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Abstract. Data acquired from ultrasound examinations is of interest
not only for the physician, but also for the patient. While the physician
uses the ultrasound data for diagnostic purposes the patient might be
more interested in beautiful images in the case of prenatal imaging. Ul-
trasound data is noisy by nature and visually compelling 3D renderings
are not always trivial to produce. This paper presents a technique which
enables extraction of a smooth surface mesh from the ultrasound data
by combining previous research in ultrasound processing with research
in point cloud surface reconstruction. After filtering the ultrasound data
using Variational Classification we extract a set of surface points. This
set of points is then used to train an Adaptive Compactly Supported
Radial Basis Functions system, a technique for surface reconstruction of
noisy laser scan data. The resulting technique can be used to extract
surfaces with adjustable smoothness and resolution and has been tested
on various ultrasound datasets.

1 Introduction

Medical ultrasound imaging is modality of choice for various diagnostic exam-
inations. Compared to other modalities ultrasound imaging has both benefits
and drawbacks, for example it has a lower health risk than CT and MRI and
ultrasound imaging is sometimes used as an alternative examination method [1],
especially for pregnant patients [2]. Advancements in ultrasound imaging has
allowed for data to be acquired at higher rates and higher resolution. This, in
combination with more clinical evidence [3], has lead to more clinics using three
and four dimensional ultrasound images as a tool to diagnosis.

Datasets acquired using ultrasound imaging differ from datasets acquired by
other imaging methods such as CT and MRI in various ways. Voxel intensi-
ties of CT and MRI datasets represents the density at a certain location and
we can classify samples by mapping ranges of densities to materials, such as bone
and skin. In ultrasound images the voxel intensities represent the strength of the
ultrasound echo which will have higher intensities at boundaries between regions
and lower intensities in homogeneous regions. This sometimes makes it hard to
apply visualization techniques developed for CT and MRI on ultrasound images
without preprocessing. Furthermore, ultrasound images have a lower signal-to-
noise ration than other techniques. Many filtering methods have been developed
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for two dimensional ultrasound, while many of them can also be applied on the
three dimensional data they do not always perform optimally. Speckle noise for
instance, appears on two dimensions ultrasound images as a bright blob not con-
nected to any tissue and can be ignored by the doctor while viewing the image.
When rendering the data in three dimensions instead, speckle noise will become
a opaque object and may occlude areas of interest.

Various filtering and rendering techniques have been presented to reduce the
noise and allow for appealing renderings of ultrasound data [4–6]. These tech-
niques mainly have clinical personnel as target group and often require high end
computers to render with interactive frame rates. In this paper we explore the
possibility to extract a smooth surface mesh from ultrasound data by first locat-
ing a set of surface points which are used to train a radial basis function system.
The radial basis function system allows for smooth reconstruction of the surface
and can be evaluated at any resolution which allows extraction a mesh at a
desired resolution. By extracting a mesh we remove the requirement of volumet-
ric data and it can be displayed on various devices and platform, even without
hardware accelerated graphics processing units. Furthermore, the extraction of
a smooth mesh allows for applying texture space rendering techniques used for
realistic skin rendering in real-time applications and games [7–11].

2 Related Work

2.1 Ultrasound Visualization

There exists a lot of research targeting various stages of the ultrasound visual-
ization pipeline, a detailed survey of the pipeline has been written by Birkeland
et al. [12] where they present the current state-of-the-art research on the various
stages.

Fattal and Lischinski [5] present a surface classification filter based on the
Variational Principle resulting in a surface opacity volume. This filter will be
further discussed in section 3. The opacity volume will contain non-zero voxels
only on surfaces and they render this volume using oriented splatting. For each
voxel with a value above a certain threshold they render a gradient oriented
splat and setting its opacity to the voxel value which is then further modulated
using a Gaussian falloff as the distance to the splats center increases.

Šoltészová et al. [4] present a filtering technique using lowest-variance stream-
lines which successfully decrease the amount of speckle and random noise in the
ultrasound data. For each voxel they try to find the streamline which has the
lowest variance of voxel values. A number of samples is then taken along this
streamline and the filtered voxel value is set to the mean of these samples.

