
Context-Aware Volume Navigation
Stefan Diepenbrock∗ Timo Ropinski† Klaus Hinrichs‡

Visualization and Computer Graphics Research Group (VisCG), University of Münster

Figure 1: Three subsequent screenshots as made during the usage of our image-based volume navigation metaphor. Without changing the
navigation mode, the user is able to inspect the data set in a behavior similar to a trackball and can also fly through internal structures when a
collision detection is present. To support the spatial-awareness, appropriate thumbnails are displayed.

ABSTRACT

The trackball metaphor is exploited in many applications where vol-
umetric data needs to be explored. Although it provides an intu-
itive way to inspect the overall structure of objects of interest, an
in-detail inspection can be tedious - or when cavities occur even
impossible. Therefore we propose a context-aware navigation tech-
nique for the exploration of volumetric data. While navigation tech-
niques for polygonal data require information about the rendered
geometry, this strategy is not sufficient in the area of volume ren-
dering. Since rendering parameters, e.g., the transfer function, have
a strong influence on the visualized structures, they also affect the
features to be explored. To compensate for this effect we propose a
novel image-based navigation approach for volumetric data. While
being intuitive to use, the proposed technique allows the user to per-
form complex navigation tasks, in particular to get an overview as
well as to perform an in-detail inspection without any navigation
mode switches. The technique can be easily integrated into ray-
casting based volume renderers, needs no extra data structures and
is independent of the data set as well as the rendering parameters.
We will discuss the underlying concepts, explain how to enable the
navigation at interactive frame rates using OpenCL, and evaluate its
usability as well as its performance.

Keywords: Navigation, Volume rendering.

Index Terms: I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques;

1 INTRODUCTION

In recent years several algorithms have been proposed which ac-
celerate volume rendering and thus allow interactive frame rates.
As a consequence, the user cannot only change rendering param-
eters interactively, but is also able to navigate within volumetric

∗email: diepenbrock@uni-muenster.de
†email: ropinski@math.uni-muenster.de
‡email: khh@math.uni-muenster.de

data. Although navigation is essential in order to get a deeper un-
derstanding of the visualized data sets and the need for navigation
metaphors has been expressed [8], only little research has been ded-
icated to support this process within volume visualizations. In fact,
in most general-purpose volume visualization systems the trackball
metaphor is exploited [25], since it is easy to use and allows pre-
dictable navigation [1]. However, the trackball metaphor has sev-
eral drawbacks. First, navigation is based on the assumption that
the shape of the object to be explored is (approximately) spheri-
cal, which for instance makes it hard to explore longitudinal struc-
tures. Second, in-detail inspections are difficult, since the track-
ball is fixed to a given center. To deal with this shortcoming, it is
often possible to reposition the trackball center, which, however,
is tedious and in many cases counterintuitive. Third, the trackball
metaphor is not location-aware and does not take visibility into ac-
count. This is especially problematic when diving into the volume,
where it is hard to orient oneself, in particular in the absence of col-
lision detection. Therefore specialized navigation techniques have
been developed for application cases where these drawbacks are
limiting factors, e.g., when navigating in virtual colonoscopy [11].
In this paper, we propose a general purpose volume navigation
metaphor, which can be integrated into existing volume visualiza-
tion systems. Besides being intuitive to use, we believe that our
navigation metaphor brings forward visualization-based research,
since it does not have to be adapted for specific tasks and thus is
also applicable to emerging application scenarios.

A navigation task can be understood as a combination of ex-
plorative navigation and directed navigation [8]. While explorative
navigation is a rather undirected task, where the user interactively
inspects the data to gather knowledge, directed navigation supports
the user when intentionally visiting structures of interest. In most
application scenarios, both navigation types are desirable, and they
should therefore be integrated seamlessly. An often recurring pat-
tern, where a seamless integration is required, could be as follows.
The user first inspects the whole data set in an explorative manner
in order to get an overview and identify potential structures of in-
terest, to which s/he could navigate subsequently. This scenario is
also in line with the often cited overview, zoom, filter out, details-
on-demand concept, which has been introduced by Shneiderman to
describe a general visual analysis process [24]. By keeping these



considerations in mind and avoiding the mentioned drawbacks of
the trackball metaphor, we have developed an intuitive navigation
metaphor for volumetric data, which supports explorative as well as
directed navigation and is context-aware, thus allowing us to avoid
manual navigation mode switches and to provide contextual infor-
mation to the user. Several challenges occur when developing such
a context-aware navigation metaphor for volumetric data. Unlike in
scenes consisting of polygonal data, structures are not clearly de-
fined in volumetric data. The set of visible features can be changed
easily by adjusting rendering parameters such as the transfer func-
tion, clipping planes or when switching between different rendering
modes. Therefore existing navigation algorithms, which are based
on the assumption that scenes consist of a set of separable features,
e.g., McCrae et al. [18], cannot be applied when navigating volu-
metric data. As a consequence, precomputed data structures would
be needed for each possible set of rendering parameters which af-
fect the visualized features. Obviously, this is not a feasible option
because of the vast number of possibilities for rendering a data set.
An alternative would be to recompute the data structures for each
frame by considering the current set of rendering parameters. How-
ever, this would require a thorough data analysis and thus result in
a significant performance drop, especially for large volume data
sets. Therefore many of the specialized volume navigation tech-
niques discussed in Section 2 assume a preset of rendering parame-
ters and analyze the data set to be explored during a preprocessing
step. Hence navigating arbitrary data sets with arbitrary rendering
parameters is not supported.

