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Fig. 1. By deriving analytic expressions, we can enhance molecular visualizations and realize interreflections in real-time. The images
(a-c) show three time steps of a molecular simulation investigating the interaction between a magenta-colored ligand and a receptor
molecule, which receives exaggerated diffuse interreflections. Due to these interreflections it can be seen how the ligand enters the
active site.

Abstract—Today molecular simulations produce complex data sets capturing the interactions of molecules in detail. Due to the
complexity of this time-varying data, advanced visualization techniques are required to support its visual analysis. Current molecular
visualization techniques utilize ambient occlusion as a global illumination approximation to improve spatial comprehension. Besides
these shadow-like effects, interreflections are also known to improve the spatial comprehension of complex geometric structures.
Unfortunately, the inherent computational complexity of interreflections would forbid interactive exploration, which is mandatory in many
scenarios dealing with static and time-varying data. In this paper, we introduce a novel analytic approach for capturing interreflections
of molecular structures in real-time. By exploiting the knowledge of the underlying space filling representations, we are able to reduce
the required parameters and can thus apply symbolic regression to obtain an analytic expression for interreflections. We show how to
obtain the data required for the symbolic regression analysis, and how to exploit our analytic solution to enhance interactive molecular
visualizations.

Index Terms—Molecular visualization, diffuse interreflections, ambient occlusion.

1 INTRODUCTION

Modern molecular simulation algorithms, such as molecular dynamics
or Monte Carlo solvers, enable scientists to capture the interaction of
complex molecules. Such state-of-the-art simulations are for instance
used to investigate the binding nature of new pharmaceuticals or the
turnover rate of genetically modified enzymes. For all these protein-
ligand interactions it is crucial to analyze how the two substances form
the resulting complex, to understand their interplay and to be able to
support an affinity-driven ligand modification.

Unfortunately, the visualization of these substance compounds is
challenged by their structural complexity. As a consequence, despite
that their exact interaction needs to be studied, the spatial arrangement
can often not be inferred from current state-of-the-art visualizations.
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Within this paper we propose a novel approach for visualizing molecular
structures whereby we focus on the atom level. The presented method
has been developed with the motivation to better communicate spatial
arrangements as well as non-spatial simulation parameters, which play
an important role when observing molecule ligand interactions. While
state-of-the-art molecular visualization techniques simulate ambient
occlusion (AO) to better communicate structures, we aim at capturing
the interreflections between molecule and ligand to communicate their
spatial arrangement. Furthermore, we exploit modifications of these
interreflections to visualize pairwise atom interaction strengths, which
give important insights for affinity-driven ligand modification. To
enable these visualizations, we capture mutual illumination, resulting
from the reflection of light from one object onto another object.

Especially in cavities or enclosures, as they also occur in molecular
structures, mutual illumination can provide a significant component of
surface illumination [28]. It is not only known that such interreflections
play an important role in the perception process [2], but also known
that they resolve the classic bas-relief ambiguity and thus have a direct
influence on shape perception [5]. Within this paper, we apply mutual
reflections to molecular structures, and we further show how these
interreflections can be modified to interactively visualize atom interac-
tion strengths, which tell the domain expert which atom interactions
between molecule and ligand are most crucial for the binding process.
Thus, the presented techniques have been motivated with the aim to
help the researchers in understanding two important factors that play a
role in the simulation: the spatial arrangement of the molecules, and
the forces that interact in each configuration.



To achieve our goals, we present a novel approach for visualizing
molecular structures, which not only captures AO, but also diffuse
interreflections. While approximations for interactive AO effects exist
for molecular visualization, e.g., [17], there are no techniques that sup-
port interreflections. To realize high quality mutual interreflections, we
exploit an analytical approach that is based on symbolic regression anal-
ysis of the light interactions occurring in space filling representations
of molecules [44], such as van der Waals (vdW), solvent-accessible
surfaces (SAS), and solvent-excluded surfaces (SES). To analyze these
light interactions, we exploit path tracing as a physically correct light
transport solution in molecular structures. By sweeping carefully deter-
mined visualization parameters, we can use our path tracer to generate
interreflection data, based on which we are able to derive multivariate
analytical expressions. These expressions can then be evaluated in
real-time and thus enable complex illumination effects in molecular
visualization at interactive frame rates without requiring additional
memory (see Figure 1). Thus, the time-varying results of molecular
simulations can be visualized, while exploiting interreflections to im-
prove spatial comprehension as well as encoding important simulation
parameters. To achieve this, we make the following contributions in
this paper:

• We present a novel visualization algorithm for space filling rep-
resentations of molecular structures, which analytically realizes
ambient occlusion and diffuse interreflections.

• We propose how to use mutual interreflections as a new vi-
sual communication channel for visualizing pairwise interaction
strengths, to guide domain experts to affinity-driven ligand modi-
fications.

• We introduce symbolic regression into the visualization field as
a means to analytically capture multidimensional functions to
enable interactive visualization.

The paper is structured as follows. After discussing related work in
Section 2, we outline our approach for analytically representing inter-
reflections on an atomic scale in Section 3. In Section 4 we discuss
how to acquire the multi-parametric data required for our data-centric
approach, and how we exploit symbolic regression to obtain analytic
expressions, that can be evaluated in real-time. The actual visualization
approach is described in Section 5, while results are discussed, both
from a quality and a performance point of view, in Section 6. The paper
concludes in Section 7, where we also discuss future work.

2 RELATED WORK

Besides the challenges related to communicating complex molecular
structures [6, 14, 16, 19, 21, 47], visualization algorithms need to be
able to show the composition of elements and the various reactions
that happen in simulations. In the following, we classify the methods
described in literature into two groups: methods tailored to comprehend
atomic structures and methods for illustrating molecular reactions.
After discussing these we will focus on related work in simulating
global illumination.

Atomic structure visualization. Many authors focused on massive
atomic model rendering [24, 39], such as LOD approaches [11, 30, 37],
instancing [12], or billboards and glyphs [13, 17, 45, 40]. Grottel et
al. described an approach which exploits two-level coherent culling
to render large-scale molecular dynamics results [18]. Coarse culling
exploits hardware occlusion queries, while maximum depth mipmaps
are used to achieve per-vertex culling. More recently, Lindow et al.
described a method that enables interactive visualization of atomic
data at different scales [32]. They exploit the fact, that atomic data is
often rendered opaquely and that it often contains reoccurring struc-
tures, which lets them exploit instancing. Zwan et al. concentrate
on the continuous transition between different visualization motifs for
molecules, e.g. from space filling to ribbon rendering [46]. Lawonn
et al. add feature lines, and hatching to emphasize features like cav-
ities, channels, and pockets [29]. Cipriano et al. also add hatching
effects by analyzing surface properties [8]. Another popular method
to facilitate spatial comprehension is the inclusion of AO [17, 27, 45].
Krone et al. perform depth darkening [34] when real-time ray casting
molecules using a surface-based model [27]. Grottel et al. improve
on the previous method by computing AO in object space for particle

models [17]. In order to do so, a grid is computed that stores the occu-
pancy information derived from the neighboring atoms, which enables
AO in real-time. Kottravel et al. introduces depth-of-field techniques
to molecular rendering, which provides additional depth cues to the
user [25]. To speed up rendering, many authors exploit deferred shad-
ing techniques in molecular visualization [13, 18, 32]. As a thorough
review of all atomic structure visualization techniques is beyond the
scope of this paper, we would like to refer to the state-of-the-art report
on molecular structure visualization by Kozlı́ková et al. [26].

