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Abstract—Although direct volume rendering is established as a powerful tool for the visualization of volumetric data, efficient and
reliable feature detection is still an open topic. Usually, a tradeoff between fast but imprecise classification schemes and accurate
but time-consuming segmentation techniques has to be made. Furthermore, the issue of uncertainty introduced with the feature
detection process is completely neglected by the majority of existing approaches. In this paper we propose a guided probabilistic
volume segmentation approach that focuses on the minimization of uncertainty. In an iterative process, our system continuously
assesses uncertainty of a random walker-based segmentation in order to detect regions with high ambiguity, to which the user’s
attention is directed to support the correction of potential misclassifications. This reduces the risk of critical segmentation errors and
ensures that information about the segmentation’s reliability is conveyed to the user in a dependable way. In order to improve the
efficiency of the segmentation process, our technique does not only take into account the volume data to be segmented, but also
enables the user to incorporate classification information. An interactive workflow has been achieved by implementing the presented
system on the GPU using the OpenCL API. Our results obtained for several medical data sets of different modalities, including brain
MRI and abdominal CT, demonstrate the reliability and efficiency of our approach.
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1 INTRODUCTION

Although direct volume rendering (DVR) has proven to be a powerful
technique for the exploration of volumetric data, its wide-spread prac-
tical use has been hampered by mainly two issues. First, the design
of effective transfer functions that map data values to optical proper-
ties, also called classification, is mostly still a cumbersome and non-
intuitive task. Due to the complex relation between transfer function
and rendering, a trial-and-error process is often required. Despite more
than a decade of intensive research in the field of volume classifica-
tion, that has yielded many promising transfer function approaches,
there still does not seem to be a final solution for this essential task
in sight. Volume segmentation techniques, which operate in the spa-
tial domain by classifying voxels directly instead of applying an in-
termediate transfer function to their data values, could in principle
replace the classification step. However, they are usually either too
time-consuming for routine use in that they require a massive amount
of user interaction, e. g., iterating over all slices and marking the de-
sired structure with high precision, or do not yield sufficiently accurate
results for volumes with low signal-to-noise ratio. While sophisticated
model-based segmentation approaches exist, they are tailored towards
a specific structure and cannot be used for other purposes or when a
certain degree of abnormality is exceeded, which may apply to patho-
logical medical cases, such as tumors or ruptures.

The second severe problem of DVR is the lack of reliability. In
contrast to traditional slice-wise examination of volume data sets,
DVR inherently suffers from occlusion and therefore requires masking
through classification and/or segmentation in order to get an occlusion-
free view to the structures of interest. This, however, poses the risk
of unintentionally masking parts of the structure of interest or erro-
neously assigning parts of the background to the feature of interest.
Both of these effects might lead to critical misinterpretations during
visual inspection and to an erroneous quantitative analysis, e. g., when
measuring a tumor’s volume. Given the well-accepted importance of
uncertainty visualization as one of the top visualization research chal-
lenges [18], surprisingly few research papers have actually tackled the
issue of uncertainty arising through the volume classification process.
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In this paper we propose a guided segmentation approach, which
focuses on uncertainty and is conducted by an interplay between the
user and the system. The underlying workflow has been designed as
a tight interplay, where each subtask is delegated to the optimal inter-
action partner. While the human user is rather strong in visual pat-
tern recognition and can reliably estimate an appropriately visualized
situation, the strength of the system is vast processing power, which
can be exploited to support expensive computations as well as a rough
analysis. As shown in Figure 1, in the first step of the workflow, we ex-
ploit the probabilistic random walker segmentation algorithm [11] in
combination with the high processing power of the GPU to generate
segmentations with known uncertainty. In the second step, we analyze
this uncertainty information. In order to allow the user to judge and
modify the uncertain regions, our system directs the user’s attention
to regions with high uncertainty in step 3. Finally, within step 4 the
user can inspect the results and refine the starting parameters of the
previous segmentation, and the workflow starts over again through the
feedback loop. This workflow ensures, that the user is always aware
of the currently involved uncertainty, which is essential to judge the
reliability of the results.

The main contribution of this paper is an uncertainty-guided volume
segmentation workflow, which is based on a GPU implementation of
the random walker segmentation algorithm. The user is able to gen-
erate a segmentation through the interactive workflow, within which
uncertain regions are automatically extracted and presented to the user
in the order of their importance. Thus, the user can quickly classify
unambiguous regions, which usually constitute the largest part of a
data set. The system then directs the user’s attention to the uncertain
parts of the segmentation and allows the user to locally refine the seg-
mentation, and it ensures that the uncertainty information is conveyed
in a reliable way. To our knowledge, the presented system is the first
which integrates direct visual feedback of segmentation uncertainty
into an interactive segmentation approach.

In the following, we use the term classification synonymously for
segmentation, and we do not explicitly refer to transfer function design
but we understand it more generally as the assignment of voxels to
clusters.

2 RELATED WORK

Since volume segmentation is a large area of research, we limit our
review to the fields most relevant to our work: supervised volume seg-
mentation as well as volume segmentation systems. Additionally, we
cover approaches for visualization of uncertainty in volume data.