In this paper we propose a novel image-based navigation
metaphor which meets all of the requirements discussed above. By
exploiting the processing power of current GPUs, we are able to an-
alyze the environment surrounding the camera in real-time and thus
to extract knowledge to support context-aware navigation, which
does not require any manual navigation mode switches. To achieve
this goal, we make the following contributions:

• An interactive image analysis technique based on spherical
volume ray-casting, which allows our navigation metaphor to
adapt to any visible structure and virtually arbitrary rendering
techniques.

• A seamless integration of strafing, panning, rotating and fly-
ing, which allows convenient proximal as well as distal object
inspection.

• Context-aware overlays which help the user to orient by pro-
viding an overview of the surrounding region.

2 RELATED WORK

Since our navigation technique is of interactive nature, we do not
cover automatic techniques in this section, and refer to the camera
survey by Christie and Olivier [8].

Volumetric navigation. Most navigation techniques for vol-
umetric data are specialized for navigation in tubular structures
to support various virtual endoscopy applications: Virtual an-
gioscopy [9], virtual colonoscopy [11], virtual sinus endoscopy [16]
and virtual bronchoscopy [2]. Most of these techniques attach the
virtual endoscope (i.e., the camera) to a precomputed or manually
determined centerline [21]. Hence these techniques cannot provide
an ad-hoc general-purpose navigation for arbitrary volumetric data.
Nevertheless, these applications and algorithms have to be consid-
ered when designing a flexible navigation system. Especially rel-
evant for our approach is the active virtual angioscopy navigation
technique proposed by Haigron et al. [9]. The authors avoid pre-
computation by using techniques from the field of mobile robot
navigation to automatically steer the camera through vascular struc-
tures. They analyze the depth buffer of the current view and direct
the camera towards the location of the maximal depth value. In
contrast to our technique the authors constrain their analysis to the

current field of view, which is sufficient for path planning in tubular
structures but cannot provide enough information for a more gen-
eral navigation metaphor. As a consequence, for instance no colli-
sion detection can be performed when moving sideways. Serlie et
al. [23] describe a virtual colonoscopy application that uses a cube
map to provide a full 360-degree view and speed up rendering. To
inspect volumetric data various approaches for optimal viewpoint
selection have been proposed. Kohlmann et al. [15] describe a tech-
nique called LiveSync to link 2D slices with volume renderings. In
contrast to our approach, LiveSync relies on 2D slice representa-
tions and does not support individual camera flights. Additionally,
several more automatic and thus less relevant view point determina-
tion approaches exist [27, 4, 26, 28]. These techniques can be used
as starting point for interaction exploration. Viola et al. [29] show
how to determine expressive views on predefined features, which
can be selected by the user during runtime.

Polygonal navigation. Besides these camera control techniques
specifically developed for volumetric data, several relevant tech-
niques for navigating polygonal data exist. Zeleznik and Fors-
berg [34] describe a technique called UniCam, which allows the
user to perform navigation by using a gesture alphabet. While this is
a promising concept, the authors report that users initially required
several hours of training to get used to the technique. Our tech-
nique is inspired by the HoverCam technique proposed by Khan et
al. [13]. To support proximal object inspection, a mouse drag is
translated into a translation of the camera position, followed by an
adjustment of the focus to the point closest to the camera. How-
ever, there are several differences between our technique and the
HoverCam. First, HoverCam requires an indexing structure called
sphere-tree which has to be extracted from the mesh the user wants
to inspect. Even the improved HoverCam metaphor [18], which
exploits rasterization in order to find the closest point to the cam-
era still requires the scene geometry to be accessible, in order to
avoid sudden switching of the camera focus between the objects of
the scene. In volume rendering this information is not accessible,
since the visualized structures change frequently, based on the cho-
sen transfer function or set clipping planes. Second, the improved
HoverCam metaphor requires the use of Proxy Objects of different
LoDs in order to speed up rendering, and it utilizes the surface nor-
mal at the cursor position. The latter may not be provided by all
volume renderers or may not even be clearly defined for arbitrary
volumetric data. Third, the HoverCam metaphor does not allow
adaptation of the up vector, since the application programmer has
to define its behavior for each object. This would be obviously not
feasible in volume rendering, where a data set contains a multitude
of different objects. Another technique developed for polygonal
data is the user designed navigation assistance as proposed by Burt-
nyk et al. [6, 7]. However, since it depends on predefined camera
positions and/or paths, it is not suitable for the initial exploration of
a volumetric data set, which we consider an important subtask of
scientific visualization. Additionally, the predefined camera posi-
tions and paths may convey only little information after the transfer
function has been changed, which is a common operation when ex-
ploring volume data. In general, 3D camera control as realized in
computer games has only limited potential in the area of volume
rendering. This is due to the assumption made by these techniques
that the camera is linked to a character which is controlled by grav-
ity and has a certain size. Hence we do not further consider these
techniques and refer to the survey by Christie and Olivier [8].

3 DESIGN CONSIDERATIONS

To realize an intuitive volume navigation metaphor, several de-
sign decisions have to be made. Since seven degrees of freedom
come into play, camera control in general is a highly complex
task. To allow full flexibility, the user must be able to change
the three Cartesian coordinates describing the camera’s position,



the three Euler angles describing its orientation, and its focal dis-
tance [8]. Obviously, setting all these parameters manually would
result in a cognitive overload. In contrast, since in many visual-
ization scenarios exploration plays an important role, navigation
constraints are only acceptable up to a certain degree. In partic-
ular, a fully automatic navigation system designed for a specific
approach would not be able to adapt to the user’s intentions. This
is a very important prerequisite, since the user might change her in-
tentions during a visual analysis process frequently [3]. Therefore
we have combined the strengths of an interactive approach with
those of a reactive approach leading to a semi-automatic naviga-
tion metaphor. Especially, when a navigation mode change is re-
quired this semi-automatic proceeding is beneficial, since such a
change should not be performed by using modifier keys or a graph-
ical user interface [20]. Accordingly, we have limited ourselves
to use only a standard wheel-mouse, which also eases porting the
technique to touch displays. To further improve the usability, we
have integrated well-established concepts from existing navigation
metaphors where applicable. We have included the three main
metaphors described by Ware and Osborne [31]: Camera-in-hand,
world-in-hand, and flying vehicle. While with the camera-in-hand
metaphor the camera is manipulated as if held in the user’s hand, the
input mapping is inverted when using the world-in-hand metaphor,
and thus the camera rotates around a location fixed in the world.
When using the flying vehicle metaphor, the camera can be steered
as when sitting in an airplane. By combining these metaphors in a
seamless manner, we are able to support proximal object inspection
and moving through cavities simultaneously, which we have identi-
fied as central tasks in scientific and medical volume visualization.

