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Abstract

Despite the increasing importance of multimodal volumetric data acquisition and the recent progress in advanced volume illumina-
tion, interactive multimodal volume illumination remains an open challenge. As a consequence, the perceptual benefits of advanced
volume illumination algorithms cannot be exploited when visualizing multimodal data – a scenario where increased data complex-
ity urges for improved spatial comprehension. The two main factors hindering the application of advanced volumetric illumination
models to multimodal data sets, are rendering complexity and memory consumption. Solving the volume rendering integral by
considering multimodal illumination increases the sampling complexity. At the same time, the increased storage requirements of
multimodal data sets forbid to exploit precomputation results, which are often facilitated by advanced volume illumination algo-
rithms to reduce the amount of per-frame computations. In this paper, we propose an interactive volume rendering approach that
supports advanced illumination when visualizing multimodal volumetric data sets. The presented approach has been developed
with the goal to simplify and minimize per-sample operations, while at the same time reducing the memory requirements. We will
show how to exploit illumination-importance metrics, to compress and transform multimodal data sets into an illumination-aware
representation, which is accessed during rendering through a novel light-space-based volume rendering algorithm. Both, data trans-
formation and rendering algorithm, are closely intervened by taking compression errors into account during rendering. We describe
and analyze the presented approach in detail, and apply it to real-world multimodal data sets from biology, medicine, meteorology
and engineering.
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1. Introduction

With the advancements in sensing technology the analysis of
multimodal data sets has become more common in many sci-
entific domains. As a consequence, visualization became a key
technology that enabled exploration and understanding of the
relationships between different modalities. While progress in
the area of advanced volume illumination has led to improved
spatial comprehension by depicting the relationships between
spatial structures more clearly [1, 2], interactive multimodal
volume illumination is still an open challenge, and will con-
tinue to be as data set sizes increase. This is especially a lim-
itation when dealing with multimodal acquisitions, where the
relationship between the structures across modalities is one of
the main benefits, and therefore should be preserved for bet-
ter comprehension during exploration. When for instance per-
forming cranial surgery, the overall structure of the brain, often
best visible in MRI data, should be seen within the context of
the supplying vessels, often imaged through contrast-enhanced
CT acquisitions. Only when spatial relations can be understood
across modalities, can the full potential of multimodal data be
exploited during interactive exploration.

Several interactive volumetric illumination algorithms have
been proposed [3], which increase the degree of realism in sin-

gle modality visualizations, and many of these algorithms are
known to improve the spatial comprehension [1, 2]. While the
separation of structures through separate transfer functions can
be made for different modalities, a clear spatial comprehen-
sion between structures across modalities as well as for each
separate modality is not easily achievable without introducing
global additions such as occlusion or illumination, designed to
enhance depth cues and separate the different structures in the
data. Furthermore, the incorporation of light sources, which en-
able the illumination, does not affect the semantics encoded in a
transfer function, and the general user interface for light sources
can be considered superior to the user interface of transfer func-
tions, in aspects such as intuitiveness and usability. It should be
clearly noted, that lighting does not replace the usage or im-
portance of transfer functions, but complements it for a better
separation of the structures in the data. However, the introduc-
tion of global illumination can not be made without the global
knowledge of what all modalities at a specific grid point (voxel)
as a context of all the occlusion from a point towards a respec-
tive light, or around the neighborhood of each voxel is at some
point required.

