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Abstract

In this paper, we present a novel visualization approach for the quantitative
analysis of knee movement patterns in time-varying data sets. The presented
approach has been developed for the analysis of patello-femoral instability, which
is a common knee problem, caused by the abnormal movement of the patella
(kneecap). Currently, patello-femoral analysis is based on acquisitions per-
formed during a 30 or 45 degrees of knee flexion, which is analyzed in so-called
Skyline or Merchant views. Because of the limited range of considered knee
flexions, this technique does not adequately reveal the instability of the kneecap
at full extension. While 3D imaging of the straight knee can help to improve
the diagnostic process, its static nature does not permit the analysis of the dy-
namics of the patellar under functional movements. Recently, 4D CT imaging
has become available as a new modality for kinetic joint movement analysis.
The inclusion of the time domain in 4D CT scans enables the acquisition of the
kinematic behavior of joints under natural conditions. However, quantitative
analysis on such 4D CT scans is challenging. Our approach investigates the
quantitative kinematic analysis of complex joint movements in time series data.
By supporting the ability to track features of interest (FOIs) in the time domain,
the quantitative analysis process can be facilitated in a semi-automatic manner.
Moreover, it allows us to visualize the movement of the patellar in the femoral
groove during an active flexion and extension movement, which is essential to
assess kinematics with respect to knee flexions. To further support quantita-
tive analysis, we propose kinematic plots and time-angle profiles, which enable
comparative dynamics visualization. As a result, our proposed visualization
approach facilitates better understanding of the effects of surgical interventions
by quantifying and comparing the dynamics before and after the operations.
We demonstrate our approach using clinical time-varying patello-femoral data,
discuss its benefits with respect to quantification as well as medical reporting,
and describe how to generalize it to other complex joint movements.
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1. Introduction

As the major focus of medical imaging has been the understanding of anatom-
ical structures, vast research effort has been dedicated to the acquisition and
interpretation of anatomical modalities. While these techniques enable the in-
terpretation of high-resolution static anatomical images, time-varying data is
now becoming more important. The better understanding of organ functions
can provide more insight and significantly improve the diagnostic workflow. This
has led to the emergence of many functional modalities, which allow multimodal
imaging of physiological processes alongside the anatomical image data serving
as a context. The latest exploitation of anatomical modalities in a functional
context arose with the recent advances in CT (computed tomography) imaging.
Driven by the demands of imaging the beating heart, the scanning time of mod-
ern CT scanners enables a dynamic acquisition under movement. As a result,
dynamic image-based orthopedics becomes possible. Traditionally, orthopedics
relies on anatomical data given by 2D X-ray or 3D CT and MRI imaging. How-
ever, previous research has shown that there is a disagreement in quantitative
diagnosis results between the traditional and the 3D imaging techniques due to
the failure to capture the dynamic nature of joints movement [43]. Accordingly,
the benefits of fast modern CT acquisitions have resulted in a novel trend in
this area [29, 36], where dynamic scans are acquired in order to understand the
complex kinematics, which influence proper joint movement.

There are three main challenges that arise from 4D CT imaging-based or-
thopedics. The first challenge is the quantification of complex joint movements
based on dynamic CT data. While inspecting an animation of the dynamic
data might help the medical doctor to get a first impression about underlying
conditions, quantification is necessary to support a proper categorization. Since
dynamic CT scans contain a vast amount of information, manual calculation of
kinematic parameters is a time-consuming process and can lead to inconsistent
results. The second challenge lies in the comparative analysis of joint movement
patterns. When detected conditions require a surgery intervention, a follow up
scan is often performed to measure the success of the operation. However, mea-
suring surgical success requires a comparison of the status before and after the
intervention, which makes a comparative analysis necessary. Finally, as medical
reporting is required in all medical disciplines, sufficient techniques are required
to be able to report on detected conditions.

In the analysis of patello-femoral instability issues, the Skyline or Merchant
view captured at 30 to 45 degrees of the knee flexion or 3D CT is commonly used
(see Figure 1(a), and 1(b)) [5, 13, 29]. However, these techniques have shown
not to adequately reveal the anomaly due to the limitation of capturing the
instability of the knee at full extension [14]. With 4D CT, it becomes possible
to obtain a 3D visualization of the patella’s tracking in the femoral groove during
a functional active flexion and extension movement with normal muscular force.
As illustrated in Figure 1(c) and 1(d), the ability to obtain information at full
extension with 4D CT helps to reveal the anomaly. Furthermore, dynamic CT
scans make it also possible to demonstrate the effect of surgical intervention and
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(a) Skyline view (b) Rendering of 3D
CT

(c) Rendering of a
knee at active flexion

(d) Rendering of a
knee at full extension

Figure 1: 2D and 3D views of a knee joint. While the conventionally used Skyline view
captured at 30 to 45 degrees of knee flexion looks normal based on X-ray (a) as well as 3D
CT (b), only the joint movement pattern imaged through 4D CT ((c), (d)) reveals the patellar
dislocation issue at the full extension.

optimize the surgical technique [5]. The fact that there are more than a hundred
of surgical techniques described indicates that no present method is perfect.

