tions, and for volume sampling, utilizing the texturing
hardware to get linear filtering.

In a CUDA implementation using textures for the
ray start and end points does not have an advan-
tage over memory reads, as no filtering is necessary

and coalescing can be achieved easily. Performance
differences are more important inside the raycasting
loop. Both voxel sampling and transfer function look-
up require filtering, so using textures is the natural
choice. Our implementation first renders the proxy
geometry into OpenGL textures to get the ray start
and end points, which can be accessed as CUDA
buffer objects through global memory.

The raycasting kernel is then started with the cho-
sen thread block size, with each thread in the block
corresponding to a single ray. Following the scheme
illustrated in Figure 1, the kernel first performs ray
setup using the ray parameter buffers before entering
the main loop. Inside the loop the texture fetches are
performed and lighting calculation is applied before
compositing the intermediate result and advancing the
current position on the ray. When the end of a ray
is reached the fragment color is written to an output
buffer. It is copied to the screen when processing of
all thread blocks has completed.

If early ray termination is active, the main loop
is terminated before reaching the ray end when the
compositing results in an alpha value above a certain
threshold. Since all threads in a warp operate in lock
step, the thread has to wait for all the other rays to ter-
minate by either reaching their end or through ERT.
This is a hardware limitation, hence it also applies
to the fragment shader implementation. In practice,
however, this is of no concern, as neighboring rays
usually exhibit a coherent behavior with regard to ray
length and ERT.

5 SLAB-BASED RAYCASTING

5.1 Approach

Since the bricking described in Section 3.2 is an
object-order technique that is not well suited for a
CUDA implementation, we introduce an alternative
caching mechanism that can be used in image-order
by dividing the volume into slabs. In contrast to
bricking, rays instead of voxels are grouped to build
a slab. The screen is subdivided into rectangular re-
gions and stacked slabs reaching into the scene are
created, as shown in Figure 2. While for orthogonal
projection the structure of a slab is a simple cuboid, it
has the form of a frustum for perspective projection.

It would be optimal to move all voxels contained
in a slab into shared memory. But unlike bricks, slabs
are neither axis-aligned in texture space nor do they
have a simple cuboid structure. Therefore either a
costly addressing scheme would be required, or large
amounts of memory would be wasted when caching
the smallest axis-aligned cuboid enclosing the slab.

Figure 2: Bricking (object-order) and slab-based (image-
order) approach for volume raycasting.

As described in Section 3.2, both alternatives are not
suitable for a CUDA implementation. However, a
more regular structure can be found after voxel sam-
pling. All rays inside a slab have approximately the
same length and therefore the same number of sample
points. Saving the voxel sampling results for all rays
in a slab leads to a three-dimensional array which can
easily be stored in shared memory.

Caching these data does not give a performance
advantage per se, when samples are only accessed
once. But several lighting techniques need to access
neighborhood voxels regularly, e. g., ambient occlu-
sion or even basic gradient calculation. When these
techniques access the same sample position multiple
times, memory bandwidth and latency are saved. Un-
fortunately, the relation between adjacent samples in
the cache is somewhat irregular, as rays are not par-
allel when applying perspective projection, and there-
fore the distance between sample points differs. How-
ever, often not the exact neighborhood of a voxel is
needed but an approximation is sufficient. For large
viewport resolutions adjacent rays are close to par-
allel even with perspective projection, hence for ap-
proximation purposes one can consider them as paral-
lel. Gradient calculation can then use the same simple
addressing scheme as known from conventional ray-
casting to access neighboring voxels, although in this
case the resulting gradients are relative to the eye co-
ordinate system instead of the object coordinate sys-
tem. While relying on an explicitly managed cache in
shared memory, this method also makes use of the im-
plicit cache of the texturing hardware when sampling
the voxels that get written into shared memory. There-
fore the two cache levels complement each other.

5.2 CUDA Implementation
Just as with the implementation of the basic raycast-
ing algorithm, also for the slab-based raycasting each
thread corresponds to a ray and ray setup is performed
through the ray parameter textures. However, the
start points must be adapted for the slab structure,
as described below. The main loop traverses the rays
through the slabs, calculating the gradients using the
cache memory. Special handling is necessary for bor-
der voxels and for early ray termination.

Figure 3: Start point preprocessing (left) and slab-based
gradient calculation (right).

