
Inviwo - An Extensible, Multi-Purpose Visualization Framework
Erik Sundén∗, Peter Steneteg†, Sathish Kottravel‡, Daniel Jönsson§, Rickard Englund¶, Martin Falk‖, Timo Ropinski∗∗

ABSTRACT

To enable visualization research impacting other scientific domains,
the availability of easy-to-use visualization frameworks is essential.
Nevertheless, an easy-to-use system also has to be adapted to the
capabilities of modern hardware architectures, as only this allows
for realizing interactive visualizations. With this trade-off in mind,
we have designed and realized the cross-platform Inviwo (Interac-
tive Visualization Workshop) visualization framework, that supports
both interactive visualization research as well as efficient visualiza-
tion application development and deployment. In this poster we
give an overview of the architecture behind Inviwo, and show how
its design enables us and other researchers to realize their visual-
ization ideas efficiently. Inviwo consists of a modern and light-
weight, graphics independent core, which is extended by optional
modules that encapsulate visualization algorithms, well-known util-
ity libraries and commonly used parallel-processing APIs (such
as OpenGL and OpenCL). The core enables a simplistic structure
for creating bridges between the different modules regarding data
transfer across architecture and devices with an easy-to-use screen
graph and minimalistic programming. Making the base structures
in a modern way while providing intuitive methods of extending
the functionality and creating modules based on other modules, we
hope that Inviwo can help the visualization community to perform
research through a rapid-prototyping design and GUI, while at the
same time allowing users to take advantage of the results imple-
mented in the system in any way they desire later on. Inviwo is
publicly available at www.inviwo.org, and can be used freely by
anyone under a permissive free software license (Simplified BSD).

Keywords: Inviwo, Interactive Visualization Workshop, Rapid
Prototyping, Open Source Software

1 INTRODUCTION

Visualization algorithms and system are often based on the visual-
ization pipeline [7], i.e. preparing, filtering, mapping and render-
ing data. Most advanced visualization algorithms must therefore
be involved in the discovery process from the start. From acquir-
ing the data to displaying it on the screen [5], which requires that
the algorithms are tightly integrated into the domain scientists work
flow [10]. However, from the perspective of a domain scientist the
state-of-the-art in visualization algorithms has mostly been limited
to showing their data through 2D graphs of various kinds, or pre-
configured 3D representations with limited interaction and filtering
possibilities. Even though many tools support more advanced 3D
representations, the user is usually not able to configure and mod-
ify these representations freely. The fact that the user is not able
to explore the visualization design space freely severely hinders the
potential use of visualization and thereby scientific discovery. Fur-
thermore, it is usually not enough to visualize the data using a sin-
gle representation or algorithm. To fully understand the data several
visualization algorithms need to be integrated and linked such that
changes are reflected in the different views.

∗Linköping University, e-mail:erik.sunden@liu.se
†Linköping University, e-mail:peter.steneteg@liu.se
‡Linköping University, e-mail:sathish.kottravel@liu.se
§Linköping University, e-mail:daniel.jonsson@liu.se
¶Linköping University, e-mail:rickard.englund@liu.se
‖Linköping University, e-mail:martin.falk@liu.se
∗∗Ulm University, e-mail:timo.ropinski@uni-ulm.de

2 GENERAL VISUALIZATION FRAMEWORKS

A relatively large selection of general purpose visualization frame-
works is available, whereby all have their individual pros and cons.
One of the first general purpose frameworks for scientific visual-
ization is VTK (The Visualization Toolkit) [9], which is a visual-
ization framework written in C++, freely available under a BSD
license. VTK itself cannot be used without knowledge of C++
and requires applications, such as ParaView, to be used by non-
programming experts. Voreen (Volume rendering engine) [6] is a
rapid application development framework for visualization for vol-
umetric data sets. Voreen is written as a C++ library and is cross
platform (Windows/Linux, with minimal Mac support). Similar as
many major visualization frameworks, Voreen’s user interface con-
sist of a data flow network. VisTrails [1], which uses a similar data
flow network as its interface, is still distinctive from other frame-
works, as it maintains a detailed history of all the changes made
by the user. Unfortunately, the connections in the dataflow network
need to be performed in a relatively fine grained manner, which
makes the framework more difficult and tedious to use. Another
data flow application targeted for medical visualization is Mevis-
Lab [8], available under a commercial license. In theoretical chem-
istry VMD (Visual Molecular Dynamics) [3] is an application for
displaying large biomolecular systems using 3D visualization. It
accepts a large selection of biology related file formats, and sup-
ports many ways or rendering. The application Visit [2] was build
on top of the VTK toolkit, designed for parallel visualization and
graphics analysis, with the main aim of large scale visualization, as
it is built around a client and server solution.