To meet the challenges in 4D CT image-based orthopedics, we propose novel
visualization metaphors, which enable quantification, comparison, and report-
ing of joint movements as imaged through time-varying CT data. The proposed
metaphors have been developed in close collaboration with medical experts who
wish to investigate patello-femoral instabilities with time-varying CT acquisi-
tions. In past years, research has been conducted on the visualization of angular
relations. Gait analysis, which is a study of locomotion, can be considered as
the origin of kinematic analysis [44]. The central question in this area is the
understanding of angle correlations. The angle-angle plot, in which each axis
represents a kinematic or kinetic signal, is commonly used to convey angular
information. By plotting one signal against the others, an angle-angle plot il-
lustrates the coordinated motion of the two segments or joints. Manal et al.
used an advanced color-coding scheme to incorporate additional parameters
into the standard angle-angle plot [27]. Later, the authors proposed the use
of an additional dimension within the plot so that additional parameters can
be visualized [26]. Côté et al. presented 2D projected stick figures to show
the kinematic results of continuous hammering performed by different patient
groups [10]. While the proposed approach was sufficient when looking at joint
height, it failed to reveal the kinematic relationships. Keefe et al. proposed a
visualization system based on multiple views to show relationship within se-
quential kinematic data [19]. Krekel et al. focused on the visualization of the
relationships between multiple connected joints by combining interactive filter-
ing with visualization [22]. The approach probably most relevant to our research
is that of Krekel et al. [21], in which a technique for visualizing the range of
motion of the shoulder joint is presented.

In addition, we propose a GPU-based enhanced FOI identification and track-
ing in the time domain based on the scale-invariant feature transform (SIFT)
algorithm. For instance, the FOIs selected by users are tracked automatically
over scans in dynamic CT data and thus, serve as a foundation for quantita-
tive measurement of kinematic parameters. The SIFT algorithm [24, 25] is a
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widely used technique in the field of computer vision to identify and match
features between images. In the SIFT technique, stable features are detected
through a scale-space analysis approach. Then, for each detected feature, de-
scriptors are constructed in such a way that they are invariant to rotation, and
translation. The constructed descriptors serve as the foundation for matching
features between 2D images. While the technique was initially proposed to
handle 2D images, the underlying mathematical foundation can be extended to
handle n-dimensional data sets [8, 38]. As a result, SIFT has been successfully
applied into different application cases involving salient feature localization and
matching such as motion tracking [1, 33, 38], group- related studies [42], vol-
umetric ultrasound panoramas [31], and complex object recognition [16, 17].
Recently, SIFT has been compared to other feature detection algorithms and
the result shows that SIFT achieves a balanced result between stability and per-
formance [45]. It is worth noting that while the investigation of patello-femoral
instability has driven our research, the presented visualization techniques are in
fact generalizable and thus can be transferred to other application cases, where
complex joint movements are of interest (see Section 6.2).

While other research has been conducted on the visualization of complex
joints [22, 35], to our knowledge, the work in this paper is the first to tackle time-
varying CT data in order to support the analysis of joint movement patterns.
Our visualization approach differs from previous work in the way we handle
and derive kinematic information from the input data. For instance, previous
research focuses on using markers to track the kinematic behaviors of joints, we
focus on extracting kinematic information directly from time-varying volumetric
data sets. This enables a new and novel visual interpretation, as the analysis
takes arbitrary feature points inside joints into account. Furthermore, patient
instrumentation with markers is avoided. To support a better understanding
of the acquired data sets and the contained joint movement patterns, we make
three major contributions:

• Visualization metaphors for the quantitative assessment and comparison
of joint movement patterns.

• Component separation and visualization to enable medical reporting of
joint movement patterns.

• Interactive visual inspection of joint movement data based on an enhanced
GPU-based feature identification and tracking technique based on the
SIFT algorithm.

2. Medical Background

The patella (knee-cap) is a bone that is incorporated into the tendon of
the quadriceps muscles of the thigh and moves within a groove at the lower
end of the femur (thigh bone). When the knee bends, the patella engages
the groove and is fixed to the center of the groove by muscle forces. On the
other hand, the patella moves to the upper more shallow end of the groove
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when the knee is straightened. As a result, the patella will be more loose, and
may move somewhat more lateral (to the outside) [37]. The medial patello-
femoral ligament (MPFL) is the primary medial restraining structure against
lateralization of the patella when the knee is straight or mildly flexed, and
contributes up to 80% of the medial restraining forces to the patella [12].

A dislocation of the patella occurs when the patella comes completely out of
its groove, gets fixed to the outside of the knee joint, and this causes significant
pain. It commonly happens to young and physically active people, often during
sporting activities. The annual incidence of primary patellar dislocations has
been estimated to 43 per 100000 in children under the age of 15 [32]. The
first dislocation usually occurs as a significant injury with the knee in near full
extension, but the patella may dislocate much more easily thereafter. Recurrent
patellar dislocations eventuate in 15-45% of primary dislocation cases [18] and
can cause significant problems, not only prevent sport activity, but also be a
hindrance in daily activity.

The primary treatment is bracing as well as physiotherapy to strengthen
the stabilizing muscles [2], especially the inner part of the quadriceps muscle
(vastus medialis). By strengthening this muscle, it has been hypothesized that
the patella will track more centrally in the groove, avoiding a more lateral
position that may increase the likelihood of recurrent dislocation and instability
symptoms.

In patients who have repeated dislocations, there are more than hundred
surgical options described [5]. It is possible to restore the normal anatomy
by repairing the torn ligaments on the inner aspect of the knee, to deepen
the groove, or to realign the patellar tendon to stabilize the patella in a more
medial (inner) position [37]. In the last decade, it has been increasingly popular
to reconstruct the MPFL, often as an isolated procedure [9].