Supervised volume segmentation. Based on the supported user
interaction, supervised volume segmentation techniques can be cate-



Fig. 1. Proposed workflow: The system generates a random walker
solution using seeds that have been defined in previous iterations, ana-
lyzes the probabilistic field in order to detect uncertain regions, conveys
this uncertainty information to the user by using a table widget as well as
integrating it into the 2D and 3D views, thus allowing the user to select
and modify uncertain regions.

gorized into two types [26]: Edge-based methods aim at detecting the
boundary between the desired structures and the background. They
either take a small set of boundary voxels as user input, or require the
user to provide a nearby complete boundary. Region-based techniques
consider the region to be extracted as a continuous set of similar vox-
els, and they expect the user to specify an initial set of seed voxels
belonging to the desired object.

The most prominent group of boundary-based segmentation ap-
proaches are active contours and level sets [34]. All these techniques
require that the user places a contour near the desired boundary, which
is then evolved to a local energy minimum. The algorithms mainly
vary in the design of the energy functional to be minimized. The com-
plex setup and the limited user interaction have traditionally been con-
sidered as severe drawbacks of the level set technique hampering its
application in interactive workflows. However, recent presentations of
interactive, level set based segmentation tools by Ben-Zadok et al. [2]
and Cremers et al. [8] might indicate a change in that respect. The
intelligent scissors algorithm [25] is a boundary-based segmentation
technique for 2D images. It computes a minimum-cost path between
user-specified boundary points via Dijkstra’s shortest-path algorithm.
Hastreiter and Ertl [15] have extended it to volume segmentation by
considering inter-slice relations and a 3D filter to compute the local
cost.

Region growing is a basic region-based segmentation method that
starts from an initial set of seed points and iteratively adds neighbor-
ing voxels when they satisfy a similarity criterion, which is usually
based on intensity thresholds [16] or a diffusion metric [36]. Although
in many cases allowing fast segmentation results that correspond well
to the perceived boundaries, the choice of the homogeneity criterion
becomes difficult for objects with weak boundaries [40]. The graph
cuts technique proposed by Boykov and Jolly [4] interprets the image
as a graph, weighted to reflect intensity changes. While the algorithm
can be easily generalized to 3D, it suffers from the ”small cut” prob-
lem: since the algorithm returns the smallest cut separating the seeds,
a small number of seeds might not be adequate. Grady [11] introduced
the random walker technique as a probabilistic, seeded image segmen-
tation approach. Like graph cuts, it views the volume as a weighted
graph, whose nodes correspond to the voxels. The basic idea is to
determine for each voxel the probability that a random walker start-
ing from there first reaches one of the user-specified foreground seeds.
The probability with which a certain neighbor voxel is chosen as next
step is defined by edge weights, which have to reflect the characteris-
tics of the volume and are usually derived from intensity differences
between the respective voxels. A crisp segmentation may finally be
obtained by assigning each voxel to the label for which the highest
probability was calculated.

Volume segmentation systems. In addition to the techniques out-
lined above, the research community has presented several volume
segmentation systems, which can be classified based on accuracy, re-

peatability and interaction efficiency [26]. Bartz et al. [1] have pro-
posed a hybrid approach for the segmentation of the tracheo-bronchial
tree of the lungs, where they limit the user interaction to the specifica-
tion of seed points. Gu and Peters [14] have introduced a system for
interactive organ segmentation based on the combination of an ero-
sion operation and the fast marching method. Boykov and Jolly [3]
employed the graph cuts technique for interactive organ segmentation.
Ben-Zadok et al. [2] recently presented a volume segmentation tool
based on level sets that focuses on image-guided therapy. Tzeng et
al. [38] have presented a system which is based on a combination of
machine learning and interactive painting. By interactively painting
on slices, the system can be trained and the whole volume can be clas-
sified.

The systems named so far did not take into account the issue of
classification uncertainty. In fact, though a variety of fully-automatic
systems incorporating or providing probabilistic classification infor-
mation exists, guided uncertainty-aware volume segmentation systems
are rarely found. Cremers et al. [8] propose a probabilistic level set
formulation for allowing the integration of user input into the segmen-
tation process. Kontos et al. [22] presented a system for segmentation
of medical data sets with respect to uncertainty. By combining man-
ual thresholding and automated boundary correction, they are able to
achieve accurate segmentations for 3D SPECT data. In contrast to
our approach, uncertainty is not conveyed to the user, but only used
for automatic improvements. More recently, Saad et al. [32] proposed
an exploration and editing system for probabilistic segmentations of
medical data sets. They analyze a given probabilistic segmentation in
order to detect ambiguous regions and to allow the user to correct po-
tential misclassifications. Though our approach might appear similar
to theirs, there is a fundamental difference: instead of subsequently
editing a given segmentation, our system focuses on the minimization
of uncertainty already during the segmentation process. We consider
this proceeding as preferable, since in our approach modifications to
the probabilistic segmentation are directly based on the underlying
volume data. While the basic interaction metaphor for defining seed
points in our system is similar to the Volume Catcher system presented
by Owada et al. [27], they do not consider and convey any uncertainty
information.