2.2 Radial Basis Functions

Radial Basis Functions (RBF) have their origins in Artificial Neural Networks
(ANN) and were first introduced by Broomhead and Lowe in their work in speech
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recognition [13]. For a finite set of samples points x ∈ X with known values f ∈ �
they define an ANN as

S(x) =

N∑

i

λiφ (||x− xi||) (1)

where φ(r) is the basis function and λi is the, yet unknown, weight for kernel i.
To find the weights λ such that the condition

S(xi) = fi i = 1, 2, ..., N (2)

is fulfilled for all sample points x ∈ X , an inverse linear system has to be solved.
A brute force solution of this linear system requires a memory usage of O(N2)
and a time complexity of O(N3). For smaller sets where N is rather small this
is not a big issue but when N becomes large it becomes an issue.

Carr and Fright used RBFs to interpolate skull surfaces which is used to
construct cranial implants [14]. By fitting a RBF to a depth-map obtained from
ray-tracing CT data they manage to smoothly reconstruct a 3D-surface.

3 Surface Localization Using Variational Classification

The first step in our two stage algorithm is the surface localization, which applies
the variational classification technique presented by Fattal and Lischinski [5]. For
an input volume v they aim at finding a volume u which minimizes the function

F (v, u) = αFiso + βFtan + γFind (3)

where α, β and γ are weights for the three parts Fiso, Ftan and Find. Each of
the three parts of F (v, u) allows u to have high values at certain features. Fiso

is defined as

Fiso =
u2

|∇v|2 + ε

(
ω|v − viso|2 + (1− ω)|ṽ − viso|2

)
(4)

which will make u tend towards zero everywhere except on boundaries of regions
where v is close to the iso-value viso. To reduce the impact of noise the value
from v will be blended with a value from a low-passed filtered volume ṽ with
blend factor ω. The denominator |∇v|2+ε is there to ensure uniform width along
the boundaries. The second term, Ftan is defined as

Ftan = |∇u×∇ṽ|2 (5)

and will make the gradient of u tend to be as parallel as possible to the gradient
of v. The final term, Find is defined as

Find = (δ + (1− δ)|∇v|) (u− uind) (6)
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and is there to prevent a trivial solution (u = 0) and to pull u towards the non-
zero value uind. So far our u is unknown and since we want to find for which u
F (v, u) has a minimum we need to find the first derivative and where it evaluates
to zero,

δF

δu
− d

dx

δF

δux
− d

dy

δF

δuy
− d

dz

δF

δuz
= 0 (7)

which will result in the following equation

u

(
α
(
ω|v − viso|2 + (1− ω)|ṽ − viso|

)

|∇v|2 + ε

)
+

β (∇×∇ṽ) · (∇u×∇ṽ) + (8)

γ (δ + (1− δ)|∇v|) (u− uind) = 0.

Equation 8 can be written as a linear system Au = b where A is a sparse matrix
and the vector b is defined by values from the volume v with one row for each
voxel. Analytically we can get the volume u by first computing A−1 and then
compute A−1b, but this is a O(N3) operation and since our N will be very large
(number of voxels) it is not a practical solution. To solve the system we use the
conjugate gradient solver in the C++ Eigen library.

Fig. 1. Results of surface localization using variational classification

4 Surface Reconstruction with Radial Basis Functions

When the ultrasound data has been processed with the variational classification
filter we have a volume consisting of only non-zero voxels close to surfaces,
where a higher intensity means closer to the surface. From this surface volume
we extract a point cloud where each voxel with a intensity above a certain
threshold (a threshold of 0.2 has been used in all examples) becomes a point.
In addition to the points position we also store the voxels surface intensity from
the surface volume and the normalized gradient from the original ultrasound
volume.
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4.1 Adaptive Compactly Supported RBFs

To create a mesh passing through the point cloud with a minimum error we
use Adaptive Compactly Supported RBF, a technique presented by Ohtake et
al. [15]. They define a function S(x) for a set of centers C = {c1, c2, . . . , cM} as