The lack of accurate follow-up methods to assess the movement of the patel-
lar in relation to the groove after rehabilitation or surgical intervention has led
to the multitude of operations. Ordinary radiographic methods are inadequate
for the assessment of patello-femoral malalignment. The most commonly used
technique for visualization of the patello-femoral joint requires 30 to 45 degrees
of knee flexion (see Figure 1(a)) [5, 11, 41]. It is a static examination and the
images are not obtained near full extension where the groove is most shallow
and the patella is more unstable. Conventional CT-scans and MRI can get
images with a straight knee, but they are static and will not display patellar
tracking under functional movements (Bull, Katchburian 2002). With the use
of 4D CT, it becomes possible to get a 3D visualization of the patella’s tracking
in the femoral groove during a functional active flexion and extension movement
with normal muscular forces. However, it is difficult to describe 3D motion in a
distinct way. Fixed body axes in either the patella or femur can give confusing
results [5]. Thus, there is a great need for quantitative analysis of joint move-
ments through apparent visualization methods to give a better understanding
and also to get quantifiable results.
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Figure 2: In the pre-processing stage, features in a dynamic CT data set are extracted and
matched between scans. In the second stage, user can select FOIs and have these FOIs
tracked in the time domain. Depending on the application in mind, different quantitative
measurements can be performed and visualized for assessment.

3. Method

Figure 2 presents the workflow of the proposed approach. In order to support
the quantitative visual analysis of the knee movement patterns, the dynamic CT
scan is pre-processed. Particularly, features are extracted and matched between
scans to serve as the foundation for the interactive visual analysis stage. In the
second stage, users can interactively select FOIs and the system automatically
tracks these features between scans in the input dynamic CT data. Depending
on the application in mind, different quantitative measurements of kinematic
parameters based on the selected features are performed. The results are then
visualized through the proposed visual metaphors (see Section 4) to support
quantitative and comparative analysis of the underlying kinematic information.

3.1. Enhanced GPU-based feature identification and tracking

While our work is based on extensions of the SIFT algorithm to handle 3D
volumetric data [38, 8], we exploit the parallel nature and computing power
of the GPU to achieve interactivity. Moreover, we propose a novel descriptor
construction technique that helps to improve the accuracy in the feature match-
ing and tracking process. The algorithm is performed in three successive stages:
feature location detection, feature descriptor construction, and feature matching.

3.1.1. Feature location detection

In the first stage, stable features in the input image are identified through
a scale-based analysis approach. First, the volumetric input data, I(x, y, z), is
convoluted with variable-scale Gaussian functions, G(x, y, z, kσ), to generate a
scale space, L(x, y, z, kσ), as follows:

L(x, y, z) = G(x, y, z, kσ) ∗ I(x, y, z) (1)

where k is a constant multiplicative factor for separating scales in the scale-
space. The local extrema of the difference-of-Gaussian functions, D(x, y, z, kiσ),
applied to this scale space are considered to be potential local features in the
original volumetric data:

D(x, y, z, kiσ) = L(x, y, z, ki+1σ)− L(x, y, z, kiσ) (2)

6



Lindeberg and colleagues could show that these local extrema are a close ap-
proximation to the scale normalized Laplacian-of- Gaussian [23], σ2∇2G, which
are the most stable features in the input image [30]. By applying a thresholding
scheme based on the principle curvature analysis to filter out the blob-like and
edge-like features, which are usually of no interest, the stability of the detected
feature locations can be further improved [1].

The construction of the scale-space representation is a computation demand-
ing process. Fortunately, the calculation at each voxel is independent of the
calculation at others. Therefore, it is natural to make use of the parallel nature
of the GPU to enhance the performance. For instance, the convolution of the
input volumetric data using separable Gaussian kernels helps to dramatically
improve the performance.

3.1.2. Feature descriptor construction

The aim of the second stage is to construct a unique descriptor to represent
the detected feature location in such a way that is most invariant with respect
to rotation, scaling, and translation. The construction of such a descriptor is
based on the gradient orientations in the neighborhood of the detected feature
locations and presented as a histogram of gradient orientations. In 3D, a gradi-
ent orientation comprises three components: azimuth, elevation, and tilt angle.
While the elevation and azimuth components can be derived directly from the
gradient itself, the tilt angle can only be derived through a more complex analy-
sis of the neighborhood [1]. Consequently, a 2D histogram is required to capture
the distribution of the azimuth and elevation angles when handling 3D images.

In the first step of constructing a descriptor, it is crucial to identify the
dominant gradient orientation, which is the maximum peak in the histogram of
gradient orientations, in the neighborhood of a detected feature. The rotation
invariant property of the descriptor is achieved by re-orienting the other gradient
orientations in the neighborhood to the identified dominant gradient orientation
before generating the final descriptor [25]. In addition, to avoid disruptive
changes of gradient orientations in the neighborhood around a detected feature
location and to further improve the uniqueness of the constructed descriptors,
gradient orientations are divided into ranges of 45 degrees, and the neighborhood
around each detected feature location is divided into sub-regions [1, 25]. For
example, the commonly used neighborhood size of 16x16x16 is divided into 64
sub-regions of 4x4x4. Thus, the final descriptor is a concatenation of histograms
of gradient orientation corresponding to each sub-region. While the resulting
descriptor is a unique representation of the detected feature, discarding the
other gradient orientations of lower magnitude can have a negative impact on
the feature identification stage. By creating additional descriptors based on
smaller peaks, which are of 80% the maximum peak in the initial histogram
of gradient orientations, the accuracy in the feature matching process can be
vastly improved [25].

