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Abstract
In many cases, only the combination of geometric and volumetric data sets is able to describe a single phenomenon
under observation when visualizing large and complex data. When semi-transparent geometry is present, correct
rendering results require sorting of transparent structures. Additional complexity is introduced as the contribu-
tions from volumetric data have to be partitioned according to the geometric objects in the scene. The A-buffer,
an enhanced framebuffer with additional per-pixel information, has previously been introduced to deal with the
complexity caused by transparent objects. In this paper, we present an optimized rendering algorithm for hybrid
volume-geometry data based on the A-buffer concept. We propose two novel components for modern GPUs that
tailor memory utilization to the depth complexity of individual pixels. The proposed components are compatible
with modern A-buffer implementations and yield performance gains of up to eight times compared to existing
approaches through reduced allocation and reuse of fast cache memory. We demonstrate the applicability of our
approach and its performance with several examples from molecular biology, space weather, and medical visual-
ization containing both, volumetric data and geometric structures.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism— I.3.8
[Computer Graphics]: Applications—

1. Introduction

With the widespread use of imaging technologies in data in-
tensive research fields, visualization becomes an enabling
technology that supports the exploration of acquired data
sets. A recent trend is the multitude of data that arise not only
in the form of multimodal volumetric data sets but also from
geometric representations, which may be derived from the
data or are acquired in different ways. Consequently, a chal-
lenge in visualization research is the efficiency and effec-
tiveness at which this hybrid data can be rendered in a single
setting. In many cases the integrated geometry is of similar
or higher complexity than the volumetric data with which it
should be combined. While modern volume rendering sup-
ports the inspection of otherwise dense data sets by facil-
itating semi-transparency, additional challenges arise when
multiple volumes are combined with geometric data. Re-
cent work suggests that geometric representations also bene-
fit from semi-transparent properties [GRT13]. Nevertheless,
current state-of-the-art algorithms cannot always deliver in-

teractive exploration for complex and semi-transparent hy-
brid data. Interactivity is, however, an essential feature when
exploring scientific data sets.

In this paper, we improve upon existing techniques to fa-
cilitate efficient visualization of hybrid data sets as they oc-
cur in today’s imaging-dependent areas of science. The fun-
damental challenge, arising when blending multiple semi-
transparent sources into a single image, is to ensure that
the elements are blended in view-dependent front-to-back
or back-to-front order. When fusing multiple volumes or in-
cluding mesh geometry into the visualization pipeline, the
sorting must be ensured along each viewing ray. This results
in a performance bottleneck as well as in increased mem-
ory usage. As these shortcomings hinder interactive explo-
ration of many hybrid data sets, we have analyzed several
of these data sets from different real-world scenarios with
the goal to develop an optimized rendering algorithm en-
abling interactive exploration. As a tool in the analysis we
have used Depth Complexity Histograms (DCH) that corre-
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spond to the observed depth complexity across all pixels in
the rendered image for a given scene and camera setting. The
DCHs have been used to identify trends in the global dis-
tribution for scenes with hybrid data and to determine how
these trends relate to rendering complexity. Based on the
similarities of the occurring distributions, we propose two
novel components which we combine with existing tech-
niques to form an optimized rendering algorithm for hybrid
data. The first component minimizes the allocated size in
fast cache memory by adjusting the allocation to pixel depth
complexity. The second component partitions the depth sort-
ing similarly to depth peeling and recycles a smaller amount
of allocated memory. As a result, computational through-
put is increased and the maximum supported depth com-
plexity is less dependent on the amount of available local
GPU memory. The components provide between three and
eightfold performance increase compared to existing algo-
rithms. These qualities enable the interactive visualization of
large and complex hybrid data sets at interactive frame rates,
which is one of the key ingredients for enabling scientific
discoveries in data-intense sciences.

2. Related Work

Data fusion. One aspect of hybrid data rendering relates to
fusion of multiple volumetric sources. Several publications
have investigated how samples from multiple sources should
be blended, including different levels of intermixing [CS99].
A recent comparison of different intermixing schemes was
presented by Schubert and Scholl [SS11].

Rendering multiple volumes with arbitrary placement,
orientation, and resolution is often associated with compu-
tational costs for scene partitioning. To limit the per frame
rendering cost, object space is often separated into convex
regions homogeneously occupied by a fixed number of vol-
umes. The convex regions are then sorted, either using spe-
cialized data structures [GBKG04, LLHY09, LF09] or using
depth peeling techniques [PHF07, RBE08]. Many of these
approaches also utilize shader instantiation, similar to one
of the components presented in this paper, but do not include
solutions for inclusion of semi-transparent geometry.