Start point preprocessing The slab algorithm re-
lies on the fact that voxels are sampled by an advanc-
ing ray-front and that sample points which are ad-
jacent in texture space also lie close together in the
cache. This only holds true as long as the view plane
is parallel to one side of the proxy geometry cube, as
otherwise ray start positions have different distances
to the camera. This would result in incorrect gradi-
ents, since voxels adjacent in the volume may lie on
different slices in the slab cache. A solution to the
problem is modifying all ray start points in a slab to
have the same distance to the camera as the one clos-
est to the camera, as illustrated in Figure 3 (left). We
use shared memory and thread synchronization to find
the minimum camera distance over all rays in a block
and then move the start point of each ray to have this
minimum distance to the camera. Moving the start
points does not lead to additional texture fetches, as
the texture coordinates will lie outside of the interval
[0,1]3, which is checked before each 3D texture fetch.

Main loop The main rendering loop consists of two
parts. In the first part, the slab cache is filled with
samples by traversing the ray. As a ray typically cre-
ates too many samples to fit in the slab cache com-
pletely, the slap depth sd controls the number of sam-
ples to write into the cache per ray at the same time.
Rays with the same distance to the camera lie on the
same slice in the slab. After thread synchronization
the second part of the main loop uses the recently
acquired samples to apply lighting and compositing.
The ray traversal is started from the beginning for
the slab, but now the samples are read directly from
shared memory instead of the texture.

Gradient calculation A gradient is calculated by
taking into account adjacent samples on the same
slice from the top, left, bottom, and right rays (as seen
from the view point), and the next and previous sam-
ples on the current ray, as illustrated for the 2D case
in Figure 3 (right). The gradients are therefore cal-
culated in eye space and need to be transformed to
object space for the lighting calculation. This results
in gradients similar to the default gradient calculation,
as shown in Figure 4 (left).

Border handling As with bricking, accessing the
neighborhood of samples on the border of a slab re-

Figure 4: (left) Phong shading applied to the engine data
set with gradient calculation. (right) The grid pattern of the
thread blocks becomes visible through incorrect gradients
when border handling is not performed.

quires special handling. This is necessary for gradi-
ent calculation, because ignoring voxels not accessi-
ble through the cache for gradient calculation leads to
discontinuities in the gradients, which get visible as
a grid pattern in the final image (Figure 4 right). Di-
rectly accessing surrounding voxels would require re-
trieving additional ray parameters for rays outside the
slab to calculate the relevant voxel positions. Hence,
including the voxels into the cache is more reason-
able, even if this reduces the usable size. To include
surrounding voxels, we add all rays adjacent to the
slab. For these border rays only the first part of the
main loop needs to be executed, to write the corre-
sponding samples into the cache for access by the gra-
dient calculation of the inner rays in the second part.

Early ray termination As data sampled by one ray
is also used for the gradient calculation in adjacent
rays, early ray termination can not stop the traversal
of a single ray without taking its neighbors into ac-
count. Therefore it must be determined if all rays in a
slab have reached the required alpha threshold before
terminating further ray traversal. The necessary syn-
chronization can be easily performed using a flag in
shared memory.

6 RESULTS

6.1 Testing Methodology
To get meaningful performance data for comparing
CUDA and fragment shader raycasting, we have im-
plemented feature-identical versions of a raycaster for
both cases, using CUDA version 2.1 and OpenGL
shaders implemented in GLSL, running on Linux.
The raycasters are integrated into the Voreen volume
rendering framework (Meyer-Spradow et al., 2009)
and use the proxy geometry and corresponding ray
start and end positions generated using OpenGL. To
get comparable results, our measurements were con-
fined to the actual fragment shader or kernel call,
not counting time for rendering the proxy geome-
try or converting textures from OpenGL to CUDA
format. The CUDA kernels were timed using the

RC TF PH GF

Figure 5: Results of rendering the engine and vmhead data
sets with different raycasting techniques.

technique regs fetches
basic raycasting (RC) 15 1
transfer function (TF) 19 2
Phong shading (PH) 33 8
gradient filtering (GF) 57 56

Table 1: Register usage and number of texture fetches per
sample point for the different raycasting techniques.

asynchronous event mechanism from the CUDA API,
while for shader raycasting a high-precision timer
was used, enclosing the shader execution with calls
of glFinish() to ensure correct results. Each vol-
ume object was rotated around the Y-axis, while mea-
suring the average frame rate over 100 frames. The
tests were conducted on two different systems, one
equipped with an Intel Core 2 Duo E6300 CPU and an
NVIDIA GeForce 8800 GT, the other with a Core 2
Quad Q9550 and a GeForce GTX 280.