Previous research has shown that the size of the neighborhood can have a
large impact on the uniqueness of the constructed descriptors, which affects the
accuracy of the feature matching process between images [1, 33]. This is due
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to the fact that the size of the neighborhood is a global setting and is depen-
dent on the input data. While a large size neighborhood (e.g., greater than
16x16x16 voxels) might fail to capture the local characteristic of the detected
feature, a small size neighborhood (e.g., less than or equal 8x8x8 voxels) might
put too much emphasis on the local property characteristic of the detected fea-
ture. To overcome this limitation, we propose a novel descriptor construction
approach called ring descriptor. In our approach, the neighborhood is divided
into non-overlapping sub-regions centered at the detected feature location. For
each non-overlapping sub-region, the dominant gradient orientation is identified.
This allows us to capture not only the local characteristic of the detected features
but also reduce the impact of the neighborhood size setting on the uniqueness of
the final descriptor. To achieve rotation invariant property, gradient orientations
in the neighborhood are then re-oriented to the dominant gradient orientations
of each sub-region before the construction of the histogram of gradient orien-
tation. Our experimental findings have shown that not only the total number
of descriptors is comparable to previous approaches, but also the uniqueness of
the descriptors is increased. Consequently, the proposed descriptor construction
technique helps to improve the accuracy of the feature matching process without
scarifying the performance, which will be presented in detail in Subsection 6.1.

Another advantage of the proposed technique is the ability to introduce a
weighting factor into the feature descriptor construction process. For instance,
depending on the input data, the local property of the detected feature can
be emphasized or de-emphasized through a weighting factor for the dominant
gradient orientation of the non-overlapping rings. As a result, the size of the
neighborhood has less influence on the result, which makes the proposed ap-
proach more flexible in handling different type of dynamic volumetric data.

One of the challenges for the realization of the proposed approach using the
graphics hardware is the limitation of the memory architecture of the GPU.
For instance, a large neighborhood setting can lead to a large histogram that
cannot be fitted into the local/share memory on the GPU to exploit the highest
performance as possible. To overcome this limitation, a multi-pass approach
can be used [39]. In our approach, we have different OpenCL kernels that are
optimized for different histogram size and a generic kernel for handling large size
histogram. The system then automatically switches between optimized versions
to achieve the highest performance.

It is worth mentioning that a smoothing operator applied to the constructed
histogram of gradient orientations is required to reduce the impact of disruptive
changes of gradient orientations [25] in standard implementation of SIFT. How-
ever, the type and the bounds of the smoothing operator are abstracted from
the original input data. As a result, it is difficult to identify a good smoothing
operator to improve the quality of the constructed descriptor. In the proposed
technique, by moving the computing from CPU to GPU, we do not only exploit
the parallel computing power of the GPU but also implicitly achieve the interpo-
lation supported by the hardware. Particularly, the GPU hardware enables us
to achieve a bi-linear interpolation by default. Moreover, instead of re-orienting
gradient orientations in the neighborhood around a detected feature location,

8



the whole neighborhood is re-oriented to the dominant orientation and gradi-
ent orientations are updated accordingly. This allows us to minimize the effect
of different interpolation scheme applied to a constructed histogram of gradi-
ent orientations as the interpolation in our approach is directly based on the
underlying information from the input data.

3.1.3. Feature matching

Once the features descriptors have been constructed for two data sets to
be compared, they can be used to identify matching features using different
techniques such as RANSAC [15], Best-Bin-First (BBF) [3]. Since a descriptor
is basically a concatenation of histogram of gradient orientations, the Euclidean
distance between descriptors is a good indicator for a high probability match:

d(p, q) =

√√√√ N∑
i=1

(pi − qi)2 (3)

Here, p and q are two descriptors, pi and qi are the i-th elements of these
descriptors, and N is the size of the descriptors. To find the matching features
in the two data sets, I1 and I2, the Euclidean distances from each descriptor
in I1 to all descriptors in I2 are computed. The minimum distance value is an
indicator of a high probability match. The finding of the minimum distance is
a reduction problem. Due to the size of each descriptor, a GPU-based approach
does not improve the performance. As a result, we present a hybrid approach
to the problem of feature matching. The computation of the Euclidean distance
between one descriptor in the first input image, I1, and all descriptors in the
second image, I2, are performed in parallel using the GPU. The result is then
passed to the CPU implementation to identify the minimum distance that serves
as indication of a high probability match.

3.2. Kinematic parameters measurement

There have been various researches focusing on the methods used to describe
patello-femoral joint motion in past years. The results can be classified into
two groups: those that describe motion of the patella relative to the femoral
groove and those that describe the motion of the patella relative to a fixed-
body axis [5]. The former are primarily imaging studies, in which CT and
MRI have been used to investigate the patellar motion during dynamic knee
joint movement [4, 34, 40]. One significant drawback of previous results is the
inability to describe the patellar motion in three-dimensional space.

The congruence and tilt angles between the patellar and the femoral groove
are two commonly used kinematic parameters in quantitative analysis of the
patello-femoral issue. As the congruence and tilt angles reflect the relation
between the patellar and the femoral groove, we propose a geometry setup, in
which the patellar and the clip plane cut through its widest part serve as the ref-
erence, for quantitative kinematic measurement (see Figure 3). The congruence
angle is then defined by the angle between the bisected femoral trochlea (dashed

9



(a) Knee overlain with a FOI
(green)

(b) Congruence angle mea-
surement

(c) Tilt angle measurement

Figure 3: Congruence and tilt angle measurement. (a) is the visualization of the knee overlain
with a FOI (green), which marks the widest part of the on the left knee. (b) and (c) are the
illustrations of the congruence and tilt angle measurement through a clip plane setup.

line in Figure 3(b)) and the vector connecting the apex of sulcus angle, ABC,
to the lowest point of the articular ridge of the patella (BD in Figure 3(b)).
By using the same geometry setup, the tilt angle, θ, is defined as the angle
subtended by a line joining the lateral edge and the lowest point of the articular
ridge of the patella and the posterior condylar line as illustrated in Figure 3(c).