At this point we would like to emphasize the importance of the
flexibility achieved by the semi-automatic nature of our metaphor,
which makes it a general-purpose navigation metaphor. This flex-
ibility does not only allow to support distal and proximal object
inspection in a seamless manner, but it also supports the naviga-
tion of arbitrary data sets, which can be visualized with arbitrary
rendering techniques. This decoupling of the data and the renderer
is achieved by performing all computations in image space, and it
allows to apply the presented metaphor also within yet unknown
application scenarios. The benefit of this property becomes clear,
when considering other visualization systems. For instance, the vir-
tual endoscopy system proposed by Krüger et al. [16] is a good ex-
ample. To incorporate collision detection within their GPU-based
rendering technique, an extra copy of the data set and knowledge
about the renderer and its parameters are required on the CPU. Thus
an additional development effort became necessary for navigation
purposes only. By having a general purpose navigation metaphor,
this interdependency during the development of visualization and
navigation algorithms can be dissolved.

The example of the visualization system presented by Krüger
et al. [16], highlights also another requirement for navigation al-
gorithms: The need for collision detection and avoidance. This
is in line with the work by Wojciechowski, who also emphasizes
the importance of collision detection when dealing with naviga-
tion metaphors [32]. We believe that collision detection is of even
greater importance in the area of volume visualization, since the
volumetric nature of the data to be visualized affords the user to dive
into it. Allowing this behavior without providing collision avoid-
ance results in a high degree of occlusion, and thus the reduced
visibility quickly leads to disorientation. Integrating an occlusion
avoidance algorithm improves the situation, but might still lead to
orientation problems, for instance when traveling through complex
vessel trees. Hence a general-purpose volume navigation metaphor
should also provide some contextual information when diving into
the data and thus support location-awareness.

The image-based volume navigation metaphor proposed in this
paper meets the following design criteria, which we have developed

by having typical visualization scenarios in mind. It should:

• support semi-automatic camera control to allow flexible and
adaptive navigation (e.g., when the user’s intention, the data
or the rendering style change),

• be intuitive and easy to learn, i.e., avoid navigation mode
switches and integrate well-known concepts,

• allow distant and proximal object inspection, which are essen-
tial for most scientific visualization applications,

• integrate collision avoidance algorithms, and
• support location awareness.

Since most of these design criteria require some knowledge
about the current visualization, we refer to the presented navigation
metaphor as context-aware. To simplify the required knowledge
extraction process, we assume that the navigation intended by the
user depends on the visualized structures. For instance, if the user
excludes structures from the rendering, e.g., by adapting the trans-
fer function, s/he likely does not want to inspect these structures.
To comply with this assumption, we have to extract knowledge re-
garding the visualized structures. This can be done by consider-
ing the opacity of each voxel or sampling point in the same way
the renderer does it when rendering the data. However, a multi-
tude of parameters can affect the opacity at each sampling point:
Transfer functions, segmentation data, clipping, other modalities,
derived data. Additionally, transfer functions have to be differ-
entiated further since multiple types exist (e.g., 1D intensity, 2D
intensity-gradient, 2D LH [22], 3D [14]) and different segments
may also have different transfer functions assigned to them. Incor-
porating all these parameters within the navigation algorithm would
not be a trivial task, and if possible at all it would likely lead to code
duplications, which would need to be updated to incorporate addi-
tional data sets or formats, new transfer function types, additional
rendering parameters, etc. Even if the correct classification could
be calculated in the navigation system, the calculated information
needs to be stored (possibly at sub-voxel accuracy), processed and
regenerated upon changes of rendering parameters. We therefore
believe that choosing an image-based approach is not only an op-
tion to increase performance but imperative when implementing a
flexible volume navigation technique.

4 NAVIGATION ALGORITHM

In order to satisfy the design considerations introduced above, we
have realized the image-based navigation metaphor, which follows
the workflow depicted in Figure 2. To be able to achieve inter-
active frame rates, the workflow has been designed to work with
a GPU-based volume raycaster [17], although with slight modifi-
cations arbitrary renderers could be used. Based on the data set
and the current camera parameters, we generate two pairs of color-
coded entry- and exit-points: a conventional one, which is used
for the actual rendering, and a spherical one, which is used for the
image-based analysis. After the spherical entry- and exit-points
have been generated, the subsequent renderer passes its output to
the image analyzer. This image analyzer receives incoming mouse
events and extracts the required information from the spherical ren-
dering. Based on this information, the current camera is modified,
and when necessary, image overlays are generated in order to sup-
port spatial awareness. These images are then overlayed over the
standard rendering which is displayed on the screen.