S(x) =
∑

ci∈C

[gi(x) + λi]φσi (||x− ci||) (9)

where gi(x) is a shape function for local approximation and λi is the RBF weights
to minimize global error. The basis function φσi (||x− ci||) is the Wendland’s
compactly supported RBF [16] where σi is the support size of center ci and
φσi(r) = φ(r/σi) where

φ(r) =

{
(1− r)4(4r + 1) 0 ≤ r ≤ 1
0 r > 1

(10)

The centers are created iteratively such that all points x in the learning set X
has an overlap above a certain threshold. In order to do this without creating to
many centers Ohtake et al. defines two metrics, the first is a sample density di
which are calculated over the K nearest neighbors as

di = ci

K∑

j=1

||xi − xj ||2 (11)

where ci is the confidence of point xi. The point cloud data that Ohtake et al.
uses have an accuracy received from a laser scanner which is used as sample
confidence, since we have volumetric data we treat the voxel value from the
surface volume as confidence. The second metric is to measure the center overlap
oi at sample xi and it is defined as

oi =
∑

j

φσj (||xi − cj ||). (12)

The centers are created, one at a time, at the location of the sample point which
currently has the lowest overlap. The creation of a center involves finding the
optimal support size σ and the coefficients for the shape function g(x). We want
to find a support size σ such that it minimizes the local error

Elocal(σ) =

⎛

⎜⎜⎝
1

L

√√√√√
∑

j djφσ (||xj − ci||)
(

gi(xj)
||∇gi(xj)||

)2

∑
j djφσ (||xj − ci||)

⎞

⎟⎟⎠

2

+
C

σ2
(13)

where L is the length of the diagonal of a bounding box enclosing all sample
points and C is calculated as

C = (TsaL)
2

(14)
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where Tsa is a user defined constant controlling the smoothness of the recon-
struction. The support size σ which gives the lowest local error is found by
searching between a user defined upper and lower boundary. We evaluate the
local error for a discrete set of support sizes within these boundaries starting
with the minimum and step upwards until we find a support size where the
local error is larger than the previous sample. In other words, we are stepping
from the minimum and increasing the support size as long as the local error
is decreasing. Once we find a point where the local error does not decrease we
know that the optimal support size lies between this size and the size before that
and we continue to search between these two sizes with a smaller step size. We
search for local minimum until the difference between the two sizes are less than
L× 10−8.

For each support size we need to fit a local shape function, which is defined
as

g(x) = w −Au2 − 2Buv − Cv2 −Du− Ev − F (15)

where u, v and w are the coordinates of point x transformed into the centers
local orthonormal basis. The function g(x) is recognized as a quadratic surface
and finding the coefficients A − F is a least-square problem where we want to
minimize the error function

e =
∑

j

djφσ(||xj − ci||)gi(xj)
2 (16)

which is a 6×6 linear system. This system is trivial to solved using Eigen. When
we have found the optimal support size and the corresponding shape function
this center is complete and we continue with the next center. We continue to
create new samples and update each samples overlap until each samples has at
least an overlap above a certain threshold. Since only local points have been
taken into consideration when fitting the local shape functions gi(x) and centers
overlap we still have a global error. Since we know that all sample points xi are
located on the surface this error can be calculated as the weighted average of
the function S(x) as

Eglobal(λ) =
1

L

√√√√
∑N

j=1 djS(xj)2
∑N

j=1 dj
. (17)

In order to fit the coefficients λ a minimizing problems is defined as

Ereg(λ) = Eglobal(λ)
2 + Treg||λ||2 → min (18)

where Treg is a positive real number and ||λ|| is defined as

||λ|| =
√√√√ 1

M

M∑

i

(
λi

σi

)2

. (19)
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To find the minimum we need to find where the derivative of Ereg is zero which
gives us the following system

δEreg(λ)

δλ
= 0 ⇔ (A+ TregD)λ = b (20)

where A is a sparse matrix of size M ×M , D is a diagonal matrix and b is vector
of size M where M is the amount of centers created in the local approximation.
The entries in A is defined as

Aij =

∑N
k dkφσi (||xk − ci||)φσj (||xk − cj ||)