Besides the ability to describe the patellar motion in three-dimensional space,
the combination of the proposed kinematic parameters measurement approach
and the feature identification and tracking allows us to have a semi- automatic
measurement of kinematic parameters. The manually selected FOIs (see Figure
4(a)) are automatically tracked across scans in a dynamic data set. As a result,
the resulting clip plane setups can be achieved not only automatically but also
consistently.

It is worth pointing out that when the patella moves out of the femoral
groove, there is no intersection between the clip plane and the femoral groove,
thus the congruence angle cannot be calculated. Consequently, the proposed
approach reflects the fact that there is no congruence between the patella and the
femoral groove, which the previous research results failed to capture and present.

In addition to the measurement of the congruence and tilt angle, we propose
the measurement of the distance, dG, from the lowest point of the articular ridge
of the patella, R, to the femoral groove to convey the translation of the patella
in relation to the femoral groove as follows

dG = min
1≤i≤N

d(R, pi) (4)

where N is the number of point on the femoral groove, and d is the Euclidean
distance function. In this approach, the femoral groove is approximated by a
set of discrete point in order to reduce the computation demand. The presented
feature tracking technique allows us to track the identified points, which approx-
imate the femoral groove, in the time domain to facilitate the calculation and
reduce the time-consuming process of manually select features through out all
the scans in a dynamic data set. By applying the same approach, the distance
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(a) Angle-angle plot (b) Radial angle plot

Figure 4: The relations between the abduction angle and the axial rotation of two subjects.
The standard angle-angle plot allows quantification of the relation but makes mental registra-
tion with the spatial context difficult (a). The proposed radial angle plot represents the same
data in a joint centered way, while at the same time exaggerating the differences for critical
abduction angles (b).

between the drill holes on the patella and the drill hole on the femoral can also
be calculated. The quantitative results enable doctors to assess the success of
the surgical intervention in comparison to the pre-surgical intervention as well
as the effect after the surgical intervention.

4. Comparative Visualization

4.1. Radial angle plot

The angle-angle plot is one of the most commonly used visual metaphor for
depicting kinematic parameters [27]. In a traditional set up, each axis of the
plot represents a kinematic parameter, whereby the plot reveals the relation of
the individual parameters to each other. Figure 4(a) shows an example of the
angle-angle plot depicting the relations between the abduction angle and the
axial rotation of two subjects. Although the angle-angle plots help to reveal
the relations between the two kinematic parameters, its representation does not
reflect the visual mapping of the presented angular values within the context of
the joint. As a consequence, the interpretation as well as the mental linking of
the plot to the actual movement patterns requires a lot of experience and time.
This becomes especially apparent when observing the comparative qualities of
the angle-angle plot. When comparing the plotted data for Patient 1 (orange)
and Patient 2 (blue), it becomes clear that the movement of Patient 1 includes
a lower degree of axial rotation for abduction levels 40 to 130. However, as the
spatial reference of the joint is missing, the rotation difference with respect to
the joint is not immediately visible.

To address these shortcomings, we present radial angle plots as a joint-
centered visualization metaphor to depict kinematic parameter relations. The
radial angle plots have been designed in such a way that they can be easily
applied to various joint types. Instead of using linear mappings for the x and
the y-axis as illustrated in Figure 4(a), we combine linear and polar mappings
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of the angular values. While the x-axis is the linear representation of one kine-
matic parameter, the y-axis is converted into a polar representation as shown
in Figure 4(b). This enables the visual mapping of the plotted values to the
actual angular changes, as given within the frame of reference of the joint under
investigation. The concentric layout of the angular relations between kinematic
parameters provides an implicit exaggeration of the most interesting kinematic
parameter range, i. e., an angle representing full abduction or flexion. These
extreme angles are the most problematic when dealing with joint issues, even
small changes need to be considered and should thus be emphasized by the used
visualization metaphor.

Figure 4 compares the traditional angle-angle plot to the proposed radial
angle plot. In Figure 4(b), the x-axis represents the abduction angle while the
axial rotations are placed on the corresponding shaded concentric half-circle
(from −90 degrees to +90 degrees, from left to right). The gray scale gradient
has been chosen to allow an intuitive quantification of the polar angle coordi-
nates, as well as an emphasis of the joint center, which is located in the middle
at 0 degrees. While the angle-angle plot also depicts the relations between the
two kinematic parameters for both patients, the radial angle plot reflects the
actual angular changes directly through its visual mapping.

When dealing with the patello-femoral analysis, which is addressed in Sec-
tion 5, an additional benefit of radial angle plots is the fact, that they can be
directly co-registered with the 2D Skyline view representation. As illustrated
in Figure 5, the concentric layout and the polar representation of the congru-
ence values not only enables us to emphasize the difference between pre- and
post-operation result at extreme position (53 degrees flexion) but also implic-
itly co-registers the rotation to of the kneecap to the femoral groove (center of
the radial angle plot). Moreover, the radial angle plot also reflects the medial
and lateral patellar angles corresponding to the negative and positive halves of
the rendering. It is worth pointing out that in the design of the radial angle
plot, the range of the angular value can be normalized accordingly to emphasize
the changes.

Figure 5: A radial angle plot of the congruence angles from pre-operation (red) and post-
operation (blue).
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Figure 6: Visualization of the proposed time-angle profile metaphor. The extracted movement
pattern of the patellar over time is rendered at the center of the image. Kinematic parameters
are incorporated through projection technique onto the bottom, side, and back plane.