Fusing opaque geometry with volumetric data is straight-
forward in most volume rendering pipelines and does not re-
quire a full scene partition [EHK∗06]. Semi-transparent ge-
ometry, on the other hand, is more computationally demand-
ing as the resulting object space partitioning is costly, partic-
ularly if the geometry is not closed or has concave features.
Image space techniques have been used in such situations as
these techniques are generally well adapted to inclusion of
generic, semi-transparent geometry [BBPtHR08, KGB∗09].
With these methods, entry and exit points for homoge-
neously occupied ray segments are extracted from the vol-
ume proxy geometry and scene partitioning is performed on
a per-ray basis during rasterization. The advantages and dis-
advantages of the available image space approaches are di-

rectly related to which transparency technique they employ,
i.e. depth peeling and A-buffers, which are discussed below.

Transparency rendering. To ensure correct blending or-
der of multiple semi-transparent samples, Order Indepen-
dent Transparency (OIT) algorithms have been an ongo-
ing research topic for the last thirty years [MCTB11]. Two
of the most widespread approaches are depth peeling and
A-buffers. Our algorithm follows the principles and global
memory management of the A-buffer, which yields supe-
rior performance for scenes with high depth complexity
[YHGT10, KKP∗13].

The A-buffer is a leading OIT solution based on the tem-
porary storage and sorting of intermediate pixel fragments.
The concept was first introduced by Carpenter [Car84]. Sub-
sequent works improved the concept [EP90,BCL∗07,MB07,
KWBG13,VF14], including hardware adaptations that were
generally limited to a comparatively low number of sam-
ples or utilized pre-sorting of primitives. Further improve-
ments in graphics hardware led to A-buffer variants with
support for higher depth complexities including paged vari-
ations of the algorithm [KGB∗09, Cra10], Per-Pixel Linked
Lists (PPLL) [YHGT10], and an alternative called Dynamic
Fragment Buffers (DFB) or s-buffer [MCTB12,VF12]. Both
DFB and PPLL approaches will be described later in de-
tail along with the straightforward Fixed Fragment Buffer
(FFB) implementation [Cra10]. However, it should be noted
here that the modern A-buffer literature focuses only on
management of global GPU memory. Our work builds upon
these methods by improving the management of local GPU
caches and hence improves performance for a wide range of
A-buffer implementations.

Depth peeling was first introduced by Mammen [Mam89]
and has evolved to employ multi-directional and bucket-
approximations [Eve01, CMM08, BM08, LHLW09]. Al-
though our main algorithm is not based on depth peeling, the
technique arguably remains a close competitor to A-buffers
among OIT solutions and remains an active area of re-
search [VF13]. In addition, one of the components proposed
in this paper shares high resemblance with the original depth
peeling approach.

3. Visualization of Scenes with Non-uniform Depth
Complexity

In this paper, we have chosen four representative scenes of
different fields including molecular science (protein), space
weather simulations (space), neurosurgical treatment plan-
ning (medical), and computational fluid dynamics (cfd).
Characteristic for the selected scenes is that the major com-
putational costs arise from the task of ordering all contribu-
tions in terms of visibility. In modern OIT solutions, these
costs are directly related to the observed depth complexity
in the image, i.e., the number of overlapping contributions
per pixel. At the same time, most scenes often feature non-
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Figure 1: Visualization of a protein (human carbonic anhydrase II) combining hybrid data from different sources. (a) final
rendering of hybrid visualization. (b) geometric protein representations. (c) volumetric data sources depicting electrostatic
potentials. (d) image-space depth complexity (re-scaled for representational purposes). (e) depth complexity histogram (DCH,
log scale). Our improved A-buffer algorithm is capable of rendering the entire scene at 32 fps—a performance increase of 5.9
times compared to prevalent techniques.

uniform complexity distributions in image space with clus-
ters of high depth complexity surrounded by regions of lower
complexity.

The first hybrid data scene is shown in Figure 1 and
depicts the protein human carbonic anhydrase II (PDB-
ID: 2CBA). The scene contains protein structures stored in
polygonal meshes and volumetric data sources represent-
ing electron charge densities. Such protein visualizations are
commonly used to examine possible docking positions be-
tween the protein and other molecules [SdG10]. To analyze
the complexity of such scenes we thus utilize depth com-
plexity histograms.