Illustrating molecular reactions. Falk et al. illustrate the dif-
ferent transport modes in mitogen-activated protein kinase signaling
molecules (MAPK) within a cell [12]. Molecular trajectories and re-
actions are identified by augmenting geometric objects, such as paths
that illustrate molecule trajectories, and arrows that depict reactions.
Sarikaya et al. visualize the performance of protein classifiers by ap-
plying different colors to the protein chains on which the classifiers
have operated [42]. Their inspection mode consists of two views, one
containing the molecule divided in small multiples, and a second view
where the surface of the molecule is color encoded with the information
on the predictions of the classifier. They also provide illustrative cues
to enhance the perception of atoms. More concretely they add contour
lines and tooned AO. Khazanov and Carlson provide several visualiza-
tion elements in the form of tables and tabular graphs [23]. They also
visualize the contacts with ligands and their binding sites by modify-
ing the atoms’ vdW radii and color proportionally. This depiction is
performed after the whole simulation and individually for each amino
acid. More recently, Scharnowski et al. have compared the differences
between surface features of the molecules, e.g., electrostatic potential,
using deformable models [43]. Grottel et al. visualize the values of
electrostatic dipoles by using a color map overlapping the molecular
structures [15]. Cipriano and Gleicher [7] illustrate the charges over the
molecular surface, but they do so by stylizing both the surface shape
and the charge values to facilitate comprehension. Some software
packages provide a means to overlap a set of semi-transparent spheres
around atoms, used to color encode atom properties, e.g., Coulomb
charges or hydrophobicity, such as in VESTA [35, 36]. However, today
no visualization algorithm communicates the forces acting between all
atoms in real-time, without introducing visual clutter. Finally, other
visualization methods illustrate path channels [31] or molecular motion
by the use of glyphs [3].

Simulating Global Illumination. As our technique simulates
global illumination, we briefly discuss related algorithms in this field.
Ramamoorthi et al. describe an efficient technique for storing and re-
trieving low-frequency irradiance maps using spherical harmonics [38].
Further extensions to this technique exist but they all rely on precom-
puting the irradiance of the environment. This limits the use cases to
scenes where the irradiance can be precomputed. Ren et al. describes
an approach that uses radiance regression functions to compute global
illumination using a neural network [41]. The underlying idea is similar
to our approach but the method requires extensive pre-processing per
scene and is limited to static geometry. Bunnell presents a technique
for simulating ambient occlusion and indirect light between triangles
by using oriented discs as an underlying representation [4].

3 ANALYTIC ATOM-SCALE INTERREFLECTIONS

Determining an analytical representation of mutual reflections on an
atomic scale is a challenging task as these light interactions follow
the complexity of the recursive rendering equation [22]. It means
that, for each scene element, we have to take into account all other
scene elements, which contribute to the visual appearance through
interreflections. The recursive nature of the rendering equation leads to
an even increased complexity, as color bleeding effects can result from
several bounces of light between the involved structures. Capturing
this complexity in real-time is challenging, and does not scale well
with the number of atoms comprising a complex molecule. Therefore,
we exploit an analytical solution to the rendering equation as applied
to space filling representations, e.g., vdW, SAS, SES, of molecular
structures. To be able to obtain such an analytic representation, we take
into account the following observations:

• Interreflections can be computed on an atomic scale rather than
per surface point (Observation 1).

• Due to the spherical shape of atoms and the nature of the render-
ing equation, reflection changes on a surface of an atom can be
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Fig. 2. An overview of our algorithm and the underlying workflow: The green box represents a pre-processing step, usually done only once, where an
expression is fit to path traced data. The blue box shows the process which occurs per frame in order to render a vdW geometric representation of a
molecule on screen.

considered low-frequency illumination effects (Observation 2).

• Reflections resulting from several adjacent structures can be re-
constructed by modulating the reflection contributions of pairwise
combinations of these structures (Observation 3).

Observation 1 holds, as in the targeted space filling representations,
atoms are inherently represented as spheres. This can be even assumed
for the SES representation, as it can be extracted using the rolling ball
metaphor. However, in this case it needs to be taken into account that,
while some of the patches resemble a sphere, others are concave. When
considering the light interactions between two surface points on the
spheres representing two atoms, it is clear that the points’ location, and
thus their light interaction, can be directly derived from the properties
of the atom, i.e., the location and the vdW radius. As a consequence
Observation 1 holds, and we can compute interreflections on an atom
level. Observation 2 directly follows from how light interactions are
described by the rendering equation. Due to the continuous integration
and the weighting with the continuous cosine term, mutual interreflec-
tions can be considered low frequency illumination effects. Thus, we
can make Observation 2 and see it as an indicator that an analytic
expression exists, which captures such reflections. Finally, Observation
3 holds due to the additive nature of light, which tells us that we can
treat different illumination sources independently. Thus, Observation 3
enables us to analyze pairwise atomic light interactions to determine
the desired analytic expression. It shall be noted, that Observation 3
results in an approximation only, as it does not consider light bouncing
off several times at other objects, before coming back to the initial ob-
ject. However, in perceptual experiments it has been shown that similar
effects resulting from approximate visibility can be neglected [48].

Algorithm Overview. Due to the three observations discussed
above, we are able to find an analytic function which captures diffuse
interreflections in molecular scenes. Therefore, we exploit a general-
ized molecular scene which consists of two atoms only. These two
atoms have varying radii, reflectances and distances in between, such
that the scene can be fully defined by a few parameters only. To find
the desired analytical function, we path trace different instances of this
generalized scene, which only vary with respect to these parameters.
As a result we receive a set of radiance maps which captures the diffuse
interreflections for the path traced scene instances. This radiance data
is then used as input to a machine learner to find the analytic function,
which depends on the parameters specifying the generalized scene. Dur-
ing rendering, we can then take into account atom pairs to derive these
parameters for the current molecule, before feeding these parameters
into the analytic function in order to simulate diffuse interreflections.