4.2. Time-angle profile

Although the 3D visualization of a full scan in a time-varying data set can
provide both the visual context and the detail information to support visual
analysis, there is a large amount of data presented to the user, especially in
the case of 4D CT. In addition, the occlusions in the 3D visualization of vol-
umetric data can change drastically in the time domain, and affect the visual
access to areas of interest. Consequently, this can cause distractions when a
user changes from one time frame to another. As the kinematic analysis process
usually focuses on a defined feature and derive its movement patterns over time,
an abstract visualization focusing on the feature and its kinematic character-
istic can help to improve the visual analysis process. We propose an abstract
visualization of a defined feature in the time domain called time-angle profiles.
The proposed visual metaphor is designed in such a way that it helps to filter
out unnecessary information while maintaining the kinematic parameters of the
feature under investigation. At the same time, it captures the whole move-
ment within a single picture and thus supports medical reporting and pattern
comparison.

To generate this representation, the feature must be identified in all time
frames before all instances are combined into a single visualization. In a stan-
dard approach, the extraction of the feature under investigation in all scans of
a dynamic data set is very time-consuming. Fortunately, the proposed feature
identification and tracking technique allows us to derive affine transformations of
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the feature across all scans in the dynamic data. As a result, a single extraction
of the feature is enough for the generation of the proposed visual representa-
tion. The combination of all instances of the feature in all time frames is then
visualized through a 3D sweep structure. This sweep representation provides
an overview of the whole kinematic changes in the time domain. However, it
does not facilitate visual assessment of kinematic parameters due to the fact
that a complex movement pattern is usually a combination of different compo-
nents such as rotations, translations, and tilting. Inspired by the magic mirror
metaphor introduced by König et al. [20], we exploit the use of projection tech-
niques to decompose the movement patterns for the extracted features. By
projecting the whole movement pattern onto a multi-planar plane geometry, we
can reveal the underlying components of the kinetic parameters. For instance, a
projection from the top view can reflect the rotation, and a projection from the
side view can shows the translation over time. In addition, the semi-transparent
sweep structure is color coded to depict the various degrees of kinematic param-
eter changes.

Figure 6 illustrates the proposed visual metaphor applied to the visualiza-
tion of the movement pattern of the patellar. At the center of the image is
the extracted movement pattern of the patellar over time. The transition from
a lighter to a darker color depicts the degree of kinematic parameter changes.
For instance, as the patellar rotates, tilts and translates more at the extreme
position in comparison to the initial relaxed one, the color goes from a dark to a
light shade of blue. By projecting the movement pattern using different viewing
angles, the proposed visualization approach can achieve the decomposition of
the complex kinematic characteristics. The orthographic projection of the tra-
jectory onto the side plane reveals the shifting of the patellar out of its groove.
The projection onto the bottom plane reflects the changes in congruence angles,
while the projection onto the back plane shows the degree of tilting. Although
the proposed technique does not provide the contextual information by focusing
only on the movement pattern, it can be used as an adjunct to the 3D visual-
ization of the time-varying data in a multiple linked view setup. As a result,
contextual information and an overview of the kinematic changes over time can
be visualized in an integrated manner.

5. Results and Discussion

We applied to proposed approach to two real clinical data sets to verify
the ability to facilitate quantitative analysis of the patellar movements. Two
subjects were examined for this study. The first subject is a 19 years old female,
patient A, with bilateral pronounced instability problems since she was 13 years
old without any significant injury. The left and right side of patient A were
operated in 2011 and 2012 respectively. The left side has been stable since the
operations and is now asymptomatic. However, patient A had an injury on
the right side after the operation. The situation makes it hard to assess the
reconstructed tendon with CT scan on the right side on which patient A still
has some instability symptoms. As a result, a re-rupture or an elongation of the
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(a) (b)

Figure 7: Visualization of straight knees before the operation (a), and the reconstruction of
MPFL with a gracilis tendon (b) (permitted by Storz).

reconstruction are under suspicion. The second subject is a 23 years old male,
patient B, with distinct problems after an injury on the left side. In addition,
patient B also has minor instability problems on the right side. Patient B had
an operation on the left side in 2013. The operation was successful and patient
B has a stable knee three month after the operation.

Figure 7(a) illustrates an overview of the patello-femoral issue in both cases,
in which the kneecaps are far out and tilted on the lateral side. In both cases,
the operations were performed with a reconstruction of the MPFL with a gracilis
tendon (see Figure 7(b)). First, two drill holes on the kneecap and another one
on the femur were created. Then, the tendon is passed through the drill holes
on the kneecap, both free ends are then passed into the drill hole on the femur,
tightened with the use of sutures and then fixed with a resorbable screw in
the femur.

About a month before the operation, a dynamic CT scan is performed.
The patient is supine with both legs resting on a radiolucent knee-support as
illustrated in Figure 8. The maximal knee angle is about 40-50 degrees when
the heels are touching the bed as shown in Figure 8(a). The patient performs
bilateral active knee extensions until full extension (see Figure 8(b)), referenced
as 0 degree, and then flexions.

The acquired dynamic CT scans were pre-processed using the GPU-based
enhanced FOI identification and tracking approach proposed in Subsection 3.1.
In the quantitative visual analysis stage, the domain experts interactively se-

(a) (b)

Figure 8: Flexion (a) and extension (b) of the knees resting on the radiolucent knee support.
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lect FOIs (see Figure 3(a)) in one time frame and have these FOIs tracked
automatically through the whole dynamic CT scan. Consequently, kinematic
parameters were calculated in an automatic manner. The results were then pre-
sented through the proposed visualization metaphors to convey the underlying
kinematic parameters of interest.