3.1. Depth Complexity Histograms

As an example for the Depth Complexity Histogram (DCH),
we use the protein scene in Figure 1, where the DCH for the
shown camera setting is depicted in (e). The DCH is com-
puted by first rendering a depth complexity image as shown
in (d) (note that the image shown has been normalized and
inverted for presentational purposes). When rendering the
complexity image, both shading and blending are disabled.
All geometries and volume bounding boxes are rendered into
an integer image aligned with the current viewport. The pix-
els of this image act as atomic counters and are incremented
by the incoming fragments. Each pixel of the complexity im-

age thus holds the number of fragments. The DCH is then
computed as a standard histogram over this integer image.
Each bin in a DCH is thereby associated with a complexity
range and holds the number of pixels whose depth complex-
ities fall within that range.

3.2. Visualization Challenges for Data Fusion

During the analysis of our four scenes, we made the ob-
servation that many pixels feature a low depth complexity
and only a few pixels feature the highest depth complexities.
This results in rapidly decreasing DCHs where the major-
ity of pixels have a complexity that is only a fraction of the
global maximum of the scene. In our experience, these find-
ings are also applicable to many other scenes.

Again, we use the protein scene in Figure 1 as an ex-
ample. From a depth complexity perspective, the protein
scene is fairly well behaved. The maximum depth complex-
ity is limited and the points with high depth complexity are
evenly distributed across the entire scene. The DCH, how-
ever, decreases rapidly. Note that the DCH in Figure 1(e) is
plotted logarithmically. The dominance of even-numbered
depth complexities is a result of closed geometries. The ma-
jority of all pixels (68%) have a depth complexity of 8 or
less, whereas only very few pixels (6.6%) have a complex-
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Figure 2: Performance and complexity over time for a pre-
defined camera path around the protein data set of Figure 1.
Rendering times are shown as lines (first y-axis) and DCHs
as bar charts (second y-axis). The camera dollies in and out
while the scene composition is changed every 100th step.

ity larger than 17 with a maximum of 46 for this specific
camera setting.

DCHs are not only dependent on scene content but also
on the camera settings. Figure 2 illustrates how the DCH
changes for the protein scene for an animated camera path.
The time-dependent DCHs are shown as vertical bar-plots of
screen coverage in percent (linear scale, right y-axis). Com-
plexities have been binned according to the legend in the
lower right and the DCH is plotted for every tenth time step.
The camera path is illustrated with five snapshots taken at
time points 50, 150, 250, 350, and 450 respectively (top row
of images). Additionally, the figure also shows performance
(red and blue line plots, left y-axis) which will be discussed
in later sections. In addition to camera movement, the scene
composition is changed every 100th time-point. At the first
marker (orange), the geometry of the stick representation is
removed (cf. Figure 1(b)) reducing high-complexity pixels.
At the second marker (green), both volume data sources are
removed (cf. Figure 1(c)) reducing low-complexity pixels.
From the plots, we can see that the DCH changes over time
and that the rendering performance depend on these changes.
We can also see that the DCH remains non-uniform in nature
even with the camera very close to the protein. This opens
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Figure 3: Overview of the A-buffer rendering approach on
GPU hardware. Previous work has primarily focused on
global memory management during the Fill Step. Our pro-
posed algorithm is hence aimed at local GPU cache memory.
Memory related steps are highlighted in blue.

up the possibility to save resources if the memory allocation
could be adapted to the observed complexity on a per pixel
basis. In the next section we provide a technical description
of how current state-of-the-art OIT techniques adapt to non-
uniform scene complexities.

4. Algorithms for Semi-Transparent Data Fusion

To construct an optimized algorithm we exploit the trend of
non-uniform DCHs observed earlier. Three state-of-the-art
implementations of the A-buffer concept serve as a refer-
ence. This section details the differences of those algorithms
in the dynamic management of global GPU memory. In ad-
dition, we show how to further optimize the algorithms with
respect to their use of local caches on modern graphics hard-
ware.

The principle of the A-buffer is to capture and store a list
of rasterized fragments on a per-pixel basis (called Frag-
ment List). This involves three sequential steps as illustrated
in Figure 3: the Clear Step, the Fill Step, and the Resolve
Step. Both the Fill Step and Resolve Step contain sub-steps
associated with memory management (highlighted in blue).
This includes global memory management mainly during the
Fill Step and local cache management in the Resolve Step.
Fragment data structure and further considerations on source
types will be described in Section 6.