The tests start with the simple raycasting algo-
rithm (RC), before adding a transfer function (TF) and
Phong lighting with on-the-fly gradient calculation
using central differences and early ray termination
(PH), and finally performing an expensive gradient
filtering (GF). Advanced techniques include all previ-
ous features, e. g., Phong lighting includes a transfer
function. Table 1 lists the number of texture fetches
per sample point for the individual techniques. We
have tested our implementations with several data
sets and chose two representative volumes of different
sizes and with different transfer functions for compar-
ing the different techniques. The engine is dense with
few transparency, while the larger vmhead is semi-
transparent. Renderings of the data sets with the dif-
ferent techniques are shown in Figure 5.

6.2 Basic Raycaster
Table 2 lists frame rates of our raycasting implemen-
tations, tested with different GPUs, viewport resolu-
tions, and data sets. It is notable that the GeForce
GTX 280 achieves significant speedups for the CUDA

 320

 340

 360

 380

 400

 420

 440

 460

 480

 500

 520

 0 50 100 150 200 250 300 350 400 450 500 550
 0

 8

 16

 24

 32

fp
s

m
ul

tip
ro

ce
ss

or
 w

ar
p

oc
cu

pa
nc

y

threads per block

occupancy

CUDA

GLSL

8x4

8x8

12x8

16x8

8x16

16x10 16x12 16x14

16x16 16x18

16x20

16x22 16x24 16x26 16x28 16x30 16x32

Figure 6: Influence of block size on rendering performance:
engine data set rendered using the basic RC technique on a
GeForce GTX 280, viewport size is 5122.

implementation for all techniques except PH, while
with the 8800 GT significant speedups are only found
with the RC technique and 10242 viewport size, the
GLSL implementation being close to equal or faster
for all other cases. The frame rate differences be-
tween GLSL and CUDA reach up to 30%, with one
outlier even at +42%. For the 8800 GT increasing
the viewport size also increases the speedup, while
the speedup for the 280 GTX mostly stays the same.
Switching from the engine data set to the larger vm-
head increases the speedup for the 280 GTX, while
this is less significant for the 8800 GT.

As the selection of thread block size can have a
tremendous influence on the performance of a CUDA
kernel, we tested all benchmark configurations with
several block sizes to find the optimal block size bsopt.
Figure 6 shows the effect of the block size on the
frame rate.

While the advanced techniques are more costly
since they perform more texture fetches, they also
require more hardware registers to run (compare Ta-
ble 1). Due to the limited availability of hardware reg-
isters, this restricts the number of active thread blocks
per multiprocessor. The GTX 280 has twice as many
registers available as the 8800 GT and therefore al-
lows larger block sizes for kernels that use many reg-
isters. It is notable that for gradient filtering (GF),
with both a very high register count and a great num-
ber of texture fetches, the GTX 280 can again achieve
a significant speedup, while it was slower than GLSL
for PH.

6.3 Slab-based Raycaster
We tested slab-based raycasting on the GTX 280 only,
as this GPU proved to be influenced less by high reg-
ister requirements. The size of the shared memory
cache contains bsx×bsy×sd sampled voxels, depend-
ing on the thread block size bs and the slab depth sd.
The optimal slab depth sdopt depends on the data set,

view- engine data set (2562×128, 8 bit) vmhead data set (5122×294, 16 bit)
techn. device port GLSL CUDA speedup bsopt GLSL CUDA speedup bsopt

RC
8800GT 5122 291.1 300.4 +3.2% 16×8 72.2 64.1 −11.2% 16×20

10242 81.0 96.9 +19.6% 16×32 48.3 56.3 +16.6% 16×28

GTX280 5122 380.0 496.0 +30.5% 12×8 121.2 158.5 +30.8% 8×8
10242 124.5 147.8 +18.7% 16×8 70.5 100.2 +42.1% 16×18

TF
8800GT 5122 194.2 173.5 −10.7% 8×16 68.1 59.4 −12.8% 8×16

10242 61.1 62.3 +2.0% 16×24 38.2 37.4 −2.1% 16×24

GTX280 5122 317.4 358.1 +12.8% 16×12 118.0 153.9 +30.4% 8×16
10242 100.9 110.6 +9.6% 8×16 64.6 82.7 +28.0% 16×16

PH
8800GT 5122 60.2 43.6 −27.6% 8×8 21.5 22.0 +2.3% 8×16

10242 17.1 14.6 −14.6% 16×12 12.0 9.9 −17.5% 16×12

GTX280 5122 95.2 77.6 −18.5% 8×8 40.7 38.1 −6.4% 8×16
10242 25.5 22.5 −13.3% 16×8 18.0 17.2 −4.4% 16×8

GF
8800GT 5122 8.9 6.7 −24.7% 8×16 4.6 3.4 −26.1% 8×16

10242 2.5 2.1 −16.0% 8×16 1.7 1.6 −5.9% 8×16

GTX280 5122 9.5 10.4 +9.5% 8×8 4.6 5.6 +21.7% 12×8
10242 2.5 2.9 +16.0% 8×8 1.8 2.3 +27.8% 8×8

Table 2: Performance results in frames per second for basic raycasting implemented with GLSL and CUDA. The CUDA
raycasting was run with different block sizes and results for the optimal block size bsopt are given.