By extracting knowledge about the regions surrounding the cur-
rent camera position, we are able to flexibly react to mouse input
to support the desired navigation tasks. In order to get a repre-
sentation of these regions, we render a 360◦ fisheye view from the
current camera position. All calculations necessary for the naviga-
tion are performed based on this image and the corresponding depth
values of the first hit points. By exploiting a spherical mapping, we



Figure 2: The workflow of our navigation system, integrated into a
volume rendering system. The same raycaster is executed twice,
one rendering is displayed on the canvas while the other is analyzed
to map the users input to camera movement.

are able to get the information for all directions in only one render-
ing pass instead of six passes required for an alternative cube map
approach. This is achieved by mapping each texel position of the
entry- and exit-textures to θ ∈ [−π,π] and φ ∈ [− π

2 ,
π

2 ], which are
translated to cartesian coordinates. The resulting positions, which
are shown as color coded images in Figure 3 (left), are used to set
up the rays for which an intersection test with the proxy geometry
is performed. To simplify this process, we assume a convex proxy
geometry, which should be no real limitation for most renderers and
applications. We have to consider two different cases, based on the
fact if the camera lies inside or outside the volume. In the first case
when the camera is located inside the volume, the entry points are
simply given by the camera position, and the exit points are the
intersection points with the proxy geometry (see Figure 3 (right)).
In the second case when the camera is located outside the volume,
the entry and exit points are set to the first and second intersection
points, respectively, while the volume is visible.

This proceeding has the advantage that we can use a standard
volume raycaster in order to process these entry- and exit-points.
Hence, out technique is independent of the volume ray-caster as
long as it uses Krüger and Westermann style entry- and exit-points
and writes first hit point depth values. Our approach is also inde-
pendent of the rendering parameters and the data sets. For the actual

Figure 3: Spherical entry-exit points outside and inside the proxy
geometry. The entry points for raycasting from inside the proxy ge-
ometry are constant because the rays start at the camera position.

navigation we analyze the output, i.e., the color and depth image, of
a raycasting performed by processing these entry- and exit-points.
The depth image will be used to modulate flight speed and perform
collision detection while the color image is used to generate image
overlays providing contextual information.

4.1 Image-Based Volume Navigation
Since one of our design goals was to exploit well-established navi-
gation concepts, we have initially used the generated image data to
implement the original HoverCam algorithm [13]. However, pre-
liminary results have indicated that this approach suffers from the
fact that the HoverCam metaphor always focuses onto the closest
point in a certain search window. This often moves the focus in
a direction not exactly matching the mouse movement, which is
a known problem of the HoverCam metaphor that results in de-
creased productivity [5]. Hence we have developed our own con-
cepts, which mimic the behavior of the trackball metaphor, when
rotations are desired.

When inspecting an object the camera either rotates around the
object (rotating, world-in-hand), moves along the object (strafing)
or it rotates around the current position (panning, camera-in-hand)
(see Figure 4). While a common solution to enable the user to per-
form all these three camera movements is the use of modifier keys,
our technique instead solves this problem by being context-aware.

We would like to illustrate our approach by explaining two sim-
ple cases where the mapping between mouse input and camera re-
action is straightforward: The first case is that of a camera po-
sitioned in front of a sphere, with the look-at vector pointing di-
rectly towards the sphere’s center. In this case, the expected camera
movement resulting from a mouse drag should be a rotation in the
corresponding direction around the center of the sphere (see Fig-
ure 5 (a)). In the second considered case a camera is located at
the center of a hollow sphere. When performing the same mouse
interaction, the user would expect a rotation around the camera
position (see Figure 5 (b)). Thus, in the first case the user per-
ceives the camera rotating around the sphere, i.e., the world-in-hand
metaphor, whereas in the second case s/he perceives the sphere ro-
tating around the camera or the camera panning inside the sphere,
i.e., the camera-in-hand metaphor.

To distinguish between these two basic cases, it is essential to
have knowledge about the scene. Since the goal was to realize an
image-based technique, the spherical depth image is our only infor-
mation regarding the scene. Thus, we need to analyze it based on
the current mouse input. We compare the depth value at the current
screen center and at the current screen center plus the mouse off-
set. If the depth value in the center is smaller than the other one,
we assume that the user intends a rotation, and otherwise a panning
camera movement (recall Figure 5).

While panning requires no additional knowledge, for the rotating
camera movement a center of rotation is required. Since we do not

Figure 4: We distinguish between three basic camera movements
when dragging the mouse: Rotating, Strafing and Panning. By ana-
lyzing the depth image we dynamically decide which movement the
user wants to perform.



have such high level information in the depth image, we define the
first hit point along the view vector as the center of rotation. While
this proceeding does not explicitly integrate strafing, this behavior
is inherently given. When for instance applying the presented ap-
proach in front of a plain wall, strafing behavior is achieved. In this
case constant mouse drags along one direction would be mapped
to rapid switches between small rotations and panning. The over-
all movement is a shaky strafing along the wall (see Figure 6 (a)).
The fact that the combination of rotating and panning (roughly) re-
sults in strafing can be integrated into the algorithm to smooth the
camera movement: Depending on the depth value difference, we in-
terpolate rotating (movement of the camera position) with panning
(movement of the focus), resulting in movement of camera position
as well as focus, i.e., strafing. To correctly interpolate these two
alternatives independent of the distance to the object, we calculate
the surface angle α from the difference of depth values in relation
to the depth. Based on this angle α the new camera position and
focus are determined, α is depicted by the yellow arcs in Figure 4.
If α is large (> 100◦) the camera is rotated around the focus point.
If α , on the other hand, is small (< 80◦) the camera rotates around
its current position, which results in a panning operation. For inter-
mediate values both positions are interpolated, resulting in a trans-
lation along the surface, i.e., a strafing operation. However, this
approximation of strafing will not maintain the initial distance be-
tween the camera and the object, as illustrated in Figure 6 (b). This
can be fixed easily by setting the distance to the initial value.