Managing Global GPU Memory

Three prevalent approaches for managing the global
A-buffer memory during the Fill Step are used. These are
Fixed Fragment Buffers (FFB) [Cra10], Dynamic Fragment
Buffers (DFB) [MCTB12,VF12], and Per-Pixel Linked Lists
(PPLL) [KGB∗09, YHGT10, Cra10].

In Figure 4, the three approaches are illustrated side-by-
side. In each approach, every pixel is associated with a frag-
ment counter and an implicit or explicit pointer to the stored
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Figure 4: Comparison of three existing A-buffer implementations for managing global GPU memory. Both, the DFB and PPLL
approaches adapt well to scenes with non-uniform depth complexities by allowing dynamic memory utilization.

Fragment List. For the FFB, the global memory pool is stat-
ically partitioned and the pointer is implicitly given by the
screen coordinates of the fragments. The global memory
pool of the DFB is dynamically partitioned each frame and
the explicit pointer holds a base offset into the pool. For
the PPLL, the pointer denotes the list anchor for a linked
list of fragments spread throughout the pool. Both, FFB and
DFB ensure a contiguous memory layout for each individual
pixel. The Fragment Lists are generally stored out-of-order
in the comparatively slow but large global memory of the
GPU.

DFB and PPLL are both dynamic algorithms and adapt
the utilization of global memory well to non-uniform depth
complexity distributions. Thus, consumption of global mem-
ory is almost optimal even for rapidly decreasing DCHs.

Managing Local GPU Caches

It is common practice to avoid the higher latency of global
memory by copying the unsorted Fragment List to a local
cache before sorting. An important aspect of such cache uti-
lization is that the memory layout of modern GPUs typically
exposes a limited shared cache to a group of cores. Addi-
tionally, modern GPUs hide global memory latency by hot
swapping groups of threads in a manner similar to pipelining
on a CPU [NVI11]. Under ideal circumstances, the number
of active threads can be eight times higher than the num-
ber of physical cores. Per thread allocations therefore need
to be small enough such that all active threads designated to
a group of cores can have their arrays allocated simultane-
ously. It is thus important to minimize the allocation of cache
memory to maximize performance. Current trends also indi-
cate that the number of cores increases faster than the avail-
able shared cache size, potentially escalating this problem in
the future.

The prevalent approach described in the literature for
managing local GPU caches is to allocate a fixed sized ar-
ray, of size N per thread [Cra10, MCTB12]. This has two
immediate consequences. First, the maximum depth com-
plexity handled by the approach is limited to N, since all
fragments beyond this number are discarded. Second, larger
array sizes significantly reduce the number of active threads

due to cache overflow and reduced hot swapping. A number
often reported in the literature is N = 64. While the literature
includes strategies, such as DFB and PPLL, for managing
the global memory, there still remains room for improve-
ment in managing local caches.

5. Improved Dynamic Depth Complexity Management

We propose two novel A-buffer components for A-buffer
based algorithms based on the observed nature of the DCHs.
Both components are designed to improve the management
of local GPU caches. For clarity, we will use the term Local
Array to indicate the fast (local) memory allocated for the
sorting of fragments.

The first component, illustrated in the center of Fig-
ure 5, is called per-pixel Array Optimization (ppAO) and
ensures that all pixels are evaluated without allocating exces-
sively large Local Arrays. The component segments image
space into sections of similar depth complexity and sepa-
rate shaders, compiled with different local arrays sizes, are
triggered for each segment. The second component, illus-
trated to the right in Figure 5, is part of the Resolve Step
and corresponds to a novel sorting procedure called per-pixel
Depth Peeling (ppDP). The component breaks the sorting
into smaller pieces by not loading all fragments at once and
can thereby recycle memory.

A key factor of both components is that they are designed
to be used in combination with the current state-of-the-art
management of global memory described in the previous
section. The full rendering algorithm, optimized for geome-
try intensive fusion scenes, is thus formed by combining the
components proposed here with one of the existing solutions
for global management, such as DFB or PPLL.