engine data set (2562×128, 8 bit) vmhead data set (5122×294, 16 bit)
technique regs viewport basic slab speedup bsopt sdopt basic slab speedup bsopt sdopt

RC 22
5122 496.0 186.4 −62.4% 8×16 31 158.5 122.0 −23.0% 16×14 16
7682 251.6 85.7 −65.9% 16×16 31 131.1 74.1 −43.5% 16×14 16

10242 147.8 49.2 −66.7% 8×16 31 100.2 43.4 −56.7% 16×30 16

PH 34
5122 77.6 77.1 −0.6% 8×16 31 38.1 67.9 +78.2% 16×30 16
7682 36.2 35.2 −2.8% 16×16 31 27.1 34.1 +25.8% 16×30 16

10242 22.5 19.6 −12.9% 8×16 31 17.2 19.5 +12.7% 16×30 16

Table 3: Performance results for the CUDA implementation of slab-based raycasting on a GeForce GTX 280. Note that the
RC technique is only used to measure the overhead of the slab-based approach.

just as the block size. Results of the slab-based ray-
caster are presented in Table 3. We added an inter-
mediate viewport size of 7682 to better analyze the
connection between viewport size and speedup factor.

For the basic RC technique each sampled voxel
is only accessed once, hence caching the slabs can-
not improve performance. However, this allows us to
measure the overhead for managing the shared mem-
ory cache and for fetching additional border voxels.
For the tested configurations the overhead is between
23 and 67%. When applying Phong lighting, volume
data is accessed multiple times by the gradient calcu-
lation, and the slab caching can result in a speedup
compared to the basic CUDA raycasting. A perfor-
mance increase between 12 and 78% is only found
with the large 16-bit vmhead data set, presumably
since the hardware texture cache is less efficient with
larger volumes, as for the 8-bit engine data set a slight
performance decrease is measured. Another reason
might be that the early ray termination is less effi-
cient with the slab approach, as only complete slabs
can be terminated, not individual rays. The engine
is solid so the rays are terminated much earlier than
with the semi-transparent vmhead. It is notable that
the speedup decreases with increasing viewport size.
When the viewport gets larger, adjacent rays more of-
ten hit the same voxels. Hence, there is more locality
of texture fetches resulting in more hits in the hard-
ware texture cache. The slab cache is most efficient
in the opposite case, when the data set resolution is

high compared to the viewport size.
The amount of shared memory required by the

raycasting kernels depends on block size and slap
depth. For vmhead the optimal configuration results
in 15,360 bytes which is close to the maximum of
16 kB, hence only one thread block can be active
per multiprocessor. Although engine only uses up
to 7,936 bytes, this does not result in more concur-
rent thread blocks because of the high register re-
quirements. Nevertheless, this configuration is faster
than one with a smaller block size which would allow
multiple concurrent thread blocks. This shows that
the stream processing approach is not fully effective
in hiding the latency of the large number of texture
fetches performed by the raycasting algorithm.

6.4 Discussion
The number of required registers seems to be a ma-
jor factor influencing kernel performance compared
to a feature-equivalent shader implementation. Since
shaders also benefit from the double bandwidth and
twice the number of scalar processors of the GTX
280 compared to the 8800 GT, we suspect that the
reason for the greater speedups with the GTX 280 is
its support for more hardware registers. It seems that
our CUDA implementation is less efficient in utilizing
hardware registers than shaders are, therefore profit-
ing more when more registers are available.

The slab-based raycasting can increase rendering
efficiency when the same volume data is accessed

multiple times, e. g., for gradient calculation. How-
ever, it should be noted that the algorithm can be
compared to the basic raycasting only to a certain ex-
tent, as the gradients are less exact for the slab data.
Nonetheless, the results show how much of a differ-
ence the use of shared memory can make. We demon-
strated that the method is most efficient for high res-
olution data sets. This is advantageous for typical ap-
plications of volume rendering, e. g., medical imag-
ing, where data sets typically have a much higher res-
olution than engine. The algorithm is also more effi-
cient with semi-transparent than with non-transparent
data. For data with no transparency this is no real
problem as well, as in this case also simpler tech-
niques such as isosurface rendering could be used.
Our slab-based method is designed for use with di-
rect volume rendering, which is most useful for semi-
transparent data.