Figure 9 presents the quantitative measurements of the distance from the
lowest point of the articular ridge of the patella to the femoral groove. Patient
A had subluxations of both kneecaps when straightening the knees before the
operation. On the postoperatively asymptomatic left side, the distance to the
groove has decreased from about 60 mm to 25 mm with straight knees. On
the right side, patient A still has some instability symptoms; however, it is less
than before the operation, the distance to the groove has decreased from about
53 mm to 28 mm. The result of the facilitated the measurement of the distance
from the two drill holes on the kneecap to the one on the femur for patient A is
presented in Figure 10. The measurement shows that the distances are stable
between the 3 month post-operation and 12 month post-operation.

Figure 11 shows the result of tilt angle measurements using the technique
proposed in Subsection 3.2. The proposed radial angle plot present not only
the movement patterns of the kneecap but also present them with respect to
the reference frame, which is the femoral groove. Figure 11(a) shows that the
tilting pattern of the left and the right kneecap are similar. Due to the injury
happened after the operation in 2012, patient A still has instability issue on
the right side. Although the tilt angles are similar between the left and right
side at full extension, the patterns are different when the functional movement
comes to 45 degrees flexion, which is emphasized through the radial angle plot
in Figure 11(b).

The movement patterns of the left kneecap of patient B are depicted in
Figure 12. The decomposition of the complex kinematic properties are done
through the projection technique. Particularly, the projection onto the side
presents the shifting of the kneecap out of its groove. The projection onto the
bottom plane reflect the congruence angle changes, and the projection onto the
back plane conveys the tiltings of the kneecap with respect to the femoral groove.
From Figure 12(a) and Figure 12(b), it can be seen that the kneecap shifts out of

(a) (b)

Figure 9: Quantitative measurement of the distance from the lowest point on the articulate
ridge to the femoral groove before operation (a), and post operation (b) from patient A.
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(a) (b)

Figure 10: Distance between the drill holes on the kneecap to the drill hole on the femur
three month after the operation (a), and one year after the operation (b) for patient A. The
measurements showed that the distances are stable between 3- and 12 month postoperatively.

the femoral groove less after operation. In addition, the changes of tilt angles as
well as the congruence angles are also less than before. In addition to the detail
rendering of the transformation of the kneecap, the color-coding scheme also
quickly provides the information about the kinematic changes. For instance,
the color transition from dark to light between the 48 degrees and 35 degrees
flexions in the rendering on the back plane indicates that the tilt angle reduces
rapidly. On the other hand, the small color transition from 44 to 46 degrees
flexion in the rendering on the bottom plane indicates that the congruence angle
stays almost unchanged. This reflects the fact that the operation on the left
side of patient B was successful.

According to the feedback from domain experts, the quantitative measure-
ments facilitated by our proposed approach support the suspicion of the doctor
about the instability of the right knee of patient A. For instance, patient A had
a more pronounced decrease of the groove distance for the asymptomatic left
knee postoperatively compared to the right one, but both legs of the ligament
reconstruction were unchanged according to the the distances between the drill
holes between 3 months and 12 months postoperatively. This indicates that
the injury happened after the operation could have elongated the reconstructed
ligaments on the right side, but there were no further elongation the rest of
the first postoperative year. Moreover, we also receive positive feedback from
domain experts about the time-angle profiles. This visual metaphor is very

(a) (b)

Figure 11: Quantitative measurement from the proposed approach for the tilt angles of the
kneecaps for patient A.
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(a) (b)

Figure 12: Visualization of the movement pattern of the left kneecap of patient B using
the time-angle profile visual metaphor. (a) and (b) present the measurements of kinematic
parameters from pre- and post-operation stage respectively.

useful in providing an overview of the movement pattern of the patellar under
investigation. Besides the ability to decompose a complex movement pattern
into several kinematic parameters through projection technique, the combina-
tion with the facilitated automatic kinematic parameters measurement enables
the transition from an overview into a detail quantitative analysis.

6. Verification and Generalization

6.1. Verification

To evaluate the proposed GPU-based enhanced FOIs identification and track-
ing, we compare our results to the recently published work [33]. The test data
set is a 4D CT thorax scan [7, 6]. The data is given by ten equally sampled
phases of the respiratory cycle in which the maximum exhale phase and the max-
imum inhale phase are denoted as L0 and L5 respectively. The reconstructed
volumes have the size of 512x512x128 voxels. The reference landmarks in L0
and L5 were manually setup by domain experts. While the parameters used
in our algorithm were set to match the ones used in [33], our approach makes
use of the proposed ring descriptor construction technique. In addition, due
to the advantage of the GPU-based implementation, we do not apply smooth
operator to the histogram to avoid disruptive changes of gradient orientations
but instead rotate the neighborhood region to the dominant orientation, which
implicitly takes advantage of the bi-linear interpolation on the GPU.