While the visualization systems above boasts many features,
they can be difficult to use either from a programming or end-user
perspective, and their basis often do not utilize the low-level mod-
ern architecture to achieve high performance processing with low
overhead. Our design of Inviwo has been done with the goal to
compensate these shortcomings.

3 THE INVIWO FRAMEWORK

Inviwo is a framework for rapid visualization prototyping, written
in C++, it exploits modern graphics hardware, and is freely avail-
able under the permissive Simplified BSD license. The strategies
behind the design of the Inviwo framework are illustrated by Fig-
ure 1. The goal is to create a framework that can be used without
any prior visualization knowledge, but still is powerful enough to
be useful for a visualization scientist. By having a framework that
both novice and expert users can use, we can effectively shorten
the time it takes for advanced visualization techniques to reach a
broader user base outside of the visualization field.

On a more technical level, Inviwo is designed in such a way
that all specific platform APIs are excluded from the core, enabling
the system itself to be used on any system (with C++11 support),
even without a display system. Thus, all core concepts have C++
back-ends, and implementation of these concepts for APIs such as
OpenGL and OpenCL is provided in optional modules. This graph-
ics independent design makes Inviwo more suitable for cloud-based
visualization as well as future API changes. Thus, the inclusion of
other recent low-level frameworks, such as Metal (Apple) or Mantle
(AMD), can be performed in a straight-forward way, while provid-
ing the option to use none, one or multiple interfaces to these APIs.

The application interface of Inviwo enables the user to design
data flow networks, similar to others (see Figure 2). In Inviwo we
represent the nodes in the network as processors which has a set of
input and output ports that can be connected. Data flows from top
to bottom following the connections in the network. Additionally
each processor has a set of properties that defines the state of the
processor. When properties change, affected parts are re-evaluated
automatically.



Matlab

General Domain-specific

Ea
sy

Ad
va

nc
ed

VMD

Inviwo

MevisLabMathematica

Ed
uc

at
io
n

Specialization

Visit
VTK

Figure 1: The goal of Inviwo is to be useful for a wide range of prob-
lems and users. It should be easy enough for a novice user to use
it without instructions, yet still allowing an experienced visualization
scientist full advantage of the system. It is designed with generality in
mind, but can easily be extended with domain specific functionality.

3.1 Seamless data flow between architectures
To be able to bridge all available graphics hardware architectures,
we have designed and implemented a data flow network which
seamlessly update data on various architectures on-demand. Thus,
the developer may utilize the incoming data for either CPU pro-
cessing, explicit graphics pipeline (OpenGL) or a heterogeneous
multipurpose platform (OpenCL), regardless of which architecture
the valid data resides on. This is enabled through data convert-
ers which, if available, utilize already allocated memory to, for in-
stance, shuffle data to and from the GPU on-demand, while keeping
track on which architecture the latest valid data resides on. Thus,
we are able to cache intermediate results across graphics architec-
tures.

4 APPLICATION CASES

To demonstrate the flexibility of Inviwo, we briefly discuss two ap-
plication cases realized through Inviwo in the past. Further applica-
tion cases are available on (@ www.inviwo.org) within the sample
workspaces deployed with the current version of the software.