Uncertainty visualization. Since uncertainty visualization plays a
key role within our system, we briefly review the most relevant ap-
proaches. In their work originally targeted towards uncertainty vi-
sualization in a geospatial context, MacEachren et al. [24] classify
uncertainty visualization based on data types and data quality. Al-
though due to the context no volumetric uncertainty visualization is
discussed, the principle of crispness and transparency can be trans-
ferred to our approach. In the same context, Pang [28] describes il-
lustrative techniques for multivariate uncertainty data. Grigoryan and
Rheingans [13] exploit uncertainty-based surface displacement. In
their paper they also demonstrate the application to segmentation re-
sults. However, it requires a surface with an appropriate normal for
which uncertainty information is present, which we cannot directly
derive from our uncertain segmentation results. Pang et al. [29] de-
scribe alternative concepts for the visualization of surface uncertainty
by means of bumps, glyphs and so-called fat surfaces. Even more
relevant to our approach are the color, opacity and texture mapping
techniques proposed by Rhodes et al. [31]. While this technique is
also tailored towards surface representations, the speckle, texture and
noise approach presented by Djurcilow et al. [9] has been developed
for volumetric data sets. The same is true for the probabilistic anima-
tion approach presented by Lundström et al. [23].

3 SYSTEM DESIGN

In order to be able to provide an efficient guided segmentation work-
flow, the selection of an appropriate probabilistic segmentation algo-
rithm was crucial for our system. In particular, we surveyed exist-
ing semi-automatic approaches with respect to the following require-
ments:

1. Availability of information about local reliability of an obtained
segmentation.
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Fig. 2. Weak border detection property of the random walker: in contrast
to the graph cut approach, the random walker is able to segment the
objects although an interrupted boundary is present (adapted from [11]).

2. Efficient and reliable user interaction, i.e., small changes of the
user-provided information should not be prone to cause large,
unanticipated changes in the resulting segmentation.

3. Fast computation.

The first requirement already excludes the majority of techniques,
including region-growing [16] and intelligent scissors [25], which pro-
vide binary segmentations. While there exist some fuzzy formulations
of the level-set concept, which might allow one to derive uncertainty
information, few of them have actually been applied to volumetric
data, and to our knowledge all of these approaches are tailored to-
wards specific use-cases, mainly brain MRI [6]. Additionally, due to
the limited amount of interactivity, especially regarding the correction
of intermediate results, level-sets do not seem to be well-suited for a
guided workflow. While Ben-Zadok et al. [2] and Cremers et al. [8]
presented promising advances towards interactive level set segmenta-
tion, their approaches do not provide probabilistic results.

Although the graph cuts technique itself is also limited to provide
a crisp segmentation, Kohli and Torr [21] have shown recently how
a confidence measure can be derived from a graph cut solution based
on min-marginals. So we had the choice between graph cuts and the
random walker approach, which is inherently probabilistic, since it
provides each voxel’s probability for the membership of all segments.
The user interaction is very similar with both techniques: the user
specifies two (small) sets of foreground and background seed vox-
els to sketch the desired segments. Thus, when dealing with well-
shaped data sets, both algorithms are adequate. However, the ”small
cut” phenomenon of the graph cut algorithm hampers the reliability of
the user interaction as illustrated in Figure 2: since the surface area
of the provided seeds is smaller than the weak (missing) part of the
boundary, the smallest cut surrounds the seeds assigning all pixels to
the background (a), which is most likely not the result the user ex-
pected. Additionally, adding a rather small set of further seeds, so that
the seed surface becomes larger than the weak boundary, would cause
a drastic change in the segmentation towards the ”correct” result. For
3D segmentation, the requirement to draw seed regions whose surface
area exceeds the weak boundary area becomes even more problematic,
since the user typically defines less seeds in comparison to the num-
ber of voxels than for 2D image segmentation. Figure 2 (b), in con-
trast, demonstrates the weak border detection property of the random
walker, which is accompanied by the reflection of the weak bound-
ary in the surrounding probabilities as shown in Figure 2 (c). Another
problem of the graph cuts approach is its tendency to produce blocky
artifacts at the object boundary [5], which especially becomes a prob-
lem when voxel-precise segmentation is desired.

For these reasons, we have selected the random walker algorithm
to be the foundation of the proposed system. However, this decision
is to some extent contrary to the requirement for a fast computation,
since the graph cuts approach is known to run in real-time even for
3D data, whereas the time necessary for the computation of a random
walker solution of medical data sets typically ranges from seconds to
several minutes. To overcome this limitation, we exploit the features of
current GPUs and provide an OpenCL implementation of a conjugate
gradient solver used for the random walker calculations as described

Fig. 3. User interface of the proposed system: The upper right, lower
right and lower left views present axis-aligned slices of the data set to
be segmented. The upper left multiplanar view conveys contextual infor-
mation about the current slice positions. The user has drawn foreground
seeds (red) and background seeds (blue) onto the 2D views.

in Section 6. Thus, we achieve computation times which support the
interactive and iterative proceeding of our workflow.

4 GUIDED VOLUME SEGMENTATION

Although uncertainty information is present in the probabilistic seg-
mentation generated by the random walker algorithm, exploiting this
information in a user-centric workflow is not trivial. In case of a multi-
label segmentation, i. e., more than two segments are considered, the
probabilities constitute a vector field, and even for two-label segmen-
tation a combined 3D visualization of the data set and the probability
volume seems to be hardly practical. In contrast, a manual slice-wise
examination of probabilities and volume data is a cumbersome process
for large data sets, posing the risk of missing critical misclassifications.
The low-frequency character of the probability field further amplifies
the risk of overlooking areas of uncertainty.