In order to account for noise and to be able to move across
smaller gaps, instead of just reading the depth values at two dis-
tinct locations, we analyze all depth values lying in-between these
locations. By applying a Gaussian filter during this process, we are
able to achieve smooth camera transitions. Further smoothing is ob-
tained by the fact that the spherical depth image used for analysis
has a limited resolution. This allows to integrate a LoD naviga-
tion approach, where object clusters are inherently detected. This
works, since due to the fixed image resolution, the camera distance
directly influences the clustering. Objects further away are pro-
jected on fewer pixels and thus small distances between them may
dissolve. Thus it becomes possible to rotate around the whole clus-
ter, when further away, while rotating around the individual objects
when nearby.

Because rotations may result in an altered up vector, our tech-
nique in contrast to the HoverCam metaphor [18] allows to adapt
the up vector interactively. This can be done by dragging with the
mouse at the corners of the screen in order to initiate an appropriate
rotation.

Since the used collision detection is based on well-known poten-
tial field approaches, we do not describe it within this Section, and
provide a brief overview in Subsection 4.3.

4.2 Supporting Location Awareness
To support the user during the navigation, especially when diving
into the volume, we augment the rendering by adding appropriate

Figure 5: Expected camera movement for two simple cases: Rotating
(a) and Panning (b).

Figure 6: Strafing as combination of rotating and panning, with (a)
and without (b) distance adjustment.

overlays.

4.2.1 Contextual Preview Images

To avoid disorientation, we add small preview windows that show
parts of the surroundings currently not in the field of view (see Fig-
ure 7). These previews are generated by reprojecting the corre-
sponding parts from the spherical rendering. We select the parts
positioned on the left, the right, above, below and behind the cam-
era. The latter case can be used for instance to realize a rear mirror
metaphor. To render the previews, a view frustum is constructed,
and rays are cast through all pixels into the spherical image sur-
rounding the camera. The ray direction is then converted to spher-
ical coordinates and used to look up the texels in the spherical im-
age. Although one might suspect to see distortions in the top and
bottom previews this is not the case as shown in Figure 8. Because
this is essentially just an image processing and not a new volume
rendering pass, the previews can be generated very efficiently.

4.2.2 Overview Map

While the contextual preview images help to get information re-
garding the surrounding, they provide only little support for es-
timating the own location. Thus, we also provide a map over-
lay, which shows the current position from a bird’s-eye perspective
when diving into the volume. This metaphor is often used in map
applications to support spatial awareness. The map is rendered in
an additional pass, where we can use the existing volume raycaster
again but with a clipped proxy geometry and a different perspective.
To define the parts of the volume visible in this overview map, we
exploit the plane defined by the camera position and the up vector to
clip the proxy geometry and render it from the bird’s-eye perspec-
tive, i.e., located above and behind the main camera. An example
of this overview map is shown in Figure 7. As it can be seen, we
have also added the position and the field of view of the camera to
support the orientation.

4.2.3 Context-aware Overlays

Both the preview images and the overlay map can be helpful to
the user in certain situations but may only consume valuable screen

Figure 7: Based on saliency and the overall occlusion our technique
overlays a rear preview and an overview map, respectively.



space in other situations. We therefore propose to make these over-
lays context-aware and use the information stored in the spherical
image to dynamically decide which navigation overlays to display.

Saliency-based previews. Besides taking up screen space the
content of the previews is not always necessarily helpful to the user
- they might not even contain parts of the data set. The first heuristic
we implemented just determined to what percentage each preview is
filled. Although this correctly disabled most previews when explor-
ing a data set from the outside, all five previews were active when
flying for instance through a vessel. Most of the previews were not
improving the exploration but simply showing a vessel wall of uni-
form color. Therefore we employ the notion of visual saliency for
color images [12] and depth images [19] to decide the relevance of
each preview at the current position in the data set. This heuris-
tic of course assumes that the user has configured the renderer in a
way to discriminate features of interest. The more heterogeneous
a preview is, the more interesting it is assumed to be. In a similar
way, the depth image is considered interesting if the values are non-
uniform. Hence previews appear for instance when the user flies by
a branch when inside a vessel. If the overall saliency of a preview
image exceeds the specified importance threshold, the preview is
considered helpful to the user and therefore worth the screen space.
Because the rear preview is particularly useful and can be used to
reverse the camera direction with a double click, it has a lowered
threshold and is therefore visible more often.

Occlusion-based overview. While it makes sense to overlay the
map when exploring cavities, it is not very helpful when inspect-
ing an object from the outside. We have therefore implemented
a heuristic to decide when the camera is inside a cavity and only
then display the map. We consider all preview images except the
one representing the front view. If more than 20% of these preview
images are occupied with data lying within a closeness threshold,
the camera is considered to be within a cavity and thus the overview
map is displayed. In our tests this heuristic always led to the desired
effect.

4.3 Integrated Camera Control
To unleash the full potential of our context-aware navigation tech-
nique, we have integrated it with other camera control metaphors.
To combine our approach with a convenient traveling metaphor, we
have implemented the flying vehicle metaphor. Thus, by pressing
and holding the left mouse button for a short amount of time with-
out moving it the user can start flying through the data set. During
this flying, the direction is continuously modified by the offset be-
tween the mouse cursor and the center of the screen. The traveling
speed is calculated based on the distance to the closest point in a
region around the center of the screen. This proceeding is suffi-
cient, since a user evaluation conducted by Ware and Fleet [30] has
shown that averaging the depth values had no advantage over just
using the closest depth value, when modulating flight velocity based
on depth values. To prevent occlusions, we use a force field tech-

Figure 8: The previews are generated from the spherical image (left)
without performing additional raycasting passes. The bottom preview
(right) is reconstructed from the lower part of the spherical image
without distortions.