A high-level overview of this process is given in Figure 2. First as
an offline pre-processing step, radiance maps are generated from a path
tracer using the scene parameters as input. These maps are then used by
the symbolic regression machine learner which fits an expression to the
data. Note that this offline step only has to be done once, as it produces
a reusable expression that captures the diffuse interaction within the
given parametric space. In the second online process, which is done per
frame, space filling geometry is placed in a spatial acceleration structure
and rendered in a first geometric pass where the ray-casted depth as

well as the atom ID is stored. In the second render pass, the actual
illumination is computed per fragment using the spatial acceleration
structure to find the neighboring spheres and applying the expression.

4 DATA GENERATION AND SYMBOLIC REGRESSION

Within the next subsection, we describe how we exploit a specially
parametrized path tracer to solve the rendering equation for our general-
ized molecular scene, and thus capture the illumination data describing
the interreflections. In Section 4.2, we then describe how we exploit
symbolic regression to find an analytical description of the interreflec-
tion behavior.

4.1 Capturing Illumination Data
Before we are able to analytically describe the interreflection between
atoms, we need to capture these interreflections in a physically-based
manner. The rendering equation has been proposed as a physically-
inspired equation by Kajiya to describe light transport in a geometric
scene [22]. It is based on the laws underlying heat transfer, and can
thus be used to derive the radiance L that leaves a single surface point
x in the direction of the viewer ~ωo in dependence of the geometric
structures contained in the scene:

L(x, ~ωo) = Le(x, ~ωo)+
∫

Ω

f (x, ~ωi, ~ωo) · cos(θ) ·Li(x, ~ωi)d~ωi. (1)

Here, Le(x, ~ωo) describes the radiance emitted from x into direction ~ωo,
and f (x, ~ωi, ~ωo) stands for the BRDF relating the radiance reaching x
from ~ωi to the outgoing direction ~ωo. The multiplication with cos(θ)
results in energy conservation, as it weights the incoming radiance,
determined by recursive evaluations denoted as Li, for light reaching x
from all incoming directions ωi.

Atom interreflections. To capture the interreflections between
atoms, we use a slightly modified version of Equation 1. As we aim at
only capturing interreflections between atoms, and not their light con-
tributions, we eliminate the emissive contributions Le from Equation 1,
and thus only solve the integral over ~ωi:

L(x, ~ωo) =
∫

Ω

f (x, ~ωi, ~ωo) · cos(θ) ·Li(x, ~ωi)d~ωi. (2)

However, Equation 2 would not have any energy contributions, since
Li is just a recursive evaluation of L. Therefore, we introduce envi-
ronmental lighting as the only source of energy in the scene. When
observing Equation 2, we can see that the radiance leaving x in direction
~ωo is dependent on the location and the reflective properties of x, as
well as all other points in the scene. Thus, if we could determine a
closed form expression L̂(x, ~ωo,{x0, ...,xi},{ f0, ... fi}), that describes
the radiance at x dependent on the scene geometry and the reflectance
functions, such an expression could be directly used for rendering. Ob-
viously, finding such an expression is impractical for arbitrary complex
scenes. Fortunately, when dealing with space filling representations
of molecules the situation is much easier. When dealing with vdW,
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SAS, or SES, the three space filling representations most widely used in
molecular visualization, we can understand the scene as a set of similar
building blocks. For vdW and SAS these building blocks are directly
given as spheres, a fact that can be exploited to simplify finding a closed
form expression as expressed by Observation 1 (cf. Section 3). Thus,
within this subsection, we discuss how to do this for vdW and SAS,
while we present how to extend this concept to SES in Section 5.4.

Due to Observation 3, we can initially limit ourselves to pairwise
interreflections, and thus consider two atoms only. As a consequence,
the closed form expression L̂ can be simplified to be dependent on
fewer parameters. When assuming that the reflective properties for
each individual atom are uniform, L̂ would depend only on two re-
flection functions f0 and f1 instead of a larger set. Furthermore, the
set of all points describing the scene geometry could be simplified to
those describing the surfaces of the two atoms. Nevertheless, when
considering a sufficiently high resolution, such a parametrization would
still be impractical. Therefore, we exploit Observation 1, which enables
us to simplify the set of all points to the center c and the radius r of the
spheres representing an atom. The closed form expression L̂ would now
be dependent on the following parameters L̂(x, ~ωo,c0,c1,r0,r1, f0, f1),
which are illustrated in Figure 3. As we are considering two isolated
atoms, we can further simplify L̂, by only considering the distance d
in between c0 and c1. Furthermore, it is sufficient to take into account
the ratio of the radii r f =

r0
r1

. Accordingly, the number of parameters
for L̂ can be further simplified such that we obtain L̂(x, ~ωo,d,r f , f0, f1).
Finally, we are able to exploit the radial symmetry of the spheres,
such that we only need to compute the radiance distribution along one
Longitude, which is parametrized by the polar angle φ . We can use
this parameter to replace the actual position x with the cosine of the
angle φ between c0− x and c0− c1 (see Figure 3), and thus obtain
L̂(cos(φ), ~ωo,d,r f , f0, f1). To obtain a single view-independent value,
we integrate the radiance over all directions ~ωo in the hemisphere Ω

and obtain:

L̂′(cos(φ),d,r f , f0, f1) =
∫

Ω

L̂(cos(φ), ~ωo,d,r f , f0, f1)d ~ωo. (3)

L̂′ is now only dependent on five parameters. All these five parameters
are directly accessible during rendering, as they can be easily computed
for each pair of atoms. Here, d and r f are global geometric atom
parameters, which are computed by taking into account both atoms. f0
and f1 are global parameters which can be obtained from a single atom,
and cos(φ) is a local parameter which needs to be determined for each
fragment position x to be shaded.

Interreflection parameters. As we aim at finding an analytic ex-
pression capturing L̂′, we sample L̂′ for different parameter sets, to
initially get a data-based representation. To realize such a parameter
sweep, we employ path tracing which has been proposed as the first
solution to the rendering equation [22]. For the data generation, we
use a scene made up of two spheres with the centers c0 and c1, the
radii r0 and r1 as well as the reflective properties f0 and f1 (cf. Fig-
ure 3). However, instead of projecting onto the image plane, we have
modified the path tracer such that it computes the radiance distribution
on the surface of the atom represented by sphere S0. Furthermore, we

Fig. 4. Examples of spherical radiance maps as generated by our path
tracer as the input to the symbolic regression analysis. The examples
vary horizontally from left to right with respect to d′ ∈ [1.05,1.30,1.55],
with r f = 1.0 and f0 = f1 = 0.8. The radiance maps are cropped to
θ ∈ [− π

2 ,
π

2 ].