Throughout this paper, we adopt the commonly used medical data
model, which assumes that a volume is composed of rather homoge-
nous regions representing the scanned materials, which intermix at
their borders constituting smooth transitions [19]. Under this assump-
tion, the probabilistic segmentation can be expected to exhibit thin un-
certainty margins at the boundaries. Therefore, large areas of ambigu-
ous probabilities can be interpreted as indicators for potential misclas-
sifications. We exploit this observation in order to derive information
about the uncertainty of the segmentation result from the probability
distribution.

The proposed system supports the user during the iterative refine-
ment of probabilistic segmentations by analyzing the probability field
to detect pronounced ambiguous regions and directing the user’s atten-
tion to these. Since reliability is the main focus of our work, we have
decided to employ a slice-based interface for user input (see Figure 3).
The three axis-aligned slices are used for seed point definition as well
as for displaying the current segmentation result along with ambigu-
ous regions. The 3D multiplanar view provides context information
about the current position of the slices in the data set and shows an
iso-surface rendering of the segmentation with highlighted uncertain
regions. Thus, we simultaneously convey the shape of the segmenta-
tion as well as the spatial relations of uncertain areas, which are both
aspects that are difficult to perceive from a pure slice-wise represen-
tation. Although the random walker algorithm is applicable to K-way
segmentation with an arbitrary number of labels, we decided to con-
fine our system to 2-way segmentation, since the extraction of a single
feature of interest from the background is the most common applica-
tion for medical image segmentation and the simultaneous classifica-
tion of multiple features would inevitably increase the complexity of



the user interface. If necessary, multiple features can still be extracted
iteratively.

The proposed segmentation system differs from previous work
dealing with uncertainty in volume data in a significant way: Instead
of just conveying the uncertainty of a given segmentation to the user
or allowing the subsequent modification of the volume, as for instance
proposed by Kniss et al. in the form of a Bayesian risk minimiza-
tion framework [20], we consider uncertainty already in the segmenta-
tion stage and propose a combination of interaction and visualization
techniques developed for allowing the user to reliably and efficiently
minimize the uncertainty. When conducting first tests with the ran-
dom walker technique, we noticed that for many use cases, as for in-
stance organ segmentation, usually large parts of the desired object
could be properly segmented quite easily, while ambiguous parts of
the segmentation where rather small and scattered across the surface
of the object, where they were sometimes hard to detect. Therefore, we
based the design of our system on Shneiderman’s visual information
seeking mantra [37]: ”Overview first, zoom and filter, then details-
on-demand“. Therefore, we not only exploit the system for actual
computation of the random walker, but also for a preclassification of
uncertain regions and the visual presentation of these. Thus the ’zoom
and filter’ process can be understood as a collaborative effort between
user and system. By adapting this concept, we end up with an iterative
segmentation process which reflects the described interplay between
user and system. Thus, the detailed steps of the workflow shown in
Figure 1 are:

1. The system generates an intermediate random walker segmenta-
tion using seed points defined in the previous iterations.

2. The system analyzes the probability field in order to detect am-
biguous regions.

3. To provide an overview, all detected regions are displayed in a
table and are highlighted in the 3D multiplanar view as well as
on the slice views.

4. The following steps are repeated until the user decides to re-run
the random walker with modified input parameters (seeds):

• The user focuses on a particular region by selecting it in
the table widget: The multiplanar view and the slice views
are adjusted to bring the selected region into focus.

• For further inspection the user may decide to zoom onto a
selected region and locally refine the segmentation.

4.1 Random Walker Parametrization
Since the first step of our workflow relies on a proper parametriza-
tion of the random walker algorithm, some background information
is required to fully understand our design considerations. The ran-
dom walker algorithm as formulated by Grady [11] operates on a
weighted graph, whose edge weights define the probability that the
random walker chooses a certain neighbor node of its current loca-
tion in the next step. For representing the structure of the volume to be
segmented, we follow Grady’s formulation of mapping each voxel to a
node with edges representing its 6-neighborhood. To define the weight
wi j of the edge connecting the nodes i and j, a Gaussian function is
used based on the difference between the intensities gi and g j of the
corresponding voxels:

wi j = exp(−β (gi −g j)2) (1)

The only free parameter β can be interpreted as the permeability of
boundaries: increasing β causes a larger decrease of edge weights
within areas of high gradient magnitude than within more homoge-
neous regions. However, according to our experience, this parameter
is rather insensitive: A value of around 4000 gave reliable results for
data sets of different sizes and modalities. In our experiments, solely
the segmentation of very thin structures, which is an application the
random walker algorithm is less suited for, required an adjustment of

β to values between 8000 and 16000. While the output of the random
walker are probability values, the user also inputs probabilities repre-
sented by seed nodes. This is done by assigning probability values of
0.0 and 1.0 to background and foreground seeds. Based on this in-
put, the random walker solution assigns to each unseeded node ni the
probability with which a random walker starting from ni reaches one
of the foreground seeds. Due to this reason, the probabilities are also
commonly regarded as foreground membership scores.

For incorporating an arbitrary transfer function in the segmentation
process, we modify the edge weight wi j by adding a term representing
the distance between the optical properties assigned to the voxels cor-
responding to nodes i and j. In the following definition, ~f (i) denotes
the color that is assigned to node i, abstracting from the actual domain
of a specific transfer function:

wi j = (1−α) exp(−β (gi −g j)2)+α exp(−β (~f (i)−~f ( j))2) (2)

We limit the weighting factor α to the range [0,0.5], in order to ensure
that the obtained segmentation is always based on the original data and
not solely derived from the user-provided classification.