L2
∑N

k dk
. (21)

Aij will only be affected by points that is located in the intersection of the centers
i and j since when a point x is outside one of the center the basis function φ(r)
will evaluate to zero. In other words row i in matrix A will only contain non-
zero entries in columns j where centers ci and cj are overlapping. With a similar
approach we define the values of b, where we iterate over all points x within
center i

bi =

∑N
k dkφ(||xk − ci||) (−S(xk))

L2
∑N

k dk
. (22)

S(xk) can be interpreted as the error of the base approximation at point xk

since if S(x) where perfect it would return zero for any of the points in the
points cloud. This means that the value of row bi will be related to the current
error of S(x). The diagonal matrix D will have values based on the support size
of current rows center

Dii =
1

M

(
1

σi

)2

. (23)

The sparse system in equation (20) is solved in a similar manner as the sparse
system in Variational Classification described in section 3.

When the RBF weights have been fitted the only thing left is to extract the
final mesh. By defining a regular grid enclosing the centers we can extract a mesh
using the marching tetrahedron algorithm [17] and by allowing the user to vary
the resolution of the regular grid meshes can be extracted at desired resolution.
In order to save computational power we only evaluate on grid cells which are
close enough to a center to contribute to the surface.

5 Results and Discussions

The described techniques have been successfully tested on various ultrasound
dataset. In figure 1 we see one slice of before and after the variational classifica-
tion has been applied on an ultrasound dataset (467×255×101). The variational
classification took 5.172 seconds to complete, including building and solving the



170 R. Englund and T. Ropinski

(a) Marching tetrahedron (b) Radial Basis Functions

Fig. 2. Comparison between a surface extracted from a fetus ultrasound dataset with
marching tetrahedron and our approach

linear system resulting in 189,362 significant voxels. These voxels is then used
as a point cloud to train the Adaptive Compactly Supported RBFs system as
described in section 4.1 and the result from that is shown in figure 5b. Of the
189,362 input samples 2536 centers is created. The surface that has been ex-
tracted using our approach is smoother then the noisy surface extracted with
marching tetrahedron, which is clearly visible in figure 5 where both surfaces
has been extracted with same iso-value and same resolution.

(a) Marching tetrahedron (b) Radial Basis Functions

Fig. 3. Comparison between a surface extracted from a simulation dataset of a hydro-
gen atom with marching tetrahedron and our approach
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The presented technique has been developed with ultrasound as main modal-
ity, though, it can also be applied to other types volumetric dataset. For example
we have used a simulated dataset of hydrogen wavefunction for verification pur-
poses. Iso-surfaces of the hydrogen wavefunction is smooth by nature and a
surface extracted using our approach look similar to a surface extracted using
the original data which can be seen in figure 5.

6 Conclusions

We have presented a technique that bridges research in ultrasound data pro-
cessing with research in surface reconstruction of noisy point cloud data. By
localizing surface voxels in a 3D ultrasound dataset and represent them as a
point cloud we can utilize results obtained in surface reconstruction from laser
scan data. Our results show that combining these two fields is promising, as not
only both fields do handle data with some degree of noise, but they are both
relying on the acquisition of a reflected signal using a sender/receiver system.

While the presented techniques only handles smooth reconstruction of the sur-
faces we do not currently handle any speckle or random noise. In future research
it would be interesting to include other filtering techniques such as the lowest-
variance streamlines filtering [4] for speckle removal.

All 3D renderings in this paper use Phong illumination to shade the surfaces.
It would be interesting to extend our rendering or export the mesh into another
system to make use of available advance skin rendering techniques [7–11].
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Appendix: Parameters

Table 1. Parameters used in the Variational Classification

Parameter Value

α 0.6
β 0.03
γ 0.1
viso 0.6
ω 0.1
ξ 0.5
uind 1.0

Table 2. Parameters used in the Adaptive Compactly Supported RBF

Parameter Value

K 20
Min Overlap 1.6
Support size boundaries [0.001 0.3]
Tsa 10−5

Treg 10−6

Mesh resolution (longest axis) 450
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