compute radiance in an achromatic manner for one channel only, to be
able to apply it flexibly to different colored materials during interactive
visualization. Figure 4 shows three examples of such spherical radiance
maps as written out by our path tracer. The maps show the radiance
on the sphere representing atom a0, whereas φ varies vertically, and θ

varies horizontally. The theta values are cropped to the range [− π

2 ,
π

2 ].
The shown spherical radiance maps vary horizontally from left to right
with respect to d′ ∈ [1.05,1.30,1.55], whereby d′ = ||c0−c1||

r0+r1
. We have

chosen d′ as a unit-less ratio, as it enables us to use the same derived
expression also for problems at other scales. Both, the effect of radius
and distance can be observed on the spherical radiance maps. While
the map for d′ = 1.05 clearly show occlusion effects in the center,
with an increase in distance the interreflections resulting form multi-
ple bounces take over. More details become visible when analyzing
the radiance for the point x closest to S1 and lying on S0. To analyze
the effects of AO and diffuse interreflections independently, we have
path traced a scene consisting of two equally sized spheres with a
varying distance d. The plots in Figure 5 illustrate this behavior for
six different values for d with d ∈ [2.05,2.15,2.25,2.35,2.45,2.55],
whereby the degree of redness of a curve is inversely proportional to
the distance d between S0 and S1. The three plots show the radiance,
normalized over the uniformly lit back side of S0, when using a regu-
lar path tracer (Figure 5 (a)), path tracing when only considering AO
but no multi-bounce interreflections (Figure 5 (b)), and path tracing
with multi-bounce interreflections where the AO contribution has been
eliminated (Figure 5 (c)). As it can be seen in Figure 5 (a), under a
certain distance the AO contribution overrides the diffuse interreflec-
tions. This effect results form the radiance decrease through AO as
illustrated in Figure 5 (b). When looking at Figure 5 (c), where we have
eliminated the AO contribution, it becomes clear that not only AO must
be considered when simulating light interactions, but also that diffuse
interreflections have a significant impact on the visual result.

Since spherical radiance maps inherently store the radiance in depen-
dence of φ , we do not have to take this parameter into account when
performing our parameter sweep. For the remaining four parameters,
we have to first determine the parameter space, before we can sample
it uniformly. To determine realistic bounds for the ratio of radii r f ,
we have taken into account the calculated atomic radii as they may
arise in the molecules to be visualized. Clementi et al. determined
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Fig. 5. Radiance obtained from a path tracer (a), a path tracer with AO
only (b), and a path tracer with eliminated AO (c). The radiance is shown
in relation to the distance d of two atoms. The plots show the normalized
radiance for d ∈ [2.05,2.15,2.25,2.35,2.45,2.55], whereby the degree of
redness of a curve is inversely proportional to d.



based on a theoretical model that the atomic radii range from 120pm
for hydrogen to 298pm for caesium [9]. When discarding the less
relevant atoms having larger radii, we can derive the following value
range for r f ∈ [0.5,2.3]. Since the value range for the distance between

the two atoms has been chosen to be a unit-less as d′ = ||c0−c1||
r0+r1

, we
can eliminate a scale in this measure, and are able to apply it invariant
of the scale of the underlying scene. The effective range for d′ has
then be chosen as d′ ∈ [0.5,2.0], providing a realistic distance range
when considering light falloff. A value of d′ < 1.0 results in the atoms
intersecting, which leads to some pixels being completely black in
the output image. These pixels are masked out as they impede the
model-fitting through the symbolic regression by introducing unwanted
data and high frequencies, which should not be present (Observation
2). For the reflectance values f the parameter range equals [0.1,0.9].
We have chosen 0.1 as lower bound, as perfectly black atoms would
not result in any interreflections. The upper bound of 0.9 is motivated
by the fact, that we would like to avoid perfectly reflecting materials,
which would decrease the signal-to-noise-ratio in the path tracer results.
Based on these derived parameter ranges, all four parameters can be
swept, based on a uniform sampling of the parameter space given by
r f , d′, f0, and f1. We have chosen to generate 19×12×9×9 = 18468
spherical radiance maps, with the uniform sampling. Due to the modest
variance of the data in relation to the computation time required to
generate the data, we found this size to be adequate. Thus, we obtained
a multi-parametric data set which describes the interreflections of two
atoms dependent on r0, r1, c0, c1, f0 and f1.

4.2 Symbolic Regression

After we have generated the multi-parametric spherical radiance map
data set as described in the previous section, we need to obtain an ana-
lytic expression for L̂′ to be able to realize the desired interreflections
in real-time. While in principle many different machine learning tech-
niques could be used to find such an analytic function, we have decided
to exploit symbolic regression [44]. Symbolic regression has two main
benefits, which make it the optimal choice for the task at hand. First,
as it is an unbiased approach, we do not need to input any previous
knowledge about the analytic function to be found. Thus, we do not
need to formulate hypothesis on how the result behaves, which at the
same time could influence the result in an unexpected behavior. The
second benefit of symbolic regression lies in the fact, that it is realized
through genetic programming. By iteratively applying mutations to
generate analytic expressions with a better fit of the data, symbolic
regression does not only output the expression with the best fit, in our
case the absolute error normalized over all expressions, but also the
intermediate results. Finally, symbolic regression can be expected to
generate more accurate and simpler expressions than traditional ma-
chine learning techniques, such as neural networks or support vector
machines [44]. In the context of this paper, we have used the Eureqa
software package, which implements symbolic regression as described
by Schmidt and Lipson [44]. Figure 6 shows a plot depicting the output
of the symbolic regression run identifying the analytic expressions used
for generating the visual results in this paper. It can be seen, that the ini-
tially fit expression results in an absolute error of 0.36, and that it took
21 iterations, the number of solutions depicted in the plot, to obtain an
expression with an absolute error as low as 0.14. It can also be seen that
while the error is minimized, the complexity of the resulting expression
increases from 1 to 44. The complexity is calculated based on the
absolute number of used variables and mathematical operators, as well
as the relative complexity of the mathematical operators. Since not only
the accuracy, but also the complexity of each result can be retrieved,
multiple analytic expressions can be used to realize LOD effects in the
rendering stage of the visualization pipeline, and the iterative output of
results having different levels of complexity is a perfect fit with LOD
techniques applied in molecular visualization [37].

Providing a detailed explanation of the symbolic regression algo-
rithm would be beyond the scope of this paper. Therefore, we limit
ourselves to a brief outline of the basic principles, and refer to the orig-
inal work by Schmidt and Lipson for a more thorough discussion [44].
The algorithm works by initially generating random candidate symbolic
functions, i.e., analytic expressions describing the underlying principles
of the data to be fit. During the candidate exploration phase, the algo-
rithm derives symbolic partial derivatives of pairs of parameters, i.e., in
our case r f , d′, f0, and f1, for each candidate expression. Afterwards,

Fig. 6. Plot showing the accuracy, i.e., the absolute error, of the solutions
retrieved from the symbolic regression analysis versus the complexity.
In total 21 solutions have been generated in a time frame of roughly 9
hours.

the predicted partial derivatives are compared to the numerical partial
derivatives, in oder to select the best fitting equations for the next itera-
tion. These are then changed by applying small variations, and serve as
input for the next iteration. Thus, iteratively analytic expressions are
generated which have a better fit, but also become more complicated to
evaluate.

