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Abstract
Vessel segmentation is an important prerequisite for many medical applications. While automatic vessel segmenta-
tion is an active field of research, interaction and visualization techniques for semi-automatic solutions have gotten
far less attention. Nevertheless, since automatic techniques do not generally achieve perfect results, interaction is
necessary. Especially for tasks that require an in-detail inspection or analysis of the shape of vascular structures
precise segmentations are essential. However, in many cases these can only be generated by incorporating expert
knowledge. In this paper we propose a visual vessel segmentation system that allows the user to interactively gen-
erate vessel segmentations. Therefore, we employ multiple linked views which allow to assess different aspects of
the segmentation and depict its different quality metrics. Based on these quality metrics, the user is guided, can
assess the segmentation quality in detail and modify the segmentation accordingly. One common modification is
the editing of branches, for which we propose a semi-automatic sketch-based interaction metaphor. Additionally,
the user can also influence the shape of the vessel wall or the centerline through sketching. To assess the value of
our system we discuss feedback from medical experts and have performed a thorough evaluation.

1 Introduction

Vessel segmentation is an important preprocessing step
in many medical applications, such as surgery planning, re-
search [RHR∗] or medical diagnosis [CCA∗05]. A crisp 3D
visualization of vasculature can only be achieved when us-
ing high doses of contrast agent or long scanning procedures,
which is often not possible or desirable. While line detec-
tion filters [SNS∗98] have been used to improve the visu-
alization of vessel structures, they fail to detect deformed
vessels which are often the parts most relevant for the user.
Therefore, segmentation can still be considered as the gold
standard for extracting vasculature prior to visualization as
well as for performing a quantitative vessel analysis. The
automatic segmentation of vascular structures has been an
active field of research for over a decade. However, since a
variety of factors make it such a challenging task, no fully
automatic solutions exist. Lessage et al. [LABFL09] even
state that aiming for a generic, flawless segmentation frame-
work is probably illusory. They argue that a wide variability
in shape, possibly caused by aneurysms, stenoses, calcifica-
tions or stents, together with the typical challenges in medi-
cal image segmentation, i. e., low resolution, noise, artifacts
and contrast, make vessel segmentation such a tough prob-
lem. Nevertheless, segmentations for these difficult cases are
still needed. While there are semi-automatic solutions (see
Section 2) that aim to integrate the strengths of interaction
and automation, we feel these do not fully utilize the power
of visualization, which could make them potentially more
intuitive and thus usable. Furthermore, some of these sys-
tems approximate the cross section using circles or ellipsoids
(therefore not giving full control to the user) or require spe-

cialized hardware (see Section 2). In this paper we propose a
visual vessel segmentation system that allows the user to edit
a vessel’s centerline and its surface in several linked views.
These interactions are part of a two step workflow, where
the user first focusses on the centerline, which is the basis
for the subsequent segmentation. After an initial centerline
has been defined through sketching, it can be corrected and
its quality can be assessed before an initial segmentation is
computed. At the same time, the system has been designed to
be able to generate surface segmentations of high precision,
which is required in many application cases, such as for in-
stance vessel quantification as well as blood flow simulation
based on real-world data [CCA∗05]. In our system, the user
is also able to correct the surface segmentation by sketching.
To limit user interaction and therefore promote efficiency we
employ uncertainty visualization as a tool to convey the reli-
ability of the intermediate results to the user and intuitively
guide the input to introduce certainty in the system.
To the best of our knowledge this is the first semi-automatic
vessel segmentation tool that gives the user full control over
centerline and vessel surface. We propose new methods for
visualization, interaction and segmentation to facilitate high
efficiency and precision:

• To maximize relevant information for the user in one view
without requiring further configuration of the rendering,
we developed a new type of Curved Planar Reformation
(CPR), the Importance Driven CPR.

• To add new centerline segments, we propose a novel
sketch based interaction technique, which resolves ambi-
guities and inaccuracies in the user input.

• We propose a seed volume generation technique to reduce
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computation and user interaction time required to perform
the actual vessel segmentation.