When designing such algorithms several challenges need
to be overcome, in order to provide interactivity when chang-
ing rendering parameters, such as the camera or the transfer
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Figure 1: Multimodal volume illumination applied to a two modality raster microscopy scan of a Lily pollen (367 × 331 × 135 voxels). While standard multimodal
volume rendering does not show relations across modalities (first), multimodal volume illumination with two light sources depicts these relations (second). Showing
the individual modalities next to each other with advanced volumetric illumination, does also not convey their spatial relationship (third & fourth).

function. Due to the global nature of advanced volumetric il-
lumination, each sampling operation is dependent on several
other sampling operations, which are used to determine the in-
fluence of surrounding structures. As these additional sampling
operations result in a severe performance bottleneck, a com-
mon approach has been to trade memory complexity for com-
puting time. By using different forms of illumination caches,
with varying precomputation or update times (see, for exam-
ple, [4, 5, 6]) it became possible to store the relevant informa-
tion in the graphics processing unit’s (GPU) memory to enable
advanced illumination of single volumetric data sets at inter-
active frame rates. Due to the increased sampling complexity
of multimodal volumetric data, this scenario would benefit from
precomputation in order to reduce rendering times. However, as
these data sets comprise several volumes, in the future these en-
larged memory footprints forbid exploitation of additional illu-
mination caches during rendering. Thus, higher sampling com-
plexity and memory demands go hand in hand for multimodal
volume illumination, and must be tackled in an integrated man-
ner.

In this paper, we introduce a novel approach for multimodal
volume illumination which reduces the number of sampling op-
erations as well as their complexity, while at the same time re-
ducing the GPU memory footprint. The key idea is to limit illu-
mination computations only to those samples which are visible
to the camera as well as the light source. While this can re-
duce the number of sampling operations drastically, determin-
ing these samples is not easy as it is an order-dependent process.
While many volume illumination algorithm work in a two pass
process (first a light pass and second a camera pass) to deal
with this order-dependence, our approach exploits a visibility
function which can be queried in constant time in order to defer
illumination computations and perform them only if necessary.
This order-independent processing enables direct compositing
into the camera view without requiring an intermediate illumi-
nation cache. Hence we can benefit from the advantages of de-
ferred shading and exploit it for semi-transparent direct volume
rendering of multimodal data. As a consequence our approach
can incorporate multiple light sources (see Figure 1) at interac-
tive frame rates without increasing GPU memory requirements.
While shadows in single light source setups are known to im-
prove the spatial comprehension of volume rendered scenes [1],
multiple light source setups come with the benefit that shad-
owed regions neither appear to be pitch black, nor suffer from a
low contrasts introduced by intense ambient lighting. As it can

be seen in Figure 2, this leads to vivid shadows which do not
cover critical structures, as for instance a tumor in an MRI scan.
This observation is also in line with the findings made by Halle
and Meng [7], which indicate that multiple light source setups
are beneficial in visualization. Furthermore, Lee et al. [8] de-
signed a system for calculating the optimal placement of mul-
tiple light sources for rendering of scientific datasets. Thus, to
fulfill this goal we need efficient sampling and further reduced
memory requirements. Therefore, we transform the multiple
modalities into a single illumination-aware data structure from
which we can draw samples in most cases in constant time. The
error of this compression process is taken into account during
rendering, which interlinks data compression and rendering al-
gorithm in a tight manner. To solve the challenge of multimodal
volume illumination at interactive frame rates we make the fol-
lowing contributions:

• A novel light-space volume rendering algorithm which
supports multimodal volume illumination with multiple
light sources by deferring illumination computations.

• An illumination-aware multimodal volume data structure
which reduces the memory footprint and the complexity
of sampling operations by exploiting
illumination-importance metrics.

• An interlinking of the multimodal data structure and the
rendering algorithm which takes into account clustering
metrics during the visualization process.

(a) Single Light (b) Multiple Lights

Figure 2: Comparison between single light source setup (a) and multiple light
source setup (3 point lights) (b).
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2. Related Work

Three areas of research are related to our work: interac-
tive volume illumination, multimodal visualization and volume
compression.
Multimodal visualization algorithms are becoming increas-
ingly important as multimodal imaging techniques. Many of
these algorithms focus on reducing the rendering overhead when
dealing with multiple modalities, and various structures for stort-
ing the spatial data and associated properties.