5.1. Dynamic Resource Management Using per-pixel
Array Optimization

The objective of the proposed ppAO component is to limit
the amount of unused memory in the local cache by per-
forming the Resolve Step with Local Arrays that better cor-
respond to the depth complexity of individual pixels. Due
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Figure 5: Comparison of approaches managing local GPU caches: static management (left) and our two proposed components
ppAO (center) and ppDP (right). The unsorted input Fragment List (top) corresponds to the output of the Fill Step and resides
in global memory. The array is sorted in local caches during the Resolve Step using predefined array sizes. Two pixels are
exemplified, a heavy pixel (blue) and a light pixel (orange). The ppAO component significantly lowers the amount of unused
memory (shown in gray), while the ppDP component lowers the amount of both unused and used memory by recycling it.

to restrictions in GPU cache allocations, the optimization of
per-pixel array sizes requires multiple shader programs to be
instantiated for different Local Array sizes. Rather than us-
ing a unique shader for every possible Local Array size we
use a smaller set of pre-defined array sizes. This leads to a
clustering of pixels with similar depth complexity into seg-
ments. All pixels in a segment are then resolved in a batch
by a single shader. The full image is then processed in as
many batches as there are segments. Note that the cluster-
ing is independent of the actual pixel locations and that each
segment not necessarily corresponds to a focused region in
the image. The ppAO is positioned after the Fill Step in the
A-buffer algorithm (cf. Figure 3) making the ppAO responsi-
ble for managing and calling the Resolve Step on the respec-
tive complexity segments. The ppAO algorithm is outlined
below.

// Fill Step
forall pixels of the framebuffer do

count depth complexity;
end
// Resolve Step, loop over all complexity segments
foreach i ∈ {8,16, . . . ,max} do

activate shader program for complexity segment i;
forall unresolved pixels of the framebuffer do

// mask pixel if not part of segment class i
if depth complexity(p)<= i then

resolve segment with Local Array of size i;
// mark pixel as resolved

end
end

end

The instantiation procedure of the shader programs is
straightforward as the individual instances only differ by a
single number (the predetermined buffer size). It is also suf-

ficient to instantiate only a small set of shaders due to the
decreasing power curve observed in most DCHs. By analyz-
ing the depth complexity of various scenes, we found that
complexity segments of sizes 8, 16, 32, . . . , N give good re-
sults with respect to performance and memory consumption.

To perform ppAO, we need to know the depth complexi-
ties of all pixels. For this purpose, we utilize a separate inte-
ger buffer the size of the framebuffer (one atomic counter per
pixel) to count the number of fragments per pixel. The count-
ing can be combined with the scene rasterization in the Fill
Step and, hence, no additional rendering passes are required.
Once the depth complexities are known, the different com-
plexity segments may be processed. This is done by looping
over all pre-defined sizes of complexity segments and acti-
vating the shader program with the respective Local Array
size. The clustering of pixels into complexity classes is han-
dled implicitly during runtime by a masking step where all
pixels that are not part of the current segment are discarded.
Note that the graphics pipeline does not need to be flushed
between triggering successive segments and that multiple
segments may be evaluated in parallel (even if they are trig-
gered sequentially). Figure 5, center, depicts the utilization
of our approach for pixels exhibiting high and low depth
complexity.

5.2. Preventing Over-sized Local Arrays Using
per-pixel Depth Peeling

If the number of fragments inside a Fragment List exceeds
the buffer size of the Local Array information is usually lost
and the final rendering result might feature artifacts. One im-
practical solution is to increase the size of the Local Arrays.
However, large parts of the pre-allocated memory will never
be used since typically only a few pixels exhibit a high depth
complexity (cf. Section 3.1 and Figure 5, left). To overcome
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this particular problem, we propose a variation of depth peel-
ing on a per-pixel basis to provide a simple way to correctly
deal with overflowing Local Arrays. Thus, the maximum
supported depth complexity is no longer limited by the size
of local memory but instead limited only by the amount of
available global memory. In Figure 5, right, a Local Array
size of 8 is used to illustrate our approach for two depth com-
plexities.

The ppDP algorithm is outlined below and replaces the
Resolve Step for individual pixels in Figure 3.

input : list of fragment data per pixel
n← sizeof(Local Array);
create buffer with n elements;
set min depth to 0;
initialize current state;
// Resolve Step
repeat

foreach fragment f ∈ fragment list do
if depth( f ) ≤ min depth then

skip f in current pass;
else

insert f into buffer with insertion sort;
// store at most n elements
// drop last element on overflow

end
end
resolve buffer considering current state;
store min depth and state of last buffer element;
clear buffer;

until all fragments f ∈ fragment list are resolved;

The ppDP algorithm follows the approach of bucket depth
peeling where a larger list is sorted and resolved as a set of
smaller sequences but does so fully on the GPU between
global and local memory without the need to re-render ge-
ometry. We split the Resolve Step into several subpasses
which allows for the Local Array to be recycled and its size
to be reduced. With a Local Array of size n, the process sorts
n−1 elements in the Fragment List per subpass. While loop-
ing over the contents of the Fragment List, the n entries with
the smallest depth values are chosen and stored in the buffer
by using insertion sort. If a fragment was already processed
it will be discarded in the current pass. After filling the buffer
its contents are resolved. To ensure consistency between the
individual resolve passes, we temporarily store the current
state of the rendering, including volume occupancy and ray
position. The current state and minimal depth are updated
and the local buffer is emptied for the next pass. This ap-
proach does not require additional rendering passes but does
require the entire Fragment List to be read multiple times
from global GPU memory.