Was the technique easy to understand?
Was the technique easy to use?

Do you feel like the time spent learning the technique was justified?
Would you switch to the navigation system for specific datasets?

Would you use the technique as default navigation metaphor?
Rotating and moving along surfaces

Map
Previews

History
Flying

Doubleclicking to focus
Combination of all features

0 1 2 3 4 5 6

Figure 9: The results of the questionnaire of the conducted user
study, which we have evaluated on a seven point Likert scale. Ques-
tions 6-12 (red) are about specific aspects of our technique and the
participants were asked if they percieved these as useful or good
solutions to the problem.

nique. In particular, we have implemented the force field approach
proposed by Xiao and Hubbold [33] to prevent collisions while still
allowing smooth flying. To allow mostly unrestricted movement, in
our realization the camera is not constantly moved towards the cen-
ter of the cavity, as it is done when applying navigation in virtual
colonoscopy [11].

To support zooming, the user can move the camera forward and
backward by using the mousewheel. The speed is again determined
by the closest point, but no force field is used to provide a real zoom
instead of an additional method to fly, which is consistent with the
standard trackball. When moving backwards the closest point on
the backside is used to check for collisions.

By double clicking the camera rotates to focus the point at the
cursor position, which can be used to switch between separate ob-
jects. It should be pointed out that while it is of course possible to
integrate this operation into a normal trackball navigation it would
not be very helpful to the user. In contrast to our technique, which
constantly updates the center of rotation, the trackball focus would
stay fixed at the clicked point on the surface of the object, and thus
the object would return around this point.

Finally, we have added a history function, which allows the user
to fly back on the previous navigation path. Instead of adding an
option to fly backwards or automatically push the camera out of
an object, as proposed by McCrae et al. [18], we allow the user
to rewind to previous positions by pressing the right mouse button.
We believe that this solution, which has some similarity to forward
and backward movement on a path generated for virtual endoscopy
applications [10], is more robust and less confusing for the user.

5 EVALUATION

5.1 Usability
Our usability evaluation is based on the results of a user study we
performed. Additionally, we present our findings from an interview
with a medical expert.

5.1.1 User Study
With a lot of mainstream applications like Google Earth using the
trackball metaphor we assume that the vast majority of users, espe-
cially those that might be interested in navigating volumetric data,
are familiar with this navigation approach. We therefore designed
our study to investigate how users perceive the implemented nav-
igation system and if they would be interested in using it - as an
alternative to the trackball or even more ambitious as the default
navigation technique. Another important aspect of our study was to
find out how difficult it is for the average user to learn our technique
and whether the user thought the time spent to learn the technique
was well spent.

11 male and 2 female subjects participated in the study. Most
subjects were students or members of the departments of computer
science or medicine. All subjects were first-time users of our navi-
gation technique. The total time per subject including instructions,



training, experiment, breaks and debriefing took approximately five
to ten minutes. The study itself consisted of a timed navigation
task in which we compared our technique with the trackball (two-
axis valuator) and a learning task in which the users had to navigate
(roughly) as shown in a tutorial video recorded using our technique.
The second task was designed to include all aspects of our naviga-
tion system. A questionnaire based on a seven point Likert scale
has been used to evaluate the users experience.

The users were split up into two groups: The trackball group first
performed the navigation task, was then instructed in our technique
and performed the learning task. The other group was instructed
how to use our technique, then performed the task to learn it, and
performed the navigation task using our technique. Since the track-
ball is not designed to navigate through cavities, we compared only
the ability to navigate around objects from the outside in the timed
navigation task. The users had to read three letters placed on a
sphere in a synthetic data set consisting of a set of objects. All
users started at the same position, had to zoom in on the sphere and
then navigate around it to read the letters.

The learning task was performed using the Baby data set (a CT
scan of a head). The users were shown the following navigation
subtasks in a video and had to replicate them:

1. Navigate around the head.
2. Use the transfer function to make skin and brain transparent

and navigate inside the skull.
3. Use the rewind functionality to get back to the starting posi-

tion.
4. Focus the tube, inspect it from the outside (rotate around it)

and fly through it.
5. Use the rear preview to focus on the data set after leaving the

tube at the neck.

Figure 9 shows the results of the questionnaire. For the users
it was generally easy to learn the technique in a few minutes, and
they perceived the navigation metaphor as helpful. Many even fully
agreed that they would like to use the metaphor for special data sets.
However, the rather ambitious question, if the users would in gen-
eral switch to the metaphor received only little positive resonance.
We believe that this partially results from the fact that the users had
some previous experience with the trackball metaphor. As seen in
Figure 9, all additional navigation techniques were perceived very
well. Besides these results, we found that users with the most expe-
rience using the trackball had greater difficulties learning the new
technique. While the users were in general faster, when using our
metaphor, this fact has to be evaluated carefully. However, since we
only performed one test and just have evaluated 13 users, this may
not be statistically significant.

5.1.2 Evaluation with Domain Experts
To get an expert opinion we interviewed a medical doctor and two
medical PhD students, all specialized in cardiovascular medicine.
During the interviews, we have demonstrated our technique by
loading several different data sets and handed over control to the
medical experts. The participating medical experts had less expe-
rience with the trackball metaphor and 3D graphics in general than
the lay users participating in our study, because they almost exclu-
sively work with slice viewers. Thus, they had more problems per-
forming 3D navigation tasks, also when using the standard trackball
metaphor.