Chen and Tucker [9], present a method named ”Construc-
tive Volume Geometry (CVG)”, which does enable fusion of
multiple spatial objects (i.e. volumes, geometry etc) through
a multi-level tree structure defining composting operations at
non-terminal nodes and spatial object structures at terminal nodes.
The spatial objects contain associated spatial properties, such as
proxy geometry and transfer function. As such, all spatial ob-
jects are treated as volume objects. The composting operations
are applied during the ray casting process. Our approach in-
stead utilizes a illumination-aware data-structure, which should
be more suitable for GPU implementation.

In more recent work, multimodal visualization with a GPU
implementation has been applied. Brecheisen et al. exploit
depth peeling to generate pairs of entry and exit points, for the
various combinations of modalities [10]. Lindholm et al. pro-
pose the use of binary space partitioning trees to enable the de-
sired spatial separation [11]. Rössler et al. focus on the genera-
tion of dynamic shaders based on the degree of volume overlap
such that the executed shaders only access the required volumes
for a spatial area [12]. The actual compositing of the available
modalities is addressed by Cai and Sakas [13]. Abellán and Tost
exploit a slicing-based approach for the composition of two reg-
istered volumes [14], which can be extended to support time-
varying data, which they store by exploiting run-length encod-
ing [15]. Another GPU-based approach is proposed by Kainz et
al., who propose a ray-casting based framework which supports
compositing of multiple volumes together with geometry [16].
Beyer et al. describe how to use state-of-the-art GPU-based
multiple volume rendering for preoperative planning [17].

While all these approaches enable interactive multimodal
volume rendering, and utilized the GPU, volumetric illumina-
tion aspects are not addressed. Some methods enable the im-
plementation of illumination approaches designed for regular
grids. However, the method memory footprint has been sub-
stantially increased as an additional composition grid is required,
which dimensions can become very large for spatial varying
modalities. This would require significant large storage for
many global volumetric illumination techniques. As the in-
corporation of illumination in scientific visualization is ben-
eficial [2] for multimodal data in the same way as for single
modalities, we desire a method that does handle the scalability
of data and spatial varying modalities in a more efficient manor.
Interactive volume illumination has been the subject of many
research efforts. When analyzing the literature it becomes ap-
parent that a common reoccurring pattern of advanced volu-
metric illumination algorithms is to trade memory complex-
ity for rendering speed [3]. One approach is to use precom-

putation of illumination relevant information (see, for exam-
ple, [4, 5, 6, 18, 19, 20, 21]) that is made available during ren-
dering and used to reduce the number of sampling operations.

Another common approach is to exploit an illumination cache,
which is rapidly updated upon illumination changes and thus
contains light source visibility or other relevant information,
typically for each voxel, e. g., [22, 23, 24]. The downside of
both of these approaches is the fact that GPU memory is a lim-
ited resource which is storing illumination information. Several
volumetric illumination algorithms have been proposed which
circumvent the additional memory requirements by applying an
iterative processing of the data [25, 26, 27, 28, 29]. While these
techniques reduce the additional memory requirements, the ad-
ditional computational costs for sampling multiple modalities
limits their interactive application. Furthermore, as iterative
processing is incorporated, multiple light sources are usually
not supported. Practically, in the aspect of multimodal volume
rendering, it is possible to precompute the illumination for in-
dividual modalities separately and then combine these later on.
However, in our experience such approach would be much more
complex and have a large performance overhead and memory
footprint impact. As a consequence none of the techniques dis-
cussed here have been applied to interactive multimodal volume
rendering.