2 Related Work

Since the literature on vessel segmentation is too ex-
tensive to discuss in its entirety we are focussing on in-
teractive techniques and discuss the main classes of algo-
rithms to motivate the choices we made while designing our
system. We refer the reader to the survey by Kirbas and
Quek [KQ04] for an overview of additionally existing tech-
niques. Olabarriaga and Smeulders point out in their sur-
vey on interaction in medical image segmentation, that fully
automatic methods sometimes fail and require intervention
by the user [OS01]. They also emphasize that interaction is
usually only marginally discussed in segmentations papers,
which is a tendency still valid today. However, there are ex-
ceptions which are the most relevant techniques for our ap-
proach. Direct drag-and-drop modifications of the segmen-
tation have been proposed by Timinger et al. [TPvB∗03],
which have also been incorporated into our system. Kang
et al. [KEK04] discuss editing tools for medical image seg-
mentation in general. Their approach allows to modify seg-
mentation masks, but does not allow an iterative processing
such that the modifications are fed back to the segmenta-
tion algorithm. We therefore consider this approach a post-
processing of the segmentation instead of a true integration
of interaction. Serra et al. [SHCP97] discuss a system in
which the user can specify the centerline by manually trac-
ing it with a 3D input device. The extent of the vessel can
then be modelled as a tube by manually adjusting the diam-
eter for each node of the centerline. Owada et al. present
several approaches for sketch-based interactive segmenta-
tion [ONI08]. Similar to our vessel sketching approach, their
techniques make use of the sweep surface, an extension of
the user sketch into the screen. From the sketched line two
adjacent strokes are automatically generated, which are used
to compute the segmentation of the desired structures. How-
ever, their axis-tracing tool requires a clear view of the struc-
ture to segment and follows an indirect approach to fit into
the Volume Catcher pipeline [ONI05]. Abeysinghe and Ju
discuss a tool to interactively determine skeletons of inten-
sity volumes by clicking and painting on a 3D isosurface ren-
dering [AJ09]. The proposed technique therefore first pre-
computes a skeleton of an intensity volume and then uses
the user input to correct topology errors. However, the re-
sulting skeletons shown in the paper do not look smooth and
an isosurface rendering could be problematic for data sets
with a low signal to noise ratio. Kohlmann et al. propose
a contextual picking approach based on ray profiles which
is able to select structures after the user has clicked on a
3D rendering [KBKG09]. The authors also propose inter-
active calculation of centerlines as application case, but the
resulting line is not centered in the vessel and spatial co-
herency along the sketched line is not exploited. Jeong et al.
present a system called NeuroTrace, which allows the seg-
mentation and visualization of neural processes in large data

Figure 1: System Overview: Main 3D view (upper left), or-
thogonal slice view (upper right), CPR (lower left), 3D result
view (lower right).

sets [JBH∗]. To make the system scalable the segmentation
result is approximated by a set of elliptical cross sections. It
should be further noted that branching is not supported by
this technique.Helmstaedter et al. [HBD11] propose a sys-
tem for neurite reconstruction that relies on the skeleton of
a neurite to compare and merge reconstructions by differ-
ent users. Wang and Smedby discuss integration of auto-
matic and interactive methods for coronary artery segmenta-
tion [WS10]. Their system allows specification of additional
seeds for the virtual contrast injection algorithm and modi-
fication of centerline end points. For analysis purposes the
vessel is segmented using a level set approach in 2D in a
CPR and a cross-sectional view. This segmentation can also
be post-processed by the user with a tool called repulsor.
Aside from the discussed shortcomings we feel that the men-
tioned systems only utilize visualization as far as necessary
but do not explore how visualization can be exploited to ac-
tually improve segmentation results.
La Cruz evaluates the accuracy of centerline calculation
techniques on cross-sectional slices [Cru03]. Based on her
findings we chose a raycasting based approach utilizing user
specified thresholds.