6.1.1. Feature location detection

We have evaluated the matches, whereby we have computed the error as 3D
residual distance between identified and matched feature locations at the L0
and the L5 phase (SIFT L0–L5). Figure 13 illustrates the visualization of the
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(a) (b)

Figure 13: Visualization of the inhale lung. (a) is the visualization of the lung overlain
with the detected feature locations (green) from the GPU-based enhanced FOI identification
and tracking algorithm, (b) is the visualization of the inhale lung with the manually input
landmarks (blue).

inhale lung overlain with features of interest. While the detected features from
the SIFT algorithm are colored in green (Figure 13(a)), the manually input
reference landmarks are colored in blue (Figure 13(b)). The Mann-Whitney
U test [28] was applied to the error distribution in the identified and tracked
features as well as in the reference landmarks. Table 1 shows our results in
comparison to the ones reported in [33]. Besides the slightly higher number of
matches between the maximum exhale and maximum inhale phase, the proposed
approach has shown to improve the accuracy in the descriptor matching process,
as we have achieved a lower median, 11.14 compared to 13.23, as well as a lower
variability. In addition, the Mann-Whitney test confirms that the distributions
of the residual distances in the reference landmarks and in the result of the
enhanced SIFT operator are not significantly different (p-value = 0.736), which
means that the proposed approach can be used to identify the feature locations.

6.1.2. Feature matching

To measure the impact on the feature matching process, we detect the fea-
ture locations in the time-series data and track these features in two different
variants. First, we always use the maximum exhale phase, L0, as a reference.

Table 1: Number of matches, median and variability of error distributions at maximum exhale,
L0, and maximum inhale, L5, phases obtained by the proposed enhanced SIFT compared
to results from previous work [33] and the manual reference landmarks. Variability is the
difference between the 25th and 75th percentiles.

#Matches Median (mm) Variability (mm)

L0–L5 300 12.98 18.22
SIFT (L0–L5) 509 13.23 17.90
Proposed technique (L0–L5) 525 11.14 12.78
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Table 2: Number of preserved feature locations along the breathing cycle from the maximum
exhale, L0, to the maximum inhale, L5, phase.

SIFT (L0–L5) Proposed technique (L0–L5)

Reference (Phase 0) 117 243
Along breathing cycle 9 264

Second, we move step-by-step along the breathing cycle such that the previ-
ous breathing phase is served as the reference for tracking the feature locations
in the next breathing phase. For each approach, we computed the number of
feature locations between all phases. Table 2 reports the number of detected
feature locations which were preserved along the breathing cycle. While track-
ing along the breathing cycle allows us to achieve a higher number of preserved
feature locations and excludes the trailing ones, tracking referred to a reference
phase excludes the most stable feature locations over time. The results in Ta-
ble 2 shows that ours technique allows a more stable feature tracking in dynamic
data set.

As reported in Table 1 and Table 2, the proposed enhanced descriptor con-
struction helps to increase the uniqueness of the descriptors at feature locations.
Thus, it helps to improve the accuracy of the feature matching process in time-
series data. It is also worth noting that by exploiting the power of the GPU
implementation, we also achieved a much better performance in time. For in-
stance, the overall time required for descriptors generation for each volume and
descriptors matching between volumes is approximately 5.0 minutes. This is
ten times faster than the result in [33], which is 50 minutes. As for the inter-
active visual analysis, the feature descriptors and be pre-computed and thus,
the interactivity can be achieved.

6.2. Generalization

Although the data analyzed and visualized in this work has been extracted
from the patello-femoral analysis scans, the presented techniques can be ex-
tended and applied to different kind of joint movement analysis. As shown in
Subsection 6.1, the proposed GPU-based feature identification and tracking can
be applied to dynamic CT scans in general. Depending on the application in
mind, different criteria for FOIs selection and kinematic parameters calculation
can be implemented based on the tracking results.

The time-angle profile visual metaphor was designed in such a way that
it can be easily extended through the use of different projecting criteria. By
deploying different projection criteria, the time-angle profile visual metaphor
can be used for visual analysis of different underlying kinematic parameters.
Moreover, these projections can be co-related through a multiple linked-views
setup to facilitate both the overview of the whole movement pattern as well as
detail decomposition of the kinematic behavior under investigation.

Figure 4 already shows the application of the radial angle plot to visualize
the kinematics of a ball joint. The joint-centered nature of the radial angle plot
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is clearly an advantage, as it allows a quantified interpretation of the rotational
angle without hindering the embedding into the spatial context. To incorporate
the additional degrees of freedom, either the plot can convey several kinematic
properties, or multiple radial angle plots can be combined. As an alternative to
these two variants, also parallel coordinate views could be integrated to show
the correlation between different angles [22]. Finally, while the current radial
angle plot supports a angle domain of [−90; +90], increasing the arc length can
be used to represent larger angle domains.

7. Conclusions & Future Work

In this paper, we have presented new visual metaphors for the interpretation
kinematic information derived from dynamic CT data sets. In addition, we pro-
posed an enhanced GPU-based feature identification and tracking based on the
SIFT algorithm. Besides the performance improvement, thus allows interactive
feature identification and tracking, the proposed technique also achieve a higher
accuracy in the process of feature matching based on the novel descriptor con-
struction approach. We have applied the introduced techniques to the analysis of
the patello-femoral issue. Integrating the presented techniques into the analysis
process of 4D CT scans has shown great potential as the quantitative measure-
ment results from the system reflect the real clinical situation of the patients.
Moreover, the presented visual metaphor enables medical doctors to have not
only a quick overview of the movement pattern of feature under investigation
in the dynamic CT scans but also the underlying kinematic information.

In the future, we would like to acquire 4D CT data of the shoulder joint
and verify the application of the proposed visualizations. Furthermore, we plan
to use our approach to derive a normal collective, which would allow us to
automatically emphasize abnormal movement patterns. When dealing with a
system of multiple joints for each patient, we would also like to combine mul-
tiple radial angle plots into a single view. Finally, we would like to investigate
how time-angle profiles could be extended to support an embedding of several
individuals.
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