However, when using our technique, they were in general very
positive and have identified features being of potential interest when
inspecting 3D medical data. Especially the possibility of moving
along surfaces and traveling through the data set without experi-
encing collisions was appreciated. When testing the navigation
metaphor with their research data, which consists of complex ves-
sel trees as shown in Figure 1, the navigation technique worked as

they have expected for flying and rotations. While they also liked
the option to strafe along a surface, the subjects expressed the wish
to be also able to look ahead in the direction of movement instead
of just towards the surface. Furthermore, they stated that medi-
cal doctors seldom need to inspect structures from the outside, and
therefore the demand for trackball-like behavior was rather limited.
As exceptions to this rule the inspection of bones, especially the
pelvis with rather large and flat bone structures and the shoulder
joint were mentioned.

5.2 Performance
The proposed system has been implemented in C++, OpenGL,
GLSL and OpenCL. To minimize downloads from the GPU and
speed up computation we exploited OpenCLs ability to interoper-
ate with OpenGL and perform calculations on the spherical image
directly on the GPU. Thus, we were able to interweave the visu-
alization and navigation technique in a manner that everything is
done in-situ. This allows interactive frame rates, which would not
have been possible with CPU realizations. In our implementation,
we have parallelized the force field approach, and only a few floats
need to be read back from the GPU. Finding the closest point in
a direction and reading a line from the depth image is accelerated
in a similar fashion. Reading only some scalar results or parts of
a texture back from the GPU would have been more complicated
using OpenGL exclusively.

The most expensive operations are obviously the additional ren-
dering passes for the spherical view and the map. The spherical
view is rendered at a relatively low resolution (we found 256×256
to be sufficient for all tested datasets) while the size of the map
is a (configurable) fraction of the main canvas size. For a typical
canvas resolution of 1024×1024 the rendering time for one frame
increased by 5-10 % for each of these renderings. We found the
impact of the actual calculations for the navigation to be negligible.
Therefore, if an existing rendering system is able to deliver inter-
active performance this would very likely not be changed by the
integration of our technique.

5.3 Limitations
Although we developed our technique as general as possible we
are aware that it will probably not be ideal for all data sets. Large
semi-transparent regions (e.g., in data sets resulting from numer-
ical simulations) cannot be explored from the inside because the
spherical image provides no usable depth values in this case. If
these regions contain less transparent inner parts along which the
user wants to navigate, the transfer function could automatically
be adapted to make almost transparent voxels entirely transparent.
This transfer function would then be used to render the spherical
image. Datasets where the objects of interest cannot be separated
from the background visually (e.g., due to a low signal to noise
ratio) can also be problematic. New rendering techniques that gen-
erate clearer images for these datasets can however be integrated
easily and thus improve the navigation.

A general problem with semi-automatic navigation methods is
the possible conflict with the user’s intention. This can be overcome
by adding possilities (e.g., modifier keys) to force the navigation
technique into a specific mode. Keeping in mind touchscreens as
possible application we did not integrate these.

The continous switching between different navigation metaphors
can produce occasional jittering. We have tested different ap-
proaches to eliminate this jittering. Using a hysteresis to limit
switching between the different interaction metaphors resulted in
increased jittering. For instance, when rotating the camera around
a spherical object, the object would be moved out of focus which
would then be corrected by rotating the camera. This results in a
unsteady movement of the sphere on screen, which is perceived as
irritating. Approximating the center of the object in focus from the



depth image and rotating around it resulted in a smoother, more
indirect movement around simpler objects (spheres, cubes), but
turned out to be too unreliable for complex objects. If the centerline
or medial surface for an object of interest is static and available it
should obviously be used for navigation.

6 CONCLUSIONS

In this paper we have introduced a general-purpose volume navi-
gation metaphor. By exploiting image analysis of a spherical pro-
jection of the camera’s environment, we are able to simulate dif-
ferent concepts known from well-established navigation metaphors
without requiring navigation mode switches. We have shown how
to support rotating, strafing and panning of the camera by exploit-
ing an image-based analysis of its environment. Thus, we enable
proximal as well as distal object inspection, which is an impor-
tant combination in many scientific visualization applications. Fur-
thermore, we have shown how to exploit the knowledge about the
camera’s context in order to generate preview images as well as
overview maps. The latter is of particular importance in the area
of volume visualization, since the volumetric nature of the data af-
fords to dive into it, which easily leads to disorientation. Thus, our
technique is able to support location-awareness. Since all required
analysis tasks are performed based on the rendered image, the pre-
sented metaphor can be considered as a general-purpose metaphor,
such that it can be used with most visualization techniques and data
sets. To our knowledge the presented approach is the first general-
purpose volume navigation metaphor. To evaluate the quality of the
presented navigation approach, we have performed a usability eval-
uation and have conducted interviews with medical experts. Since
we obtained positive feedback from these tests, we are confident
that the presented navigation metaphor can fill the gap between gen-
eral purpose volume visualization systems using classic navigation
metaphors and systems developed for specific application cases that
exploit specialized navigation techniques. In the future it would be
worth to investigate how to address the limitations discussed in Sec-
tion 5.3.

ACKNOWLEDGEMENTS

This work was partly supported by grants from the Deutsche
Forschungsgemeinschaft (DFG), SFB 656 MoBil Münster, Ger-
many (project Z1). The presented concepts have been integrated
into the Voreen volume rendering engine (www.voreen.org).

REFERENCES

[1] R. Bade, F. Ritter, and B. Preim. Usability comparison of mouse-based
interaction techniques for predictable 3d rotation. In Smart Graphics,
pages 138–150, 2005.

[2] D. Bartz, D. Mayer, J. Fischer, S. Ley, A. d. Rio, S. Thust, C. P.
Heussel, H.-U. Kauczor, and W. Strasser. Hybrid segmentation and
exploration of the human lungs. In IEEE Visualization, pages 177–
184, 2003.

[3] S. Beckhaus, F. Ritter, and T. Strothotte. Cubicalpath - dynamic po-
tential fields for guided exploration in virtual environments. In Pacific
Graphics, page 387, 2000.