The only work of which we are aware that discusses multi-
modality in combination with volume illumination is the fMRI
visualization approach presented by Nguyen et al. [30]. In con-
trast with our work, which incorporates full illumination in-
teraction between potentially semi-transparent structures, their
work interprets an fMRI signal as a light source to illuminate a
co-registered MRI scan.
Volume compression has been facilitated by several authors
in order to deal with large data sets. As compression is not
the main contribution of this paper, and a thorough overview
would be beyond its scope, we limit ourselves to a few key
references and refer to a recent survey by Marcos et al. [31]
for other sources. Some of the first approaches used wavelet-
based compression which support high compression rates ( see,
for example, [32, 33]). However, as the reconstruction cannot
be tightly coupled with the rendering, wavelet-based compres-
sion results in a performance drop during rendering. Therefore
other compression schemes, which can be more tightly inte-
grated into the rendering process, have been exploited. Ning
and Hesselink were the first to apply vector quantization in the
area of volume rendering to enable a block-wise compression
of single modalities [34]. In a subsequent paper, they discuss
optimization of rendering performance when modifying their
storage pattern [35]. Schneider and Westermann have proposed
a hierarchical encoding for static and time-varying data sets
which also exploits a vector quantization [36], while Fout et al.
also incorporate multi-variate data [37]. In this paper, we also
employ a vector quantization to compress multimodal data sets
whereby we exploit an illumination-aware similarity measure.

3



3. Deferred Volumetric Illumination

Our multimodal volume illumination approach is based on
reducing sampling costs by minimizing the number of sam-
pling operations as well as lowering the complexity of individ-
ual sampling operations. In this section we first describe how
to reduce the number of sampling operations through a novel
rendering method. To reduce the sampling complexity we in-
terlink this method with a data transformation process which is
discussed in Section 4.

In polygonal rendering deferred shading is often used to re-
duce rendering time by computing shading operations only for
those parts of the scene which are actually visible [38]. This ap-
proach can reduce the number of computional operations dras-
tically while also supporting the integration of multiple light
sources without a significant performance impact. Its main dis-
advantage however, is its incompatibility with rendering semi-
transparent structures.

As deferred shading stores visibility information together
with normals and other shading relevant information in a screen
space buffer, dealing with semi-transparent objects would re-
quire a layering of these buffers leading to memory overhead,
especially when dealing with multimodal data sets which al-
ready have a large memory footprint. This is therefore, not a vi-
able option. This is unfortunate as multimodal rendering could
particularly benefit from reducing the number of compute op-
erations, as sampling of multiple modalities leads to increased
costs. Therefore, to limit illumination computations to only the
necessary parts without requiring a costly shading layer data
structure, we propose a light source projection of the visible
volume parts in order to evaluate light source impact. While
this typically requires an intermediate data structure, given by
an illumination volume, we borrow the theory behind adaptive
transparency [39] to be able to directly project illumination in-
formation into screen space in an order-independent manner.
This enables us to reduce the number of sampling computations
when determining light source visibility.

3.1. Multimodal Illumination Model

To see how we can reduce the number of sampling opera-
tions, we start by analyzing an extension of the standard volume
rendering integral which incorporates multiple modalities. Cai
and Sakas state that single- and multi-volumes are both mixed
media, only with different compounds [13]. As they have iden-
tified accumulation level intermixing as a general way to inter-
mix illumination with opacity and intensity, we focus on this in-
termixing strategy throughout this paper although our approach
could also be combined with alternative intermixing strategies.
Due to its wide acceptance we have chosen to extend the sin-
gle scattering model proposed by Max [40], as well as Max and
Chen [41], for our purposes. We therefore, assume that a func-
tion, si(x), is given which samples the intensities of modality i at
sampling position x. By considering this multimodal sampling
function we can extend the standard volume rendering integral
to incorporate multiple modalities as follows:

I(xe, ~ωo) =T (xl, xe) · I(xl, ~ωo)

+

∫ xe

xl

T (x′, xe) ·
∫ n

0
τ(si(x′)) · ρi(x′, ~ωo)didx′

(1)