3 Design Considerations

We have decided to come up with a semi-automatic, vi-
sually guided approach as a solution to the vessel segmen-
tation problem. The goal was to exploit intuitive interaction
metaphors in order to generate new or improve existing ves-
sel segmentations, and thus combine the strengths of humans
and computers. This has been achieved by building a seg-
mentation system that allows the user to intuitively and effi-
ciently segment vessels. Although the system is built up on
top of automatic segmentation algorithms, we are still able
to provide full flexibility to the user.
Since a vessel’s centerline is often used in the vessel segmen-
tation process [LABFL09], we have also decided to center
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our system around this compact vessel representation. Ad-
ditionally, centerlines are commonly used in vessel analy-
sis software and for visualization purposes [PO08]. In order
to generate a centerline from segmentation results a skele-
tonization algorithm has to be applied. Besides introduc-
ing additional computations, these algorithms can introduce
other problems [BFLC02].Furthermore, user modifications
would be lost after recomputation of the centerline, e. g.,
when the segmentation has been modified through user in-
put. As we will discuss in this paper and also postulated by
Lesage et al. [LABFL09], the reverse case is less problem-
atic, such that the centerline can be used as a starting point
for an efficient and accurate segmentation. When segment-
ing the surface of a vessel, the user should have the ability to
modify the result in an efficient and intuitive manner, with-
out having to navigate through each slice intersecting the
vessel. Furthermore, since we aim at high precision, we did
not want to explicitly enforce smoothness constraints on the
surface segmentation. The random walker algorithm [Gra06]
is widely used for image segmentation since it nicely com-
plies with these criteria. It is a probabilistic segmentation
algorithm that has been successfully utilized before in an
interactive segmentation system by Praßni et al. [PRH10].
Top et al. [THA11] propose a very similar system. However,
Praßni et al. point out that no thin structures, potentially in-
tersecting multiple slices, could be segmented with their ap-
proach, since that would require the user to set an unman-
ageable number of seed points along the whole extent of the
target structure. Because this would hamper the application
of the random walker approach for vessel segmentation in
general, we have overcome this limitation by exploiting a
semi-automatic seed placement strategy. This has not only
the benefit that it reduces user input but also minimizes the
computation time itself.
While the concepts introduced above allow the user to influ-
ence a segmentation by first defining the center line and then
modifying the segmentation result itself, they do not provide
any clues in which areas interaction is required. Only by pro-
viding appropriate visual feedback, the user will be able to
judge the current segmentation result and thus be able to as-
sess the accuracy of the segmentation to be generated.
By definition, a centerline should run through the center of a
vessel having potentially a circular cross section. However,
in abnormal cases where the vessel shape is deformed, the
situation might be less clear and further inspection by an
expert user may be required. Therefore, we use the shape
of the vessel cross section for each point along the center-
line as an indicator for the centerline reliability. We define
the centerline uncertainty clu = 1− rmin

rmax
to be 0 for circular

shapes and to increase with irregularity. In order to convey
this information intuitively, we exploit a green (=certain) to
red (=uncertain) color mapping.To depict the uncertainty of
the segmentation itself, we exploit the probability field of the
random walker algorithm, and display uncertain regions also
in red. Thus, we are able to guide the user during the process
when generating a precise segmentation.

Because an intuitive use of the system was one of the most
important design goals, we decided to base the user input
mostly on sketch-based interaction metaphors. Therefore, it
becomes possible for the user to quickly sketch the vessel
tree on a 3D rendering in order to extract an initial centerline.
In our expert evaluation we were able to show that this is
beneficial when compared to alternative techniques (see Sec-
tion 6). As discussed in Section 2, sketching has been used
before in the context of vessel segmentation. However, our
approach is different in the sense that we directly transform
the drawn strokes into a centerline. Furthermore, we sup-
port a semi-automatic linking of adjacent centerlines. When
modifying the segmentation itself later on in our work-
flow, sketching can also be used, as it is a commonly used
technique in segmentation tools. By initiating the surface
segmentation technique based on these seeds and sketched
centerlines, we inherently achieve a coherent segmentation
modification, since the algorithm propagates the seeds in
three dimensions. Furthermore, it allows persistent segmen-
tation editing, since the user modifications are further valid
after changing the centerline or seeds and rerunning the seg-
mentation process which is not the case for all interaction
techniques for segmentation manipulation [KEK04].
We have selected four views (see Section 4) with the goal to
provide all information which is necessary to perform a ves-
sel segmentation efficiently and effectively. The data struc-
tures used for representing the segmentation results is also
something we have considered during the design of our sys-
tem. Since we want to achieve a precise segmentation, ap-
proximation approaches such as truncated cones, fitted el-
lipses [JBH∗] or convolution surface are not appropriate. In-
stead we have decided to directly store and visualize a seg-
mentation volume.