4.2 Uncertainty Detection
The ability to reliably detect uncertainty in the probabilistic segmenta-
tion result is crucial for our system. First of all, since even to obvious
background or foreground parts no clear 0.0 or 1.0 probabilities are as-
signed, we perform a thresholding in order to suppress these obvious
parts and thus extract the suspicious areas. The used thresholds can
be set interactively; however, based on our experience with CT and
MRI data, we have identified 0.2 to 0.8 as the probability range con-
taining all uncertain regions. All probabilities lying outside this range
can be classified as certain. Choosing a large threshold range would
be insufficient, since it would enclose certain regions, e.g., 0.1 is often
assigned to obvious background parts that are not close to a seed.

The thus thresholded probability distribution usually still contains
large parts of clearly classified boundaries. This is caused by the fact
that due to the partial volume effect boundaries in scanned data sets do
not appear as sharp edges but as rather smooth transitions. Therefore,
instead of a hard drop-off we usually find a probability profile resem-
bling the boundary intensity profile in the data set. Applying an ero-
sion operation to the filtered probability field could in principle remove
these boundaries, however at the risk of accidentally pruning smaller
uncertain structures. Instead, we apply a gradient length threshold to
the probability field, which we derive from the user-specified max-
imum expected width db of certain boundaries: assuming a linear
probability profile across the boundary, the maximal tolerable gradi-
ent magnitude is defined as (0.8−0.2)/db. Such an edge filter works
much more reliably on the probability field than in the data domain.
This is due to the inherently smooth nature of the probability field,
which is given, since each unseeded voxel represents the weighted av-
erage of its neighbors’ probabilities [11]. After this boundary suppres-
sion has been performed, we obtain the relevant areas of uncertainty.
To be able to effectively guide the user through the distribution of un-
certainty, we perform a connected component analysis yielding the
coherent regions of uncertainty finally presented to the user.

To further support the user when processing the identified uncertain
regions, we display them in the table widget sorted by their impor-
tance. To estimate this importance of an uncertain region R, we intro-
duce a measure for ambiguity amb(R), that takes into account both the
size of the region and its probability distribution p:

amb(R) := ∑
v∈R

(1−2 · |p(v)−0.5|) (3)

The term 1−2 · |p(v)−0.5| specifies the uncertainty of a voxel v, since
it is inversely proportional to the distance of p(v) to the most ambigu-
ous probability value 0.5. Thus, the user can process the uncertain
regions based on this order as displayed in the table widget.

4.3 Refining the Segmentation
In the usual case, ambiguity is caused by an insufficient number of
seed points in the neighborhood. This is characterized by an uncertain
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Fig. 4. To convey the uncertainty of the segmentation results, we employ different uncertainty visualization techniques. In 2D, we propose the use
of uncertainty isolines which depict the uncertainty inherently through the inter-line distance (a). These isolines can also be subject to a two-color
mapping (b). In 3D, where an overview depiction is demanded, we use opacity modulation together with contour emphasized surfaces (c).

area crossing a boundary, which in principle should provide sufficient
contrast for a clear classification. This type of ambiguity can be ef-
ficiently solved by adding a few more seeds for both the fore- and
background segment. Alternatively, when adding seed points one by
another is not sufficient, the user may define all seed points on the
edge directly by using a geometry widget. One way to perform this is
to use a curve editor, which supports the user when fitting a curve to
the boundary. Based on this curve multiple seed points are automati-
cally set.

5 UNCERTAINTY VISUALIZATION

To better guide the user’s attention to the detected regions having a
high uncertainty, we have tested different uncertainty visualization
techniques. Thus, we are able to provide a meaningful emphasis of the
detected uncertain regions, while also conveying the overall quality of
the final result. Based on the multiple linked view setup of our system,
we depict uncertainty in both the 2D as well as the 3D view. While 2D
slice views are well-suited for precise inspections, 3D visualizations
have the advantage that they provide an expressive overview of struc-
tures. To achieve meaningful uncertainty visualizations, we take these
qualities into account. Thus, the 2D uncertainty visualization should
be able to depict all relevant details regarding the uncertainty, while
the 3D view should provide a meaningful overview of the uncertain
regions.

2D techniques. To depict the uncertainty in the 2D slice views, we
propose the usage of uncertainty isolines, as shown in Figure 4 (a).
These isolines are directly derived by applying image processing op-
erators to the probability distribution of the current slice. To reduce
cluttering of the original data augmented by the isolines, we first mask
regions with probability values outside the defined uncertainty range
between 0.2 and 0.8, then apply a quantization operator, and finally
perform an edge detection on the quantized probability field. Thus,
all regions with uncertain probability values are covered by isolines,
while isolines at well-classified boundaries collapse to a sharp contour,
since these boundaries are characterized by a strong drop of probabil-
ity values. When choosing the number of quantization steps, we have
to make a trade-off between occlusion resulting from a too dense set
of isolines, and loss of focus due to too few isolines. According to our
experience, a number of 10 till 20 isolines seems to be appropriate.