When applying this strategy to our multi-parametric spherical radi-
ance map data set, 21 iterations led to the following analytic expression
capturing L̂′ with a fit of 0.385, i.e., the normalized absolute error, at a
complexity level of 44:

L̂′′0 = 0.99+
0.0102 ·φ +0.0102 ·φ 4 +0.0956 · r f · f1 ·

√
d′−0.0658 · r f

φ 4 +0.091 ·d′3
(4)

We have obtained Equation 4 after roughly 9 hours of computation
on an Intel Core i5, 3.2GHz Quad-Core System with 8 GB of RAM.
As it was the result with the best fit, with a manageable complexity,
we have used this function to generate the visual results throughout
this paper. An interesting observation about Equation 4 is the fact,
that it does not depend on f0, the parameter describing the reflectivity
of the current atom a0. This again underlines the importance of the
unbiased approach realized through symbolic regression, since we have
initially deemed this parameter as relevant. Otherwise, we would not
have taken it into account in the path tracing process. While Equation 4
presents with 0.385 a reasonably good fit to the data, at the same time
it results in a smoothed out version of L̂′. This is beneficial as it helps
to eliminate the noise typically present in path traced images.

5 INTERACTIVE VISUALIZATION

Now that we have derived analytic expressions capturing atomic in-
terreflections, we can evaluate the expressions during visualization.
Therefore, for each atom we need to know during rendering which
atoms are in its vicinity. Based on these atoms, we can derive the
parameters necessary to evaluate L̂′′0 , i.e., r f , d′, f0, and f1. We first
describe how to extract the atoms in the vicinity of the current atom in
Section 5.1. Once this information is obtained, the light interactions
between these and the current atom can be evaluated. To be able to use
diffuse interreflections as a separate visual communication channel, we
have decided to additionally add scalable AO during rendering time.
Thus, we first describe how to exploit the results of symbolic regres-
sion to compute diffuse interreflections in real-time (see Section 5.2),
before we discuss how to independently emphasize AO effects (see
Section 5.3). Finally, we present how the developed techniques can be
applied to SES (see Section 5.4), which requires a few modifications as
compared to vdW and SAS.

5.1 Fixed-Radius Neighbors Search
Determining the neighbors of an atom is crucial, in order to be able to
derive the distance d′ as well as the ratio of radii r f . In fact the problem
to be solved is a variant of the radius neighbor search problem [1],
which finds the set of all neighbors within a given radius:

N(a0,r) = {ai ∈ A|||c0− ci||< r}, (5)

where a0 is the current atom with the center at c0, and A is the set
containing all atoms ai with their center at ci. r ∈ R is an arbitrary
radius around a0. Since r is fixed in our case the problem to be solved



can be simplified to the fixed-radius neighbors search problem. This
variant is easier to be solved, as the knowledge about r can be taken into
account when building up a query data structure. It could be shown,
that grid-based techniques are a good solution to this problem, because
they support localization of points in constant time, while minimizing
the overhead when inspecting neighboring cells [1].

As performance is critical, we have decided to adopt one of the
most recent grid-based techniques for fixed-radius neighbor search,
which has been proposed by Hoetzlein [20]. Applied to our use case,
the technique can be best described as follows. First, the world space
containing all atoms is uniformly divided into grid cells. After this
division, each atom ai is placed in the respective grid cell determined by
its center ci. Based on this placement step, each atom ai gets a global
index idg and a local index idl assigned to it. While idg specifies the
index of the cell the atom has been placed in, idl is dependent on the
order the ai have been processed, and tells how many atoms have been
assigned before to the same cell. Thus, after this first placement step, we
obtain an unordered atom list, whereby idg and idl are assigned to each
atom. In a second step, the retrieved atom list is sorted based on idg,
such that the idl atoms belonging to each cell are stored subsequently.
Based on this list and the id’s stored with the atoms, we are able to
fetch the neighboring cells in constant time, while it takes linear time
with respect to the number of atoms per cell to obtain all neighbors
stored in a cell.

The technique has originally been developed for particle simulations,
but since the number of atoms is rather low compared to the number of
particles in state-of-the-art particle simulations, this technique provides
a very efficient solution. A critical aspect in our application scenario
is to choose an adequate cell size. As we know what area of influence
shall affect the interreflections on an atom, we should chose the cell
size such that all atoms contributing to the interreflection on ai are
contained in a cell adjacent to the one containing ai. Thus, we can
limit the neighboring cell access to 27 cells (33) – 26 adjacent and the
center cell. Otherwise, 125 cells would need to be inspected, which
would result in a data access bottleneck. Within this paper, we use
three different cell sizes. To capture diffuse interreflections, which
are very local effects, we have chosen a cell size of 2Å or 6Å, which
resulted in pleasing visual results. Instead, to convey the interaction
strength for atoms, we have chosen a cell size of 12Å. As molecular
dynamics simulations traditionally use 12Å as a neighborhood region,
we have decided to determine the grid cell size to reflect this limit when
visualizing interaction strengths derived from the simulation.

5.2 Analytical Diffuse Interreflections
By exploiting the fixed-radius neighbors search, we can now determine
all neighbors of an atom in real-time during rendering. Thus, we are
able to evaluate Equation 4 within a fragment shader in the rendering
stage of the visualization pipeline. This can in principle be combined
with any atom rendering approach, but we have chosen to integrate it
with ray-casted instancing introduced by Falk et al. [13].

To realize the interreflection effects using analytic expressions, we
exploit a deferred shading approach. In the first pass, we generate a
depth map and an atom ID for the current molecule and the current time
frame. Thus, we can limit the evaluation of L̂′′ in the second pass to only
those fragments which are visible from the current view-point. In the
second pass we then use the generated depth map to compute the world
space position for all pixels and finally evaluate the analytic expression
approximating L̂′′. Therefore, we use two data buffers containing atom
geometry, for c0 + r0 as well as atom reflection properties f0, which are
based on the CPK coloring [10]. The recomputed world space position
is used to lookup the neighbors in our fixed-radius neighbors search
data structure, whereby for each neighbor we also lookup the geometry
c1 + r1 as well as the reflection properties f1. Based on the center of
the current atom, c0, and the center of the neighboring atom, c1, we
can compute d and derive d′. Thus, we have all parameters required to
evaluate Equation 4, and to compute the indirect illumination affecting
the current pixel. To be able to exaggerate the interreflection effects,
we further apply an interreflection exponent e, which has been chosen
to be 1.5 for the results in this paper, unless otherwise stated.

Since the interreflection function has been derived using only two
spheres, a mechanism is required to combine the interreflections of
several atoms. When dealing with one neighbor a1 only, the proper
way of calculating the resulting radiance of the fragment is to multiply

the interreflection with the environmental radiance to scale the nominal
value accordingly. For multiple atoms we follow the same principle,
and compute the total interreflection as IRtot = ∏ IRe

i . Thanks to each
contributions normalized format, we have found that straightforward
multiplication works best when combining the individual contributions
from the atoms in the vicinity.