3.1 Workflow

The first step in the workflow (see Figure 2) is the op-
tional usage of an automatic vessel segmentation algorithm,
which resulting centerline could be used as a starting point
for our system. Additionally, the user has to provide an in-
tensity window for vessels, which is done interactively in
a slice view of the volume. This intensity window can be
rather broad, as it is only used to throw away voxels clearly
belonging to the background. We found that this window
only needs little adjustment when using the same scanning
protocol. The users can now use the sketching functional-
ity to insert own centerline segments. To further modify the
centerline, points of the centerline can be dragged in 3D. Al-
ternatively this dragging functionality is also possible in the
orthogonal slice view as well as the CPR. The induced move-
ment is smoothly propagated to the neighbors in all views.
Pruning of erroneously detected segments can also be per-
formed easily in these views. When the user adds additional
centerlines, newly sketched segments are automatically con-
nected to the existing tree by considering their distance to
the existing centerline segments.
After the user is satisfied with the centerline skeleton, which
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Figure 2: Workflow: The user can modify centerline and
vessel surface. Editing of both aspects of the vessel segmen-
tation is sketch-based and driven by uncertainty visualiza-
tion. The centerline determines which parts of the vascula-
ture are to be segmented. Because modification of the sur-
face is not done in a post-processing step but by sketching
seeds, the user can keep editing the centerline without los-
ing any work done on the surface.

also marks the part of the volume to be segmented, the sur-
face segmentation can be started. The user can then inspect
the result and modify it by placing additional seeds in one
of the 2D views. To guide this seed placement, segmentation
parts with a high degree of uncertainty are highlighted.

4 Visualization Techniques
Main 3D View The main 3D view (see Figure 1 (upper
left)) shows a direct volume rendering of the data set, since
standard 2D views are not sufficient in many cases, i. e.,
when vessels cannot be cut with a single slice. In addition
to the centerline of the segmentation, it contains cues to sup-
port mental linking of the views. The centerline geometry is
considered as the main communication and interaction ele-
ment in the main 3D view, and is thus overlayed over the
vessel. While this results in a false depth ordering, we found
it to be visually more expressive using a geometry integra-
tion approach as the one presented by Scharsach [Sch05].
We have tested this technique and found it to result in a
rather occluded geometry, which hampered the perception
of the uncertainty encoding. Therefore we decided to render
the geometry over the volume, ensuring compatibility with
all data sets, and lessening the requirements on the trans-
fer function while clearly displaying all color cues. As fur-
ther discussed in Section 5, we consider centerline positions
of irregular cross sections as potentially uncertain and color
them red. A user certainty value based on the distance to the
next user confirmed or corrected point along the centerline
is added to the this shape uncertainty.
Orthogonal Slice View While the 3D view provides a good
overview of the vessel, it does not allow the inspection of the
vessels interior. Therefore, a cross section view is crucial. It
further allows an in-detail inspection of the shape at a cer-
tain centerline point, and provides an important basis for the
interaction techniques allowing to modify the centerline as
well as the segmentation results (see Section 5).
After the segmentation has been calculated, we derive and
visualize the uncertainty by using a simplified version of the
approach proposed by Praßni et al. [PRH10] to guide the