Besides the actual uncertainty visualization strategy, the color map-
ping used to depict the uncertainty also has to be chosen carefully.
In our initial implementation, we had integrated a two-color mapping
based on two distinct hues (see Figure 4 (b)). While lightness vari-
ations of the one hue were used for all probability values below 0.5,
shades of the other hue were used for all probability values above 0.5.
However, since changes in hue are perceived pre-attentively [39], this
led to an inherent emphasis of one potential boundary, along the 0.5
uncertainty isoline. Since there is no evidence that this is the most
probable boundary, we have omitted this two-color mapping as shown
in Figure 4 (a).

3D techniques. While already a substantial amount of research
has been conducted to improve uncertainty visualization in 3D, the
existing techniques are only applicable up to a certain extent in our
case. Especially those techniques dedicated to visualizing surface un-
certainty [29, 13] were not very well suited, since we wanted to avoid
introducing the notion of a surface in uncertain regions. Instead, in
order to emphasize the volumetric nature of the uncertain region, un-
certain volume visualization techniques are more adequate. We ex-
ploit a volumetric uncertainty visualization, which is inspired by the
transparency approach described by MacEachren et al. [24]. There-
fore, we apply an opacity transfer function to the uncertain regions,
which sets the hue to constant and modulates the transparency based
on the probability values. This leads to a blobby appearance, which
fades out towards the areas of higher uncertainty. In Figure 4 (c) we
show the outcome of this technique in combination with a surface rep-
resentation of the certain segment boundaries and a multiplanar view
providing contextual information. As it can be seen, transparency is
exploited when visualizing the segmentation boundary in order to deal
with the occlusion problem. However, since transparency affects the
shape perception of this boundary [17], we have augmented the visu-
alization by adding contour edges, which we have derived based on a
Sobel filter applied to the corresponding depth values. The positive ef-
fects of such contour enhancement have also been described by other
authors, when dealing with semi-transparent surfaces [10]. While the
transparency modulation also influences shape perception, this is not
an issue in our case, since the 3D view is only intended to provide
an overview, while the 2D view is used to explore structures in more
detail.

6 IMPLEMENTATION

The visualization components of the proposed system have been im-
plemented using OpenGL and GLSL achieving interactive perfor-
mance. The basic filtering operations as well as the connected com-
ponent analysis performed on the probability field last less than 0.5s
for volumes of size 2563. Therefore, the main challenge for an interac-
tive workflow was to realize an efficient implementation of the random
walker method. Grady [11] exploited the equivalence between the ran-
dom walker problem and the Dirichlet problem from potential theory
to transform the computation of the random walker probabilities into
the solution of a system of linear equations. Though this system is
large, containing one equation per unseeded voxel, the corresponding
matrix is also sparse and positive definite, allowing the application
of efficient iterative solvers like conjugate gradients. However, inter-
active speeds on the CPU were only achieved for medium-sized 2D
images in [11], which matched our experiences with CPU-based con-
jugate gradient solvers. The OpenGL-based GPU implementation of
the Random Walker presented in [12], on the contrary, enabled inter-
active results for 3D volumes of sizes up to 1283.

Therefore, it was obvious that we had to exploit the processing
power of the GPU for allowing an interactive workflow. We favored



an OpenCL-based implementation of the conjugate gradient method
over an GLSL-based approach due to the straightforward program-
ming model, for instance not requiring the encoding of data into tex-
tures. Since the sparse matrix representing the random walker equa-
tion system can be reduced to three elements per row [12] and the
conjugate gradient method requires three additional vectors for tem-
porary storage, six values need to be stored in the GPU memory for
each unseeded voxel. Therefore, our single-precision (4 byte floats)
implementation requires 24 bytes per unseeded voxel to be stored. On
our system equipped with an NVIDIA GeForce GTX 285 graphics
board with 1 GB graphics memory we were able to process volumes
with approximate maximal dimensions of 3003, which corresponds to
a memory consumption of about 633 MB. Presumably, the remaining
graphics memory is occupied by OpenGL resources, such as volume
textures. By storing the matrix with half-precision, however, we were
able to elevate this limit to approximately 3503, with neglectable im-
pact on the runtime. When initializing our conjugate gradient solver
with the result of the previous iteration of the workflow, one computa-
tion of the random walker solution for a 2563 volume takes about 4-6
seconds. The first iteration of the system after the initial seed place-
ment usually requires 20-30 seconds.

7 RESULTS

To judge the benefits of the proposed system, we have performed an
informal as well as a formal user study. Furthermore, we have quan-
titatively analyzed the obtained segmentation results, which we have
compared to ground truth segmentations.

7.1 User Study
The informal user study was two-fold. In the first test, we have asked
three users to segment a data set by using our system and a comparison
system which is based on region growing. The second part of the study
has been conducted as an informal interview with a medical expert.

Among the three users participating in the informal study where
two male and one female, one of these persons had previous experi-
ence with volume segmentation techniques. Each of these users had
to segment the seed of the walnut data set shown in Figure 3. This
data set has been chosen, since besides several interior regions, which
can be easily segmented, also several ambiguous regions occur, which
suffer from a high degree of uncertainty. For some of these regions it
is even difficult for a human observer to spot the most likely boundary.
We have asked two of the users to first segment the walnut’s interior
by using our system and afterwards by using the region growing ap-
proach. The third user had to perform the segmentation tasks in the
reverse order. For both approaches we gave a very short introduction,
which took less than a minute. All users needed less than 5 iterations
of the workflow when segmenting the interior with the proposed sys-
tem, which took them between 3-5 minutes. After the tests have been
completed, all users stated that our underlying workflow has been per-

(a) (b)

Fig. 5. Typical workflow of the conducted user study. (a) shows the
initial seed placement on an axial slice of the MRI scan along with a
large uncertain layer enclosing the brain, while in (b) the system has
zoomed onto a smaller uncertain region during a subsequent iteration.