Sorting the full array thus takes a maximum of
dD/(n−1)e passes for a pixel with depth complexity D. The
loop may be terminated sooner, e.g. in case of early-ray ter-

mination, and further read/write intensive sorting operations
are avoided. Note that the size of the Local Array is constant.
We observed an optimal Local Array size of 8 for our ppDP
approach across all test setups with respect to performance.

Note that our ppDP algorithm may exhibit z-fighting is-
sues similar to regular depth peeling. The issue arises when
multiple fragments of a single pixel have identical depth
and only a subset of these fragments gets included in one
loop iteration. Since only the minimal depth is used to dis-
tinguish processed fragments from fragments yet to be re-
solved, the solution is not unique. This also complicates the
decision in the subsequent iterations regarding which frag-
ments should be discarded. So far in our work we have not
experienced any artifacts from this kind of z-fighting. Po-
tential solutions exist int he form of additional per-fragment
flags which could be used to asses process status at the cost
of additional read/write operations. A comprehensive dis-
cussion on the phenomenon and its solutions can be found
in the work of Vasilakis and Fudos [VF13].

6. Fused Rendering of Hybrid Data Sources

So far we have discussed the memory management of the
A-buffer involved in the construction of the sorted Fragment
List (Figure 3, blue highlights). In this section, we will fo-
cus on the A-buffer evaluation and the rendering of the scene
(Figure 3, orange highlight) and implementation details in-
cluding data structures.

6.1. Fragment List Creation and Evaluation

The following data structure is used for all fragments gen-
erated in the Fill Step as entries of the Fragment List: z
(float32), id (int32), color (vec4 float16). The structure has a
total size of 16 bytes and the same data structure is used for
both geometric and volumetric contributions.

In the Fill Step, ABuffer_frag entries are computed and
stored in the Fragment List. Geometric sources are shaded
during this step and the computed color is stored explicitly
in the color component. For volumetric sources, only the
associated proxy geometry is rendered during the Fill Step
and the color component is left uninitialized. The z and id
components are treated identically for all source types and
respectively hold the depth value in screen space coordi-
nates and a unique source identifier. Bit operations are used
on the id component to store both source type as well as a
unique identifier. Sources may be rendered independently by
different shaders but the produced fragments (instances of
ABuffer_frag) are all inserted into the same global storage.

During the final stage of the Resolve Step, the scene con-
tent is evaluated and blended into the framebuffer. At this
point, all entries in the Fragment List can be interpreted as
intersection points along the view rays. Ray casting of the
scene is performed in world space by sequentially looping
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over all entries in the Fragment List. Geometry fragments
are blended directly to the buffer while volume rendering is
performed for the interleaved ray segments. Volume occu-
pancy is tracked through a bitmask which is updated every
time a fragment of a volume proxy geometry is encountered.
For more information on fragment list evaluation, particu-
larly the use of bitmasks to track volume occupancy, we di-
rect the reader to Brecheisen et al. [BBPtHR08]. Once the
occupancy and entry and exit points are known, the prob-
lem is reduced to the problem of multi-volume rendering as
discussed in Section 2.

6.2. Implementation Details

Our implementation supports global memory management
using FFB, DFB, and PPLL as described in Section 4. The
FFB and PPLL implementations are derived from the work
by Crassin [Cra10]. The code for the DFB implementation
was provided by Maule et al. [MCTB12] and was slightly
changed to fit our needs. We use C++, OpenGL, and GLSL
for our framework. The only exception is the scan step of the
DFB implementation which is performed in CUDA using the
CUDA Thrust library as explained by Maule et al.