user interaction. Similarily to their approach, we exploit iso-
lines for the depiction, but we limit the display of these lines
to two, because the area of uncertainty turned out to be quite
small in practice. We believe that this rather small uncer-
tainty region is due to the large number of seeds that we
generate automatically.
CPR The curved planar reformation [KFW∗] is another well
established visualization technique that allows to inspect a
vessels interior, and has therefore been also integrated into
our system. Another important purpose of the CPR views is
the navigation through the orthogonal slices.
Importance Driven CPR The implemented classic CPR
types rely on a static vector of interest, which may not nec-
essarily show the parts of the vessel needing further atten-
tion. While the vector of interest can be rotated to point in
a direction that allows the user to inspect and correct prob-
lematic parts, this requires user interaction and there may
be multiple directions of interest. There are variants of the
CPR that display more than one slice of a vessel, like helical
CPR [KWFG] or thick-CPR [KFW∗]. However, we wanted
the user to immediately see problematic sections and be able
to react in the form of centerline dragging or sketching of ad-
ditional seed points, which would not be possible with these
types because one pixel on the screen cannot be clearly as-
sociated with one point in the dataset. We therefore propose
a new type of CPR where the vector of interest is dynami-
cally guided by importance. Importance is determined by the
medialness of the centerline as well as the uncertainty of the
surface segmentation. For each point on the centerline we
cast rays in multiple directions in the cross-sectional plane
(we found that 150 rays gave good results), these are possi-
ble vectors of interest. We stop at the point where the prob-
abilistic segmentation is 0.5 and set the surface uncertainty
suc as the distance to the next certain voxel (see the next
Section). The centerline uncertainty for each ray is defined
as described in Section 3. We then define the cost for each
ray as cray = max(cluc,suc) and compute a smooth sequence
of vectors of interest that maximizes the overall importance
to the user and generate the CPR from these vectors instead
of a static one (see Figure 3). The user can therefore imme-
diately spot problems with both elements of the vessel seg-
mentation without having to configure the vector of interest.
Furthermore, a more efficient surface for providing correc-
tion through strokes is provided since the importance driven
CPR will rotate to display lengthy uncertain parts (e.g., other
vessels running along the vessel to be segmented). After the
uncertainty is removed the CPR will be re-evaluated to dis-
play the next most important parts.
3D Result View Inspired by the approach presented by Vi-

ola et al. [VKG] and Straka et al. [SCLC∗], we use a cutaway
technique to show context while preserving an unobstructed
view on the segmentation result. The main purpose of this
view besides inspecting the shape of the resulting segmenta-
tion is to visualize the uncertainty information derived from
the probabilistic segmentation. By masking the certain vox-
els (i.e., [0.05,0.95]) from the probability volume and apply-
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Figure 3: Importance Driven CPR: We maximize relevant
information in the CPR rendering by making the vector of
interest (green) importance driven. The vector of interest is
static for a straightended CPR view (1). Based on the shape
of the vessel (red) and the certainty of segmentation we dy-
namically rotate the vector of interest (2). This results in
immediate visibility of possibly problematic centerline posi-
tions as well as surface segmentation uncertainties (yellow).

1

3

2

Figure 4: Adding new segments: 1) The user has sketched
a part of the vessel tree to be segmented. The sketch does not
have to be centered or even on the vessel all the time (see
inlet) 2) The sketch is projected into the screen and the path
with minimal cost is determined on the resulting image. Note
how the gap introduced through the inaccuracy in the sketch
is handled. 3) The line is centered inside the vessel using
an active contour approach. This step also draws all points
outside the vessel inside (see inlet).

ing a distance transform we generate an uncertainty volume.
A high distance to regions of certainty is therefore consid-
ered uncertain (see Figure 7).