[4] U. D. Bordoloi and H.-W. Shen. View selection for volume rendering.
IEEE Visualization, 0:62, 2005.

[5] E. G. Britton, J. S. Lipscomb, and M. E. Pique. Making nested rota-
tions convenient for the user. SIGGRAPH, 12(3):222–227, 1978.

[6] N. Burtnyk, A. Khan, G. Fitzmaurice, R. Balakrishnan, and G. Kurten-
bach. StyleCam: interactive stylized 3D navigation using integrated
spatial & temporal controls. In ACM UIST, pages 101–110, 2002.

[7] N. Burtnyk, A. Khan, G. Fitzmaurice, and G. Kurtenbach. Showmo-
tion: camera motion based 3D design review. In ACM I3D, pages
167–174, 2006.

[8] M. Christie, P. Olivier, and J. Normand. Camera control in computer
graphics. In Computer Graphics Forum, volume 27, pages 2197–
2218, 2008.

[9] P. Haigron, M. Bellemare, O. Acosta, C. Göksu, C. Kulik, K. Rioual,
and A. Lucas. Depth-map-based scene analysis for active naviga-
tion in virtual angioscopy. IEEE Transactions on Medical Imaging,
23(11):1380, 2004.

[10] T. He, L. Hong, D. Chen, and Z. Liang. Reliable path for virtual
endoscopy: ensuring complete examination of human organs. IEEE
TVCG, pages 333–342, 2001.

[11] L. Hong, S. Muraki, A. Kaufman, D. Bartz, and T. He. Virtual voyage:
interactive navigation in the human colon. In SIGGRAPH, pages 27–
34, 1997.

[12] L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual
attention for rapid scene analysis. IEEE TPAMI, 20(11):1254–1259,
1998.

[13] A. Khan, B. Komalo, J. Stam, G. Fitzmaurice, and G. Kurtenbach.
HoverCam: interactive 3D navigation for proximal object inspection.
In ACM I3D, page 80, 2005.

[14] J. Kniss, G. Kindlmann, and C. Hansen. Multidimensional transfer
functions for interactive volume rendering. IEEE TVCG, pages 270–
285, 2002.

[15] P. Kohlmann, S. Bruckner, and A. Kanitsar. LiveSync: Deformed
viewing spheres for knowledge-based navigation. IEEE TVCG,
13(6):1544–1551, 2007.

[16] A. Krueger, C. Kubisch, B. Preim, and G. Strauss. Sinus endoscopy -
application of advanced gpu volume rendering for virtual endoscopy.
IEEE TVCG, 14:1491–1498, 2008.

[17] J. Krüger and R. Westermann. Acceleration techniques for GPU-based
volume rendering. IEEE Visualization, pages 287–292, 2003.

[18] J. McCrae, I. Mordatch, M. Glueck, and A. Khan. Multiscale 3D
navigation. In ACM I3D, pages 7–14, 2009.

[19] N. Ouerhani and H. Hgli. Computing visual attention from scene
depth. Pattern Recognition, 1:1375, 2000.

[20] J. Raskin. The humane interface: new directions for designing inter-
active systems. ACM Press/Addison-Wesley, 2000.

[21] T. Schlathoelter, C. Lorenz, I. Carlsen, S. Renisch, and T. Deschamps.
Simultaneous segmentation and tree reconstruction of the airways for
virtual bronchoscopy. In SPIE, volume 4684, pages 103–113, 2002.

[22] P. Sereda, A. Bartroli, I. Serlie, and F. Gerritsen. Visualization of
boundaries in volumetric data sets using LH histograms. IEEE TVCG,
12(2):208–218, 2006.

[23] I. Serlie, F. Vos, R. Van Gelder, J. Stoker, R. Truyen, F. Gerritsen,
Y. Nio, and F. Post. Improved visualization in virtual colonoscopy us-
ing image-based rendering. In IEEE/EG Eurovis, page 137. Springer
Verlag Wien, 2001.

[24] B. Shneiderman. The eyes have it: A task by data type taxonomy for
information visualizations. In IEEE Symposium on Visual Languages,
page 336, 1996.

[25] K. Shoemake. Arcball: a user interface for specifying three-
dimensional orientation using a mouse. In Graphics Interface, pages
151–156, 1992.

[26] S. Takahashi, I. Fujishiro, Y. Takeshima, and T. Nishita. A feature-
driven approach to locating optimal viewpoints for volume visualiza-
tion. IEEE Visualization, pages 495–502, 2005.

[27] P. Vázquez, M. Feixas, M. Sbert, and W. Heidrich. Viewpoint selec-
tion using viewpoint entropy. In Vision Modeling and Visualization,
pages 273–280, 2001.

[28] P. Vázquez, E. Monclús, and I. Navazo. Representative views and
paths for volume models. In Smart Graphics, pages 106–117, 2008.

[29] I. Viola, M. Feixas, M. Sbert, and M. E. Groller. Importance-driven
focus of attention. IEEE TVCG, 12(5):933–940, 2006.

[30] C. Ware and D. Fleet. Context sensitive flying interface. In ACM I3D,
page 127, 1997.

[31] C. Ware and S. Osborne. Exploration and virtual camera control in
virtual three dimensional environments. In ACM I3D, pages 175–183,
1990.

[32] A. Wojciechowski. Potential field based camera collisions detection
in a static 3d environment. MG&V, 15(3):665–672, 2006.

[33] D. Xiao and R. Hubbold. Navigation guided by artificial force fields.
In ACM CHI, page 186, 1998.

[34] R. Zeleznik and A. Forsberg. UniCam2D gestural camera controls for
3D environments. In ACM I3D, page 173, 1999.