Fig. 6. Quantitative evaluation of the user study showing Jaccard indices
between the user-created segmentations and the ground truth.

ceived as very helpful. Especially the user who had prior experience
with volume segmentation appreciated the ease of use as well as the
quality of the result. While the users needed roughly the same time
to perform the task with the region-growing technique, they could not
achieve comparable results. Furthermore, it was not clear to the users
when a sufficient quality of the result was achieved, and thus their
confidence in the segmentation quality was lower.

The informal interview with the medical expert led to comparable
results. Similar to the user, who had previous segmentation experi-
ence, the medical expert especially emphasized the importance of the
workflow. Additionally, the conveying of the reliability of the segmen-
tation was appreciated. Based on the interview and the shown demon-
stration, we could arouse interest, and it is planned that the system is
used for medical research in the future.

Based on this initial feedback we have then conducted a formal
user study involving quantitative analysis of the segmentation results
achieved by the participants. As a practical application case we se-
lected a data set from the TumorSim database [30], which provides
simulated brain tumor MRI scans along with ground truth segmenta-
tions. Since these data sets are designed for a realistic validation of
brain segmentation algorithms, they suffer from similar deficiencies
as real brain MRI scans, especially high noise and bias (see Figure 5).
The participants were asked to segment the complete brain includ-
ing the tumor, first with our proposed system and afterwards with a
livewire approach. Out of the available MRI modalities we have cho-
sen the T1 data set (256x256x175), in which the brain exhibits the least
contrast to the surrounding tissue and which therefore appears to be the
most challenging segmentation task. After a short introduction to both
systems the two female and six male participants were given at most
15 min for segmenting the brain with each of the systems. With the
random walker approach only one user took advantage of the full time
limit, while the remaining participants needed between 8 and 13 min-
utes. During the initial seed placement phase, most users marked the
brain as foreground and the skull as background, but did not place any
seeds in the gap between brain and skull. Therefore, after the first iter-
ation, the system typically detected a large layer enclosing the brain as
uncertain, as shown in Figure 5(a). After additional background seeds
had been placed in this gap, it usually decayed into several smaller un-
certain regions, which were then worked through by the users during
subsequent iterations. Within the livewire system, the user has to mark
the contour of the region to be segmented slice-by-slice. It supports
the user by offering contour snapping based on intensity differences
and it also provides interpolation of contours across slices. Due to the
limited amount of time, the participants were able to process at most
30 out of the approx. 150 slices actually containing brain tissue and
had therefore to interpolate contours for the intermediate, unprocessed
slices. Four participants took the full 15 minutes, the remaining ones
needed more than 10 minutes.

When requested to rate the correctness of the segmentations gen-
erated with both approaches, most participants showed slightly higher
confidence in the correctness of their random walker segmentation. To
be able to judge the accuracy of the segmentation, we have further



performed a quantitative analysis. Therefore, we have computed the
Jaccard index [35] between the user-generated segmentations and the
ground truth. The Jaccard index measures the similarity between two
sample sets A and B and is defined as the size of their intersection
divided by the size of their union:

J(A,B) :=
|A∩B|
|A∪B|

∈ [0;1] (4)

As shown in Figure 6, all participants achieved significantly more
accurate results with the proposed system than with the livewire tech-
nique. Furthermore, all users were able to achieve a rather accurate
segmentation with our approach, while higher variance occurred when
comparing the livewire segmentations.

To evaluate the effectiveness of the different system components,
we have asked the users to estimate the risk of overlooking critical
segmentation errors. Therefore, they had to rate this risk in a post-
questionnaire, under four different assumptions: first, when using the
proposed system; second, when only using the user guidance; third,
when only using the uncertainty visualization; and fourth, when using
no user guidance and no uncertainty visualization. On a scale from 0
to 5, where 5 meant to miss critical errors for sure, all users have rated
the proposed system with a score smaller or equal to 2. In contrast, all
participants have assessed the absence of one of the components with
a score of 3 or higher, and four of them have rated the risk as 5 for a
system lacking both components. Finally, the participants were asked
to judge which system would allow them to obtain the most accurate
segmentation with unlimited amount of time. While three participants
rated both systems equally in that regard, the remaining users favored
the proposed system over the livewire approach. Being asked for the
reasons, most of them stated that though they consider it in principle
possible to create a perfect segmentation with the livewire technique,
the large amount of work required would inevitably cause a human to
make mistakes. Two users were generally skeptical about their ability
to precisely sketch complex contours and therefore favored the random
walker system, which only required them to place seeds close to a
boundary.

7.2 Result Comparison
We have applied our system to two application cases: Abdominal CT
and brain MRI data. Figure 7 shows how the system has been used to
segment a liver from an abdominal CT data set. As Figure 7 (a) shows,
initially a large number of uncertain regions has been detected. After
reducing the number of regions during approximately 5 minutes in 5
iterations, the results shown in Figure 7 (b) have been achieved.