5 Interaction Metaphors

Centerline Interaction In order to add new centerline seg-
ments, the user draws a stroke on top of the vessel to be
segmented in the main 3D view. To transform a user sketch
into a centerline, we need to compute the correct depth value
for the line drawn by the user (see Figure 4 (1)). In order to
exploit the spatial coherency we use a technique related to

the one proposed by Owada et al. [ONI05]. We generate an
image from the line extruded into the view direction by read-
ing entry and exit point for each point of the line. We can
therefore also correctly handle clipping planes used in the
3D view. The intensities are based on the user provided ves-
sel windowing (see Section 3.1). To find the correct depth
we calculate the path with the lowest cost using dynamic
programming (see Figure 4 (2)). As can be seen in Figure 4
(1) and the accompanying video, the stroke does not have to
be precise, the minimal path algorithm corrects even devia-
tions from the vessel (see Figure 4 (2)). To further increase
the certainty that the computed centerline matches the user’s
intent, we incorporate the visibility based on the used trans-
fer function. This is done by accumulating the alpha value
in extrusion direction and modulating the cost with this vis-
ibility factor. Ambiguities where there is a second structure
at the same position on the screen at a different depth are
therefore resolved. Since vascular structures are usually a
connected system we search for segments close to the ends
of the depth-corrected line and attach them to the centerline-
tree. To correct for imprecise user input and estimation of in-
tended depth we center the line in the vessel using an active
contour technique. In order to pull the line towards the center
of the vessel we further use an external force that calculates
the center for the current position and tangent using circular
raycasting [Cru03] and pulls the point in this direction. The
magnitude of this force is modulated by the centerline un-
certainty cluc. For circular profiles the force is the strongest,
while it is lower for irregular shapes. This external force is
ignored for points that are outside the vessel, i. e., the inten-
sity at this point is outside the user specified vessel window.
Therefore, parts of the line where the user has not hit the
vessel are pulled inside the vessel (see Figure 4 (3)).
User Correction As we have just discussed we consider the
position of the centerline where the circular raycasting re-
sults in circular shapes as certain. If the shape is irregular
the user should confirm the position of the centerline or cor-
rect it in one of the views (see Figure 5).

Segmentation Modification The surface segmentation al-
gorithm needs seed points to be set in order to segment the
vessel structures. To place these seed points, we generate
foreground and background seed volumes based on conser-
vative estimates of the inner and outer radius of the vessel.
A voxel is considered as background voxel if it is not within
the outer radius of any centerline segment. If a voxel is inside
the inner radius of a centerline segment the voxel is marked
as foreground voxel. Only the remaining voxels, usually a
small fraction of the volume, need to be segmented by the
random walker algorithm. This process is shown in Figure
6. From the user confirmed centerline we cast circular rays
for each point. The inner radius is the minimum distance a
ray can be cast while being strictly inside the threshold. The
outer radius is the minimum distance a ray has to travel to be
safely outside the intensity window. We use a safety margin
on both calculations to account for a limited number of rays.
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Figure 5: Centerline Uncertainty: Guided by red highlights
on the centerline the user inspects parts of the centerline
where the position is considered uncertain. 1) The user
moves the mouse to the red section of the centerline to find it
displaced due to the branch. By dragging the centerline on
the orthogonal slice the position is corrected. This section
of the centerline is therefore marked as user-corrected. 2)
The user inspects another section of the centerline marked
as uncertain, but is satisfied with the current position. By
pressing a hotkey the position is accepted and marked as
user-confirmed. 3) The centerline is now completely green,
which means that it is either user-corrected, user-confirmed
or has a regular shape and is therefore considered certain.

This approach can degenerate in two ways: The inner radius
could become zero and only the centerline itself would get
rasterized into the foreground seed volume at this position.
This is similar to the approach proposed by van Bemmel et
al. [vBVN04] who initialize a level set segmentation on the
centerline. Alternatively, the outer radius can become large
for noisy or low contrast data sets, which may happen es-
pecially at branches. However, this only increases compu-
tational cost and does not lead to an unstable processing.
Based on the calculated radii we now build the foreground
and background seed volume (see Figure 6 (2)), and the ran-
dom walker algorithm segments the layer between both. The
resulting segmentation is displayed in Figure 6 (3). Because
of the large number of seeds, the amount of unseeded voxels
is comparatively low and we can handle larger data sets (up
to 440x300x1100) and keep times of user-inactivity lower
then when using only a small number of hand drawn seeds.
Guided by the highlighted areas shown on the segmentation,
the user can move the mouse on these sections to inspect it
in the linked views (see Figure 7).