4.1 Molecular Visualization
One of the key challenges in molecular visualization is enabling
a better spatial comprehension in an crowded environment while
preserving real time interaction. The Inviwo framework was used
to develop a novel Depth of Field (DoF) technique that improves
spatial comprehension [4]. This DoF technique exploits coverage
based opacity estimation to achieve rendering quality comparable
with multi-sampling DoF technique at interactive frame rate. With
the aid of the rapid protoyping nature of Inviwo, we were not only
able to develop new algorithms, but also to easily integrate exist-
ing techniques such as ambient occlusion, screen based DoF and
order independent transparency. Furthermore, the scripting fea-
tures in Inviwo enabled the evaluation of our algorithms. For ex-
ample, python scripts can be used to drive the application (by ex-
tending/embedding Python API) and perform evaluation tasks such
as measuring frame rate by changing camera view or comparing
differences in images.

4.2 Data Presentation
It can be highly beneficial to utilize interactive visualization for ed-
ucating the public about scientific data. Such applications should
be engaging and intuitive for both novice and expert users, which
often require highly interactive solutions, making the performance
of the visualization pipeline critical. Inviwo has been utilized in
numerous interactive application, in a public setting, for example
show-casing brain activity based on data from the Human Connec-
tome Project (see Figure 3).

Figure 2: Molecular visualization functionality implemented inside an
Inviwo module. Various operations are performed inside processors
and the result from each processor flows between connected ports
in an top-down topology structure.

Figure 3: Application designed for public exhibition, utilizing Inviwo
for as the visualization pipeline. The application allows users to ex-
plore the brain structure (MRI) and learn about brain activity (fMRI).

5 CONCLUSIONS

This poster just describes a subset of the possibilities of Inviwo.
We hope that, in the case of acceptance, the discussions around the
poster stand will enable us to better inform other researchers about
Inviwo, in order to support them with their research.

REFERENCES

[1] S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger, C. T. Silva,
and H. T. Vo. Vistrails: visualization meets data management. In
Proceedings of the 2006 ACM SIGMOD international conference on
Management of data, pages 745–747. ACM, 2006.

[2] H. Childs, E. Brugger, K. Bonnell, J. Meredith, M. Miller, B. Whit-
lock, and N. Max. A contract based system for large data visualization.
In Visualization, 2005. VIS 05. IEEE, pages 191–198. IEEE, 2005.

[3] W. Humphrey, A. Dalke, and K. Schulten. Vmd: visual molecular
dynamics. Journal of molecular graphics, 14(1):33–38, 1996.

[4] S. Kottravel, M. Falk, E. Sundén, and T. Ropinski. Coverage-Based
Opacity Estimation for Interactive Depth of Field in Molecular Vi-
sualization. In Proceedings of the 2015 IEEE Pacific Visualization
Symposium, pages 255–262, 2015. to appear.

[5] K.-L. Ma, I. Liao, J. Frazier, H. Hauser, and H.-N. Kostis. Scientific
storytelling using visualization. Computer Graphics and Applications,
IEEE, 32(1):12–19, 2012.

[6] J. Meyer-Spradow, T. Ropinski, J. Mensmann, and K. Hinrichs.
Voreen: A rapid-prototyping environment for ray-casting-based vol-
ume visualizations. Computer Graphics and Applications, IEEE,
29(6):6–13, 2009.

[7] K. Moreland. A survey of visualization pipelines. Visualization and
Computer Graphics, IEEE Transactions on, 19(3):367–378, 2013.

[8] J. Rexilius, J.-M. Kuhnigk, H. K. Hahn, and H.-O. Peitgen. An appli-
cation framework for rapid prototyping of clinically applicable soft-
ware assistants. GI Jahrestagung (1), 93:522–528, 2006.

[9] W. J. Schroeder, K. M. Martin, and W. E. Lorensen. The design and
implementation of an object-oriented toolkit for 3d graphics and visu-
alization. In Proceedings of the 7th conference on Visualization’96,
pages 93–ff. IEEE Computer Society Press, 1996.

[10] C. T. Silva and J. Freire. Software infrastructure for exploratory vi-
sualization and data analysis: past, present, and future. Journal of

Physics: Conference Series, 125(1):012100, 2008.


	Introduction
	General Visualization Frameworks
	The Inviwo Framework
	Seamless data flow between architectures

	Application Cases
	Molecular Visualization
	Data Presentation

	Conclusions