The results in Figure 8 show the outcome when applying the system
to the T2 modality of the TumorSim MRI data set. Due to the high
contrast of the brain boundary in this modality, we were able to obtain

(a) (b)

Fig. 7. The proposed system applied to abdominal CT data. The im-
ages show the representations generated when segmenting the liver:
the table displaying the initial uncertain regions (a) and the final result
as shown by the system (b).

Fig. 8. The results of using the proposed system on simulated brain MRI
T2 data from the TumorSim database [30] (Jaccard: 0.993).

a high-quality segmentation (Jaccard: 0.993) after only three iterations
and 2 minutes. For a more challenging segmentation task, we applied
our technique to the T1 modality (Case 2) of the brain MRI data from
the 2010 Visualization Contest (see Figure 9), which also provides
ground truth for the brain as well as the tumor. It took us 15 minutes
to extract the brain (Jaccard: 0.953) and 5 minutes to segment the
tumor (Jaccard: 0.937).

7.3 Limitations
A major drawback of the proposed system is the limited applicability
of the random walker technique to thin structures. With the proposed
technique, we were able to easily segment longitudinal structures with
a certain thickness, such as the spinal cord in the MRI data sets or the
aorta in contrast-enhanced CT. However, segmenting the thin brain
vessels in the MRI scans was only possible by an excessive placement
of seeds. Nevertheless, according to our experience this is an inherent
limitation of many seed-based segmentation approaches.

8 CONCLUSIONS AND FUTURE WORK

In this paper we have presented an interactive system based on the
random walker technique which allows the user to generate reliable
segmentations by incorporating uncertainty information. The system
is based on a carefully designed iterative workflow, which exploits
the strengths of a computer system and the human user by establish-
ing a tightly coupled interaction between these two. Within the pro-
posed workflow, uncertain regions of the segmentation are automati-
cally detected and iteratively presented to the user for further refine-
ment. In contrast to previous techniques, uncertainty visualization is
interweaved within the whole workflow, and thus the user is always
aware of the reliability of the segmentation achieved so far. To be able
to communicate with the system, we support the user by allowing to
draw rough strokes and to use other more precise interaction widgets.
Based on the thus defined input, we directly parametrize the exploited
random walker segmentation algorithm, which in comparison to other
segmentation editing approaches has the advantage that we directly
work on the original data, instead of modifying the resulting segmen-
tation. Furthermore, we could show how to exploit the OpenCL pro-
gramming API and thus the vast processing power of modern GPUs in
order to realize a random walker implementation which is fast enough
to support the proposed workflow. To evaluate the usefulness of the
presented approaches, we have conducted user studies. The results of
these tests indicate that the presented system allows fast and accurate
segmentation by supporting user confidence regarding the results.

In the future we see several possibilities to conduct research for
extending the presented system. A stronger adaption of the random
walker technique itself to certain application cases might prove valu-



(a) (b) (c)

Fig. 9. Application of the proposed system to a T1 brain MRI scan
from the 2010 Visualization Contest. (a) and (b) show axial and coro-
nal slices, respectively, overlaid with the obtained brain segmentation
(yellow) as well as the ground truth (blue). (c) displays the result of the
tumor segmentation. Jaccard brain: 0.953, Jaccard tumor: 0.937.

able. For instance, it should be evaluated whether more advanced edge
weight definitions could improve the applicability of the system to the
segmentation of very thin structures. Furthermore, an in-depth anal-
ysis should be conducted in order to analyze which transfer function
spaces can be optimally combined with the presented approach. In
particular more sophisticated classifiers, such as for instance shape-
based [33] or occlusion-based classifiers [7], should be investigated.
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[32] A. Saad, T. Möller, and G. Hamarneh. Probexplorer: Uncertainty-guided
exploration and editing of probabilistic medical image segmentation.
Joint Eurographics/IEEE-VGTC Symp. on Visualization, 29(3), 2010.

[33] Y. Sato, C.-F. Westin, A. Bhalerao, S. Nakajima, N. Shiraga, S. Tamura,
and R. Kikinis. Tissue classification based on 3d local intensity structures
for volume rendering. IEEE TVCG, 6(2):160–180, 2000.

[34] J. A. Sethian. Level Set Methods and Fast Marching Methods: Evolv-
ing Interfaces in Computational Geometry, Fluid Mechanics, Computer
Vision, and Materials. Cambridge University Press, 2 edition, June 1999.

[35] D. W. Shattuck, G. Prasad, M. Mirza, K. L. Narr, and A. W. Toga. On-
line resource for validation of brain segmentation methods. NeuroImage,
45(2):431 – 439, 2009.

[36] A. Sherbondy, M. Houston, and S. Napel. Fast volume segmentation
with simultaneous visualization using programmable graphics hardware.
In IEEE Visualization, pages 171–176, 2003.

[37] B. Shneiderman. The eyes have it: A task by data type taxonomy for in-
formation visualizations. In IEEE Vis. Languages, pages 336–343, 1996.

[38] F.-Y. Tzeng, E. B. Lum, and K.-L. Ma. An intelligent system ap-
proach to higher-dimensional classification of volume data. IEEE TVCG,
11(3):273–284, 2005.

[39] C. Ware. Information Visualization: Perception for Design. Morgan
Kaufmann Publishers Inc., 2000.

[40] S. C. Zhu and A. Yuille. Region competition: Unifying snakes, region
growing, and bayes/mdl for multiband image segmentation. IEEE Trans.
on Pattern Analysis and Machine Intelligence, 18:884–900, 1996.