6 Evaluation

In their survey on interaction in medical image segmen-
tation Olabarriaga and Smeulders [OS01] list accuracy, re-
peatability and efficiency as the main criteria, which influ-

Figure 6: Seed Volume Generation: 1) Based on the cen-
terline the algorithm calculates conservative estimates of
the inner and outer radius (gray circles in slice view). 2)
From these estimates seed volume for foreground (upper)
and background (lower, inverted) are generated. 3) The re-
sulting segmentation, which is also visible as red line be-
tween the inner and outer circle in the slice view.

Figure 7: Surface Segmentation Uncertainty: 1) Regions
where the segmentation of the surface is uncertain are high-
lighted in red. When hovering the mouse over the surface
the orthogonal slice view and CPR are linked accordingly.
2) The user corrects the uncertainty by sketching additional
seeds in the CPR. 3) The uncertainty is fixed.

ence the quality as well as the usability of a segmentation
system. Accuracy can be more directly exploited as a qual-
ity criteria when dealing with automatic segmentation tech-
niques. When using interactive approaches an expert user
can modify the result until it best reflects his or her expert
knowledge, which is called potentially accuracy [OS01].
In our system, this can be done by sketching additional
seed points, which given in a dense layout directly define
borders. To investigate the degree of accuracy that can be
achieved when using our system we evaluated the outcome
of our system using the carotid bifurcation algorithm eval-
uation framework [HZF∗11]. This framework is a good fit
to evaluate our system because it focusses on a small part
of the vasculature and provides a standardized evaluation
system, comparing the submitted segmentation to averaged
ground truth, provided by three experts. The dataset consists
of 56 computed tomography angiography (CTA) images (ac-
quired on different scanners) of the carotid arteries, some
with stenosis. We did not utilize the starting points provided
with the datasets to perform our segmentation but instead
sketched the centerline. We segmented all datasets and our
results were compared to the ground-truth using three met-
rics: Dice similarity measure, mean surface distance (MSD)
and maximum surface distance. Table 1 shows minimum,
maximum, and average values for each metric. The aver-
age Dice measure was 90.0% — in only three cases the
Dice similarity measure between our results and ground-
truth was less than 85.0%. Table 2 shows the average grades
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of our system and of the three experts. Our average results
are within a few percent of the inter-observer variability,
which we achieved with one dataset. We attribute this dif-
ference mostly to the approach used to generate the ground
truth data: a manual, probably very time consuming process
in which the cross-sectional contours were modeled using
splines. Resulting segmentations are therefore smoother than
the output of our system, which is more closely coupled to
the data. This is most notable at secondary branches which
were not to be included in the segmentation and account for
the relatively large maximum surface distance. We argue that
a more circular cross-section at these branching points is not
more true to reality than the protrusion which remains when
removing the branch with a few sketched background seeds
and therefore did not spend too much time modeling these
sections to match the ground truth. Overall, we conclude that
our technique enables users with no medical training to cre-
ate precise vessel segmentations.
Repeatability is mainly influenced by difference in user in-
put or judgment which may lead to a high variability of the
results [OS01]. To test for the influence of differences in
sketching, we used a ground truth segmentation of a vessel
segment in a contrast enhanced CT scan, and asked three
users to perform a segmentation with our system. We in-
structed the three novice users having no medical back-
ground in the use of our system, and explained the task to
be performed. The result was compared to the ground truth
segmentation using the dice metric. The obtained dice scores
(93.7%, 94.4%, 94.2%) confirm a good repeatability of seg-
mentations results.
Efficiency of semi-automatic systems can be estimated by
considering two key components: usability of the interactive
parts and performance of the automatic parts.
When judging the amount of user input one should keep in
mind that it is not the aim to construct large vessel trees
manually but to successively add or correct a reasonable
amount of specific vessels. Similar as other authors working
on sketching techniques, we believe that the sketching di-
rectly communicates that no precise interaction is required.
We argue that sketching vessels on a 3D rendering is as intu-
itive and predictable as possible, which our domain experts
confirmed. The placement of additional seeds for the surface
segmentation and movement of the centerline is only nec-
essary where the automatic approach failed and has not to
be done on a slice basis. Regarding the performance of the
automatic parts, we have implemented the surface segmenta-
tion and sketch-extrusion on the GPU to facilitate a smooth
interaction.