7 CONCLUSIONS

We have demonstrated that the CUDA programming
model is suitable for volume raycasting and that a
CUDA-based raycaster—while not a “silver bullet”—
can be more efficient than a shader-based implemen-
tation. Factors influencing the speedup are the type
of GPU, thread block size, and data set size. We
have also shown that using shared memory can bring
a substantial performance increase when the same
volume data is accessed multiple times. However,
hardware restrictions need to be taken into account,
as managing the shared memory and especially han-
dling border voxels can introduce a significant over-
head. Other factors besides rendering performance
should be taken into account as well when choos-
ing a programming model for a raycasting applica-
tion. A shader implementation supports a wider range
of graphics hardware, without depending on a single
vendor. Also the integration into existing volume ren-
dering frameworks is easier, e. g., by being able to di-
rectly use 2D and 3D textures and render targets from
OpenGL. Many of these issues will hopefully be re-
moved by implementations of the OpenCL standard,
which is vendor-neutral and supports closer coupling
with OpenGL.

As future work it should be investigated whether
more complex visualization techniques, such as am-
bient occlusion, can benefit from the additional hard-
ware resources accessible through stream processing
APIs by applying a slab-based approach. As the cur-
rently available on-chip memory is a scarce resource,
particularly for storing volume data, volume render-
ing would especially benefit from improvements in
this area, which are expected for future hardware.

ACKNOWLEDGMENTS
The work presented in this publication was partly sup-
ported by grants from Deutsche Forschungsgemeinschaft,
SFB 656 MoBil (project Z1). The presented concepts have
been integrated into the Voreen volume rendering engine
(http://www.voreen.org).

REFERENCES
AMD (2009). Stream Computing User Guide, 1.4-beta.
Grimm, S., Bruckner, S., Kanitsar, A., and Gröller, M. E.

(2004). A refined data addressing and processing
scheme to accelerate volume raycasting. Computers
& Graphics, 28(5):719–729.

Kainz, B., Grabner, M., Bornik, A., Hauswiesner, S.,
Muehl, J., and Schmalstieg, D. (2009). Ray cast-
ing of multiple volumetric datasets with polyhedral
boundaries on manycore GPUs. ACM Transactions
on Graphics, 28(5):1–9.

Kim, J. (2008). Efficient Rendering of Large 3-D and 4-
D Scalar Fields. PhD thesis, University of Maryland,
College Park.

Krüger, J. and Westermann, R. (2003). Acceleration tech-
niques for GPU-based volume rendering. In Proceed-
ings of IEEE Visualization, pages 287–292.

Law, A. and Yagel, R. (1996). Multi-frame thrashless ray
casting with advancing ray-front. In Proceedings of
Graphics Interfaces, pages 70–77.

Levoy, M. (1990). Efficient ray tracing of volume data.
ACM Transactions on Graphics, 9(3):245–261.

Luebke, D. and Parker, S. (2008). Interactive ray tracing
with CUDA. Presentation at NVISION conference.

Maršálek, L., Hauber, A., and Slusallek, P. (2008). High-
speed volume ray casting with CUDA. IEEE Sympo-
sium on Interactive Ray Tracing, page 185.

Meyer-Spradow, J., Ropinski, T., Mensmann, J., and Hin-
richs, K. (2009). Voreen: A rapid-prototyping envi-
ronment for ray-casting-based volume visualizations.
IEEE Comp. Graphics and Applications, 29(6):6–13.

Munshi, A., editor (2008). The OpenCL Specification, Ver-
sion 1.0. Khronos OpenCL Working Group.

Nickolls, J., Buck, I., Garland, M., and Skadron, K. (2008).
Scalable parallel programming with CUDA. ACM
Queue, 6(2):40–53.

Röttger, S., Guthe, S., Weiskopf, D., Ertl, T., and Straßer,
W. (2003). Smart hardware-accelerated volume ren-
dering. In VISSYM ’03: Proceedings of the Sympo-
sium on Data Visualisation, pages 231–238.

Scharsach, H., Hadwiger, M., Neubauer, A., Wolfsberger,
S., and Bühler, K. (2006). Perspective isosurface and
direct volume rendering for virtual endoscopy appli-
cations. In Eurographics/IEEE VGTC Symposium on
Visualization, pages 315–322.

Smelyanskiy, M., Holmes, D., Chhugani, J., Larson, A.,
et al. (2009). Mapping high-fidelity volume render-
ing for medical imaging to CPU, GPU and many-core
architectures. IEEE Transactions on Visualization and
Computer Graphics, 15(6):1563–1570.