For management of local cache memory we utilize our
proposed components: ppAO and ppDP (cf. Section 5). The
ppAO component is implemented using an 8bit stencil buffer
for masking the different complexity segments to be trig-
gered by separate shaders. The Fill Step is enclosed in a loop
on the CPU, where different segments are triggered by mod-
ifying the OpenGL stencil function. Note that using an 8bit
buffer does not limit the depth complexity to 255. Higher
complexities are still possible but they will all be associated
with the same segment. If larger segment limits are needed,
the stencil buffer can easily be replaced with a texture of
higher precision. The ppDP approach simply replaces the fi-
nal steps of the Resolve Step and the loop is implemented
directly in GLSL.

Local Arrays are always allocated as local buffers with
predefined sizes inside the shaders and are, thus, not as-
signed explicitly to specific memory. Thread scheduling and
memory assignment is therefore up to the discretion of the
driver. The entire algorithm, with global and local optimiza-
tions, requires the implementation of three shaders namely
clear, fill, resolve plus additional clones of the resolve shader
containing different buffer sizes for the ppAO.

7. Results

We tested our proposed A-buffer components with four real-
world cases from different fields. The performance was mea-
sured for a viewport size of 1024× 768 on four different
NVIDIA GeForce GTX GPUs: 560, 580, 670, and Titan
(1 GiB, 1.5 GiB, 2 GiB, and 6 GiB VRAM respectively). In-
dividual performance for the 580 and Titan are included in

the paper (representing Fermi and Kepler architectures re-
spectively). Performance for 560 and 670 are available as
supplementary material. Reported averages were computed
across all GPUs. Scene configurations will be described next
in Section 7.1 followed by a presentation of performance in
Section 7.2.

7.1. Scenario Descriptions

Figure 1, protein: The data corresponds to the protein hu-
man carbonic anhydrase II. The scene consists of four
separate data sources; two volumetric data sets describ-
ing the electrostatic potential calculated at different res-
olutions and extents, a geometric stick representation of
the protein, and a geometric ribbon model of the protein.
Both geometric representations are colored according to
the secondary structure type. The three-dimensional struc-
ture and potential fields are often visualized to examine
potential docking positions between the protein and other
molecules [SdG10].

Figure 8, space: The space data set depicts results of a
multi-variate simulation of a time-dependent 3D magne-
tohydrodynamics system of the heliosphere during a coro-
nal mass ejection event. This particular systems is cur-
rently used in space weather prediction [XOL04]. The
scene consists of two volumes, showing the number of
charged particles and the energy density, and three isosur-
faces derived from the energy densities.

Figure 9, medical: The data, provided as the IEEE Visual-
ization Contest in 2010, contains multiple medical imag-
ing modalities as well as derived information sources for
planning neurosurgical intervention [CK10]. The scene
consists of four data sources; two volumetric data sets de-
picting T1-weighted MR images of head and brain, two
sources of geometric information in a surface extraction
of a tumor segmentation and about 1678 fiber tracts ob-
tained with diffusion tensor imaging. The combined in-
formation from all data sources is used to plan the safest
possible access path for an intervention.

Figure 10, cfd: The data results from a computational fluid
dynamics simulation of blood flow in the carotid artery of
a human subject. The scene consists of a single computed
tomography image and two sets of geometric primitives.
A sparse glyph representation and more than 7500 indi-
vidual streamlines.

More details on the different data sources of the individ-
ual scenes are listed in Table 1. Depth complexities are avail-
able as single view DCHs in Figures 1 (protein), 8 (space), 9
(medical), and 10 (cfd), respectively.

7.2. Performance Comparison

We have investigated how our proposed components im-
prove the performance for each of the three A-buffer algo-
rithms for global memory management. For each algorithm,

c© 2017 The Author(s)
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Table 1: Data information for the four selected scenes, in-
cluding the first frame of the sequence used for performance
tests.

Scene Data Data size 1st Frame

protein VOL 127×127×127
VOL 71×71×71
GEO 868k triangles
GEO 36k triangles

space VOL 256×256×256
VOL 256×256×256
GEO 162k triangles
GEO 100k triangles
GEO 67k triangles