Expert Evaluation To evaluate the practical value of our
approach we have organized an interactive hands-on ses-
sion of our system with our medical partners. The group
consisted of four researchers interested in the vascular sys-
tem and working with scans from different modalities on a
daily basis. One possible application case of our system is
the quick segmentation of parts of the vasculature in which

Table 1: Summary lumen (generated using [HZF∗11])

Measure % / mm rank
min. max. avg. min. max. avg.

L_dice 81.3% 95.5% 90.0% 3 4 3.98
L_msd 0.21mm 1.31mm 0.54mm 4 4 4.00
L_max 0.78mm 8.04mm 5.96mm 3 4 3.98

Total (lumen) 3 4 3.98
Table 2: Averages lumen (generated using [HZF∗11])

Team Total dice msd max Total
name success % rank mm rank mm rank rank

Our technique 41 90.0 4.0 0.54 4.0 5.96 4.0 4.0
ObserverA 41 95.1 1.6 0.10 1.7 0.54 1.8 1.7
ObserverB 41 94.6 2.2 0.11 2.2 0.62 1.8 2.1
ObserverC 41 94.4 2.2 0.12 2.1 0.72 2.4 2.3

the user is interested. The need for this type of segmenta-
tion was confirmed for research as well as clinical use. Due
to the intuitive and quick sketching of vessels the approach
was seen as a viable alternative to selection of parts of a
full segmentation. A significant part of the scans our part-
ners use are small animal CT scans, which make vessel seg-
mentation even more challenging due to the small size of the
species under observation. In addition, abnormalities of the
shape of vessels are common in these scans. Therefore au-
tomatic approaches which rely on strong contrast or shape
based approaches fail and manual segmentation needs to be
performed. They appreciated the segmentation directly on
the basis of a 3D rendering, especially for cases where one
vessel cannot be cut by a single slice. Exact, user controlled
placement of the vessel wall as well as the centerline was
also confirmed as important criteria for a vessel segmenta-
tion system by our medical partners. Considering parts of
the vessel with irregular shape as uncertain was perceived as
a sensible approach. The red-green color scheme was intu-
itively understood and our technique of user confirmed and
modified points used to guide the user towards confidence
about the segmentation was appreciated. We also discussed
the visualization techniques used in our system and the ap-
plicability of all views was confirmed. However, the direc-
tion of the CPR was unclear and the inclusion of start/end
markers in the 3D view was suggested.

7 Conclusion

In this paper, we discussed the design, implementation
and evaluation of an interactive, visually guided vessel seg-
mentation system. The system has been designed for two us-
age scenarios: the correction of the results of automatic seg-
mentation algorithms and the fast, user guided segmentation
of parts of the vasculature that the user wants to inspect or
analyze. To provide intuitive solutions for these scenarios,
we have exploited a semi-automatic approach. On the inter-
action side, the key concept of the system is a sketch-based
user interface, which allows to generate precise vessel seg-
mentations from rough strokes quickly drawn on a 3D view.
While the actual segmentation is performed using the ran-
dom walker algorithm, it can be also modified through the

c© The Eurographics Association 2012.
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proposed sketch-based interface. In combination with these
interaction techniques, we exploit visualization techniques
arranged in linked views, which help the user to assess the
quality of the current segmentation and thus support its mod-
ification. In this context, a key concept is the uncertainty vi-
sualization, which conveys the reliability of the intermedi-
ate results in a concise way. We have thoroughly evaluated
our system using the carotid bifurcation lumen segmenta-
tion framework and discussed opinions by a group of expert
users from the medical domain. Their feedback has shown
that there is a high demand for such a system in the medi-
cal/biological community.
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