So far, we have only taken into account the information derived from
the data provided by our path tracer (cf. Section 4.1). However, as
the path tracer has been simplified to operate on two atoms only, so
far occlusions between neighboring atoms are not considered during
rendering time, which can potentially result in overbleeding. When
using a cell size of 2Å for the fixed-radius neighbors search, the lack
of occlusion does not influence the visual results. Since hydrogen
with 1.2Å is the smallest possible vdW sphere, 2.4Å would be the
minimum distance between an atom surface and the surface of an
occluded neighbor, and thus the occlusion is resolved through the
fixed-radius neighbors search. While even for larger cell sizes, we
did not experience overbleeding effects, we have realized an occlusion
weighting, which can be used to resolve potential effects. The technique
resolves occlusions of neighboring atoms by approximating their degree
of overlap. To do so, for each of the 27 cells in the vicinity of the current
atom a0, we compute for each ai the occlusion with all its neighbors a j .
Therefore, we sort the a j based on the distance to a0, and compute a
weighting factor d pi, j = max(0, |c0− ci| · |c0− c j|). d pi, j is computed
for ai by taking into account each a j in the same cell. Based on all
these d pi, j for a given atom ai we can compute the weighting factor
wi = ∏a j

1.0−0.5 ·d pi, j that can then be used to weight the influence
of ai on a0. As this is an operation quadratic with respect to the number
of atoms per cell, we analyze the performance impact of this approach
in Section 6.2.

The obtained interreflection can then be combined with the re-
flectance f0 of the current atom a0 by exploiting any of the standard
shading models. The pictures within this paper have been generated by
applying Fresnel shading, in order to obtain subtle specular highlights.
Furthermore, while the proposed model is accurate on an atomic-scale,
it can be combined with more large-scale models to better capture
global effects.

5.3 Ambient Occlusion
In order to emphasize atom-atom occlusions, we further propose an
object-space AO approach. We exploit the fact that all geometry in
the scene are spheres. Thus, we can compute the solid angle ω of the
fraction of sphere S1 as seen from x lying on sphere S0 analytically. The
required calculations are illustrated in Figure 7. While the entire solid
angle Ω of S1 from x can be written as Ω = 2π(1− cos(θ)), we only
need a fraction of this angle. Therefore, we compute t =~n ·~v, whereby
~v = x− c1. To determine the fraction of S1 lying above the horizon,
we clamp the sum of t and r1 to [0,2 · r1] before we normalize it. This
normalized value s can then be used to compute the AO contribution
as AO = 1.0− s · (1.0− cos(θ)), which represents the amount of the
hemisphere that is not occluded. The method is an approximation to the
true AO as it does not take into account the cosine weight and the solid
angle does not fall off in a linear fashion when the sphere is grazing the

S0S1c1
r1

𝜔𝜔 x
𝜃𝜃

𝑛𝑛

Fig. 7. The proposed ambient occlusion technique exploits the solid
angle ω of the visible parts of the neighboring sphere S1, and relates it to
the hemisphere covering the current position x.



(a) vdW (b) SAS (c) SES

Fig. 8. Application of the proposed technique to the 3RH8 molecule for
(a) van der Waals (vdW), (b) solvent-accessible surface (SAS) and (c)
solvent-excluded surface (SES) representations. While vdW and SAS
are directly supported, SES requires an additional interpolation.

horizon.
The strengths of the function however are that it can be evaluated

anywhere in space and is not defined on the surface of a sphere, and
that its precision is only limited by the resolution on the screen as it is
computed per fragment. These properties give the AO a smooth falloff
and crisp details, without sampling artifacts that can occur when using
occupancy-based methods that are bound to the resolution of the grid.
Furthermore, the proposed technique enables a direct application to
SES. Just like the interreflection function, the method is dependent
on the position and radii of the neighboring spheres, which makes
it a local function that only takes in to account the spheres within a
certain distance from the evaluated fragment. However, this method
can also easily be combined with a global scale AO approaches, such
as occupancy based methods to enhance small scale shadow details.

To combine the AO values with the interreflection, we first have to
combine the AO of several neighbors. This is achieved through multi-
plication of the individual AO values as AOtot = ∏AOb

i , where b is an
AO exponent similar to e. To later on combine the AO contribution with
the interreflections, we multiply them with the incoming environmental
light: L = IRtotAOtotLi.

5.4 SES Extension
The visualization algorithm presented in Section 5.2 can be directly
applied to SAS and vdW representations. However, in contrary to the
AO contribution, to apply it to SES slight modifications are required.
Therefore, we would in the first pass render the SES mesh, whereby
we write out for each fragment the ID of the closest atom as well as
the surface normal of the SES mesh. In the second pass, we can then
proceed as described above to obtain interreflections on SES meshes.
For the parts of the SES mesh, which do not coincide with a spherical
geometry including an atom, the contributions of the next three atoms
can be interpolated to further improve the visual quality.

Figure 8 shows the visual results when applying our technique to
SES representations as compared to vdW and SAS. All images show
the 3RH8 molecule visualized with the CPK color mapping. While
the proposed technique is directly applicable to vdW and SAS, SES
requires the modifications described above, and can be considered an
approximation only.

6 RESULTS AND LIMITATIONS

In this section, we describe the results that can be obtained when
applying the proposed methods. In Section 6.1 we discuss the visual
results we have generated by simulating diffuse interreflections as
well as for the visualization of interaction strengths, with feedback
provided by the expertise of the co-author Prof. Guallar. In Section 6.2
we analyze the performance of the presented techniques. Finally in
Section 6.3, we discuss the shortcomings of the technique and how
these may be addressed.

6.1 Visual Results
Diffuse interreflections. We have applied the techniques for realizing
diffuse interreflections to several molecular models. Especially when
analyzing molecule-ligand interactions, a good spatial comprehension
is required, and the communication of atom distances can be important.
Current molecular rendering packages usually provide tools to calculate

(a) Without interreflections (b) With exaggerated interreflections

Fig. 9. A ligand binding on a receptor molecule without (a) and with
exaggerated interreflections (b). In b the interreflections have been
exaggerated by applying an exponent of 1.5, such that the vicinity of
ligand and molecule are emphasized, and the spatial extend of the
ligands upper leg becomes more apparent.

distances. However, these have to be enabled manually by the user, on
a per-atom basis, which is cumbersome and time consuming. Instead
diffuse interreflections generate visual cues that depict the 3D arrange-
ment of atoms, and thus inherently communicate the closeness of atoms.
Figure 1 shows three time steps from a Monte Carlo binding simulation
between a Nuclear Hormone Receptor (PDB ID: 3VHV), which is
depicted using desaturated CPK coloring [10], and a benzoxazin-3-one
derivative ligand (PDB ID: LD1), which is depicted in magenta. As it
can be seen in Figure 1 (a) it becomes clearly visible how the ligand
approaches the receptor molecule. For instance, it can be seen that the
three diagonally aligned receptor atoms, in the center of the figure right
below the ligand, are not adjacent to the ligand, but rather covered by
it. While these atoms are occluded by the ligand in Figure 1 (b), it can
be seen how the ligand starts penetrating the receptor. In Figure 1 (c),
it then becomes clear how the ligand submerges sidewards, as some
receptor atoms on the right partially occlude the ligand, and partially
receive color bleeding from it.