medical VOL 415×487×176
VOL 367×395×150
GEO 363k triangles
GEO 1678 fibers

cfd VOL 76×49×45
GEO 7.5k streamlines
GEO ≈ 100 arrows

we measured the performance for different combinations. In
Figure 6, the results are shown from top to bottom for the
four distinct scenes—protein, space, medical, and cfd. For
each of FFB, DFB, and PPLL, we have measured the perfor-
mance of four configurations for local memory management;
baseline (static buffers), ppAO, ppDP, and ppAO+ppDP.
The largest Local Array size allocated for the scenes was
set to 64 (protein), 32 (space), and 128 (neuro and flow). Al-
locating a Local Array size to hold all depth layers of the
medical scene resulted in driver crashes, thus, only the first
128 layers were resolved for baseline and ppAO configu-
rations (ppDP is capable of resolving higher complexities
with smaller Local Arrays). Likewise, using FFB for global
management also limits maximum complexity, requiring ap-
proximately 12.6 MiB per depth layer at 1024× 768 reso-
lution. Depth segments for ppAO were chosen as powers of
two between 8 and the scene cap reported above. All per-
formance results for ppDP were measured with a Local Ar-
ray size set to 8. For each test, frame times were computed
as the average over 30 seconds of rendering as the camera
rotated around the scene at fixed distance. Early-ray termi-
nation was enabled for transparency values less than 0.02
during all benchmarks.

Due to a performance penalty associated with a
CUDA/OpenGL context switch, we were unable to achieve
results for the DFB on the same level as reported by Maule
et al. [MCTB12]. The penalty manifested as a 50ms–200ms
delay associated with the scan step and was persistent across
different GPUs and drivers and was also present in a min-
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Figure 6: Performance comparison with our proposed ppAO
and ppDP components. Columns represent the different
A-buffer implementations in combination with our compo-
nents (none, ppAO, ppDP, ppAO and ppDP combined).

imal stand-alone DFB implementation. The results for the
DFB approach reported in Figure 6 include this penalty.

Supported by the performance graphs, we can say that
both ppAO and ppDP are capable of providing significant
performance gains for a large variety of configurations. The
performance gain is threefold for ppAO and about eightfold
ppDP when averaged over all scenes and GPUs. For scenes
with high depth complexities or homogeneous depth com-
plexity distributions, the improvement obtained with ppAO
is reduced since the processing of the heavy pixels becomes
a bottleneck. In such scenarios, ppDP maintains a significant
speedup, particularly when early-ray termination is enabled.

In addition to the four real-world scenarios, we created
a synthetic worst-case scene with screen-filling quads. The
scene consists of 64 quads (α = 0.05) aligned orthogonal
to the viewing direction where their order is randomized in
depth. The quads are scaled so that they all cover the entire
viewport in the middle of the animation. Thus, all pixels fea-
ture a near-maximum depth complexity. Results are shown
in Figure 7 and confirm that the performance of ppAO (as
expected) approaches that of statically implemented buffers
while ppDP maintains a 3.6 times performance increase.
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Figure 7: Performance for a synthetic data set. Rendering
times are shown as lines (first y-axis) and DCHs as bar charts
(second y-axis).

8. Conclusions and Future Work

In this paper, we address the challenge of interactive explo-
ration of complex hybrid data. Two adaptive data handling
components are proposed to be combined with prevalent
A-buffer techniques to form a final rendering algorithm. Of
the two, ppDP is better equipped to deal with very high com-
plexities but does so at the cost of potential artifacts from z-
fighting while ppAO performs well for moderate complex-
ities with exact results. Optionally, the components can be
combined to achieve support for high depth complexities
while guaranteeing a minimum number of correctly blended
samples.

An interesting consequence of our work is the potential
alleviation of the traditional trade-off between performance
and depth-support. We believe that this aspect makes our
work valuable also in other areas of visualization or com-
puter graphics that employ A-buffer based techniques. For
example, it may now be possible to encode fiber tracking
uncertainties in the alpha channel of the visualized fibers
without eliminating the possibility to also visualize a co-
registered volume.
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Figure 8: Visualization of solar mass ejection simulation data used for predicting space weather. (a) final rendering of hybrid
visualization. (b) three geometric isosurfaces. (c) volumetric data sources. (d) image-space depth complexity (re-scaled for
representational purposes). (e) depth complexity histogram (DCH, log scale). Our improved A-buffer algorithm achieves up to
three times the performance compared to existing approaches.
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Figure 9: Fused visualization of hybrid data for the purpose of neurosurgical planning. The scene is particularly complex in
areas where the DTI fibers converge toward two main bundles. (a) full scene, (b) zoomed view, and (c) the depth complexity
histogram (DCH, log scale) of (a).

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.



S. Lindholm et al. / Hybrid Data Visualization

(a) blood flow (b) zoomed view
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Figure 10: Fused visualization of hybrid data used to asses blood flow in the human carotid artery. The rendering uses trans-
parency to reduce the focus on individual streamlines. (a) full scene, (b) zoomed view, and (c) the depth complexity histogram
(DCH, log scale) of (a).
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