Another molecule-ligand interaction is depicted in Figure 9, where
we have omitted the CPK coloring for the receptor. Figure 9 (a) shows
the scene without interreflections, Figure 9 (b) shows the application
of the presented interreflection together with an enhanced AO. The
contrast communicating the 3D structure of the receptor is emphasized
in Figure 9 (b), also the initial penetration of the ligand is communicated
through interreflections. Furthermore, as the upper leg of the ligand
also reflects on the molecule, it becomes more apparent in Figure 9 (b),
that this part of the ligand is raised.

Since the visual quality on the atom level is one of the main benefits
of the presented approach, as compared to grid sampling-based tech-
niques, we have also applied it to single molecules consisting of fewer
atoms. Figure 10 shows the application to a testosterone molecule
without and with interreflections. While the effects seem to be quite
subtle on the first glance, flipping these two images forth and back
actually reveals that the interreflections have a rather strong impact
on perceiving how the atoms are located with respect to each other,

(a) Without interreflections (b) With interreflections

Fig. 10. Visualization of a testosterone molecule without (a) and with
analytic interreflections (b). The color bleeding effects, emphasized in
the inset, make the 3D structure more apparent.



especially when focusing on the oxygen atom in the front, which is also
scaled up in the inset.

Encoding interaction strength. One of the major objectives of
molecular simulation is the understanding of receptor-ligand binding.
In molecular simulations in the context of pharmacology, for instance,
docking and/or dynamical induce fit simulations are generated to an-
alyze the binding properties of drugs. The main goal is to rationally
understand the interaction energies between the drug and the protein
receptor, the target, in order to propose drug modifications with bet-
ter specificity and interaction strength. Interaction energies, mainly
based on Coulomb, vdW and desolvation terms, appear in the form of
attractive or repulsive forces, depending on atomic charges and other
factors. Given a protein-ligand conformation, the spatial distribution of
the atoms in both the protein and the ligand, and the combination of
these energies will qualitatively determine the binding strength. Thus,
obtaining better and quicker knowledge of these drug-receptor inter-
actions directly influences the domain expert decision on chemical
modifications, which can significantly improve the design of new drugs.
Nowadays, the visual communication of interaction forces is mainly
limited to the manual establishment of distances between atoms and
molecules (residues etc.) and a subsequent calculation of the interaction
strengths. By exploiting the analytic expressions derived within this
paper, we can visually communicate repulsive, attractive, or the total
amount of energies that are affecting certain configurations. Therefore,
we exploit L̂′′ to encode the interaction strength on the surfaces of
atoms. By exploiting the directional nature of mutual interreflections,
we do not only provide means to understand the forces that are interact-
ing but also visualize their strengths, and what atoms are contributing
to these forces. Furthermore, the distance of the atoms is inherently
communicated through the falloff. As interaction strengths are typi-
cally computed for a radius of 12Å (larger distances could be chosen
to capture possible long-range forces), we have adapted our cell size
for the fixed-radius nearest neighbors search accordingly. Furthermore,
as interaction strength computed for two atoms are independent of
atoms lying in between these two atoms, we do not use any occlusion
compensation as discussed in Section 5.2.

Figure 11 shows the application of the proposed interaction strength
visualization to a simulation of the interaction of an aspirin ligand
with the receptor molecule Phospholipase A2 (PDB ID: 1OXR). To
give the ligand a canvas-like appearance, we use an exaggerated white
material function for it. The interaction strengths are computed as the
resulting total in each ligand atom from each protein atom. To obtain a
directional component, these computations are carried out per fragment
of the ligand atoms. We have encoded interaction strengths exceeding
0.5kcal in red for attractive forces, i.e., negative values, and blue for
attractive forces, i.e., positive values. To communicate the absolute
strength of the interaction, we exploit the interreflection exponent e (cf.
Section 5.2). Thus, the ligand atoms exhibit blue, red or mixed spots
indicating the direction and the absolute interaction strength. It can for
instance be seen in Figure 11 (a), that an attractive force is affecting the
ligand. Furthermore, in Figure 11 (b) it can be seen that both, repulsive
and attractive forces, are influencing one atom of the ligand.

Figure 12 shows two time steps of the Nuclear Hormone Receptor
simulation. The purpose of this simulation is to investigate the effects
of the receptor molecule dynamics on the ligand binding mechanism.

(a) Time step 1 (b) Time step 2

Fig. 11. Visualization of the interaction strength between a ligand and a
receptor molecule for two time steps of an aspirin binding simulation. At-
tracting forces between atoms are depicted in red, while repulsive forces
are depicted in blue. In contrast to existing techniques, our approach
enables us to visualize all atom/atom intermolecular interactions in a
directional manner, without occluding the scene with additional geometry,
such as lines or rulers.

Fig. 12. Visualization of the interaction strength around a Nuclear Hor-
mone Receptor. The insets show the ligand from a different perspective,
whereby the upper inset shows the same time step as shown in the
overview, and the lower inset shows the next time step. The red/blue
coding enables qualitative prediction of the next steps in the simulation,
and thus inherently captures the dynamics of the ligand.

Since the strong repelling forces of a hydrogen-hydrogen close contact
dominate in Figure 12 (top inset), it can be expected that the ligand will
be displaced towards the right within the next time step of the simula-
tion. Indeed, in Figure 12 (bottom inset) (the next time step), a large
displacement can be observed into the predicted direction. Furthermore,
now the attractive forces seem to be predominant, which results in a
sliding of the ligand along the molecule’s surface. In fact that is what
we could observe in the subsequent frames. To our knowledge, these
are the first visualizations capable of capturing these simulation dy-
namics in a static frame, and thus enabling interesting insights into the
simulation. Current techniques only enable the depiction of distances
and charge values through rulers or lines, which results in a cluttering
of the scene.

When analyzing these visualizations shown in Figure 11 and Fig-
ure 12, it is further important to know which atoms of the receptor
molecule are interacting with the ligand in the current time frame.
Therefore, we do not visualize the interaction strength on the receptor,

Fig. 13. Visualization of the interaction strength between a ligand and
a receptor molecule, whereby the atom identity color of the affecting
receptor atom is used to enhance ligand atoms. Thus, it becomes
possible to determine, which receptor atoms have the largest impact on
the ligand.



2Å 6Å 12Å
PDB Atom Occlusion Compensation

Molecule ID Count Off On Off On Off
Testosterone TES 49 514 474 244 133 249
Isomerase 1OGZ 1057 427 413 112 74 58

Photoreceptor 3RH8 2526 351 317 81 58 43
Maltoporin 1AF6 10517 298 291 104 72 46

Table 1. Frame rate measurements (FPS) for different molecules obtained
at an image resolution of 1280×720 pixels with varying cell size (2Å, 6Å,
and 12Å). For 2Å and 6Å, the two columns compare the performance
without (Off) and with [On] occlusion compensation.

but rather use the standard CPK color mapping to support identification
of atom types. For those receptor atoms not interacting with the ligand
in the current time step, desaturation is applied such that their types can
still be identified, but the focus is on those atoms responsible for the
interaction.

As an alternative coloring for the ligand, we propose to use the
actual CPK color mapping of the interacting receptor atoms. Thus,
it becomes clear which receptor atoms have the greatest contribution
to the interaction. Figure 13 shows a visualization generated with
this technique. As it can be seen, now the origin of the acting force
can be deciphered, as the visualization uses the atom type coloring.
To quantify the absolute interaction strength, it can also be used to
proportionally saturate the resulting bleeding effects.

So far, in the visualizations discussed in this subsection, we have
only incorporated Coulomb and vdW forces, and we leave the addition
of Solvent energies for future work.

Expert feedback. As interatomic forces, both from a classical or
quantum perspective, depend on the distance between particles, the
techniques presented here constitute an excellent choice to visualize
such interactions. The presented interaction strength encoding (see
Figure 11) indicates the potential in exploring the attractive and repul-
sive forces on a Monte Carlo ligand diffusion simulation. By doing so,
specialized researchers working on drug design can quickly and intu-
itively understand which parts of the drug are more relevant and which
others are better candidates for chemical modifications. Accordingly,
the encoding can also serve as a natural vehicle for the following pa-
rameters: i) molecular bleeding (by summing up atomic contributions)
for a quick estimate of the overall ligand binding energy; ii) individual
non-bonding force field terms bleeding, to better detect long-range
forces and adjust force field parameters; iii) electronic polarization
bleeding derived from quantum methods or polarizable force fields, to
visualize quantum effects in molecular association.

6.2 Performance Results
To analyze the runtime of the presented approach, we have conducted a
performance analysis on an Intel Core i5, 3.2GHz Quad-Core System
with 8 GB of RAM, and an Nvidia GeForce GTX960 graphics card
equipped with 2GB of RAM. As shown in Table 1, we have measured
frame rates for several molecules varying in complexity with respect to
their atom count. Furthermore, we have varied the cell size used for the
fixed-radius neighbors search, whereby we have tested 2Å, 6Å and 12Å,
whereby the latter is the radius typically used in molecular dynamics
simulations. For all cell sizes, we have measured the frame rates at
an image resolution of 1280×720 pixels. For the cell sizes of 2Å and
6Å, we have further switched on and off the occlusion compensation as
discussed in Section 5.2. For the 12Å cell size, we have not performed
these measurements, as this radius is only relevant for depicting the
interaction strength, which requires the occlusion compensation to be
always off. For all measurements we have chosen a zoom level such
that the respective molecule fills an as large part of the viewport as
possible without being clipped by the borders.

As it can be seen in Table 1, we achieve interactive frame rates in
all cases. As expected, the occlusion compensation results in a frame
rate penalty, which is proportional to the atom count and the cell size.
In fact, for a cell size of 12Å the frame rates for the more complex
molecules were below 10 fps. Nevertheless, since 12Å are only used
to illustrate atom/atom interaction strengths, it is mandatory to switch
off the occlusion compensation in these cases anyway. The table also

shows, that the frame rates also dependent on the atom count, whereas
this is not the main influencing parameter.

6.3 Limitations
In this section we briefly discuss the main limitations of our approach.

Cell size and neighborhood. If the cell size is too small, few atoms
will be found through the neighboring cells which will degrade the
visual quality of the technique. On the contrary, if the cell size is too
big, too many atoms will have to be processed per fragment and the
performance will suffer. In general, we have found that a cell size
of 3-6Å seem to provide a good trade off between visual quality and
performance when using the technique for rendering.

Overbleeding. As mentioned in section 6.2 overbleeding can occur
because of the techniques being applied in a pair-wise frame and does
not take into account third party atoms that might be occluding. This
is can be compensated to some extent with the use of occlusion com-
pensation as mentioned in Section 5.2. However, in most cases this is
not necessary, with the exception of highly exaggerated interreflection
strengths.

AO vs. diffuse interreflections. Currently we use both AO and
interreflections when computing the resulting picture. In a perfect
scenario with an expression L̂′′ that fits perfectly to the path-traced data
we would not need the AO model. However the fit of the expression
we use is not perfect and will probably never be. It generally lacks
some of the falloff that occurs when two atoms are close and occlude
each other more than is added through interreflection. This scenario
can be seen in the left most example in Figure 4, and the two darkest
curves in Figure 5 (a). Therefore we combine the AO and the diffuse
interreflections as mentioned in Section 5.3.

7 CONCLUSIONS AND FUTURE WORK

In this paper we have proposed a novel visualization approach for space
filling molecular representations. Inspired by the physical processes
underlying light transport, and motivated by the perceptual benefits of
interreflections, the presented visualization techniques capture the dif-
fuse interreflections between atoms of the same or different molecules.
While the computational complexity of these effects would forbid to
apply them during interactive visualization, our approach exploits sym-
bolic regression to find an analytical solution to this problem. By
reducing the problem to a simplified two atom setup, we are able to
derive a five parameter function, which captures these light interactions
adequately. Symbolic regression then enabled us to find an analytic
expression, which can be implemented on modern GPUs in order to
achieve interactive frame rates. We have derived the underlying theory,
discussed the interactive visualization algorithm, and presented results
showing the benefits of the proposed technique. Our results indicate,
that the proposed approach can be used for both, improving the degree
of realism of molecular visualizations, and for visually communicating
relevant simulation parameters.

In the future we would like to investigate several aspects which are
beyond the scope of this paper. First, we would like to employ a better
SES interpolation, which takes into account the curvature along the
surface rather than just the vicinity to atoms, and investigate how to
extend to other space filling representations, such as ligand-excluded
surfaces (LES) [33] or molecular skin surface (MSS). An obvious
endeavor is also the extension to other primitive types, such as cylinders
for visualizing bonds. Furthermore, we would like to combine the
proposed approach with semi-transparency, as this would enable us to
give an occlusion-free view to influencing atoms which sit deep inside
the receptor molecule. To provide an even better visualization with
respect to possible ligand modifications, we would like to experiment
with techniques for combining positive and negative interaction forces
together with influencing atom identities in the same visualization.
Finally, we aim to investigate which other areas of visualization that are
based on multiple parameters that can benefit from symbolic regression
analysis.
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