I(xe, ~ωo) is the radiance reaching the eye point, xe, in direction
~ωo, and T (x0, x1) describes the extinction between two points,
x0 and x1, and n is the number of modalities minus 1. xl is the
exit point where the ray along direction − ~ωo leaves the volume,
and τ(si(x′)) describes the absorption for modality i at loca-
tion x′. Taking into account multiple modalities is expressed
through the second integral, which symbolizes that τ(si(x′)) ·
ρi(x′, ~ωo) is dependent on the individual modalities. ρ j(x′, ~ωo)
incorporates the illumination computation and describes scat-
tering at x′ towards ~ωo as:

ρ j(x, ~ωo) =

∫
~Ωi

φ(s j(x), ~ωi, ~ωo) · (T (xl, x) · I(xl, ~ωi)

+

∫ x

xl

T (x′, x) · (
∫ n

0
τ(sk(x′)) · ι(sk(x′))dk)dx′)d ~ωi

(2)

Here, we integrate over all incoming light directions ~Ωi, whereby
φ(s j(x), ~ωi, ~ωo) is the scattering function at x. While this scat-
tering function can in principle be chosen based on the respec-
tive needs, throughout this paper we have applied the conven-
tion often used in volume rendering, which makes φ linearly
dependent on the gradient magnitude. Thus, we linearly inter-
polate the response of the Henyey-Greenstein phase function,
used for low magnitude gradients, with standard gradient-based
volume shading, applied for higher magnitude gradients. The
anisotropy parameter g of the phase function, as well as the
gradient-based shading intensities have been manually adapted,
while fixed values are also capable to obtain convincing results.
I(xl, ~ωi) describes the radiance for direction ~ωi as present at
xl, the last point along that direction. ι(sk(x′)) is the radiance
emitted from position x. In the context of multimodal volume
rendering the extinction T (x0, x1) must also take into account
multiple modalities, and thus be redefined as:

T (x0, x1) = e−
∫ x1

x0

∫ n
0 τ(si(x′))didx′ (3)

Solving Equation 2 for every x′ during rendering is achievable
when dealing with single modalities during interactive frame
rates. However, combined with the second integral, which is
necessary when dealing with multiple modalities, results in an
massive increase in necessary computation time and often makes
a desired interactive experience impossible.

3.2. Order-Dependent Sampling
When looking into current volume illumination approaches

and analyzing how the equivalents for Equation 1 and Equa-
tion 2 are resolved in single volume scenarios, it becomes clear
that order-dependence of the sampling operation is a major is-
sue as the numerical solutions for the integrals in these equa-
tions are order-dependent. We can identify two main strate-
gies used by existing volume illumination approaches to tackle
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order-dependence when applying advanced volumetric illumi-
nation. First, iterative processing determines a common sam-
pling front based on the camera and light positions to process
all samples in the correct order, whereby each sample is only
processed once. Several such algorithms have been proposed
in combination with slice-based volume rendering [26, 27, 29].
The second strategy for dealing with order-dependent sampling
operations is to facilitate a precomputation for solving Equa-
tion 2. This precomputation is usually performed for a suffi-
cient number of samples, and its results are made available dur-
ing rendering. Data structures used for storing such precompu-
tation results range from simple illumination volumes [22] to
spherical harmonic representations [4, 42].

To enable multimodal volume illumination with multiple
light sources we propose an alternative approach where the il-
lumination calculations are not performed as an iterative pro-
cessing or stored after a precomputation. Not relying on it-
erative processing is important as it enables us to avoid slice-
based rendering methods for incorporating early ray termina-
tion and empty space skipping [43], two mandatory techniques
when dealing with costly sampling operations. On the other
hand, as multimodal data sets already occupy large amounts
of GPU memory, storing precomputated illumination informa-
tion results available for rendering is not a viable option when
performing multimodal volume illumination with multiple light
sources.

When considering colored shadows together with multiple
light sources, such data structures become particularly big, as
they need to store illumination information for all light sources
and different wave lengths. In addition, unnecessary computa-
tions are performed for occluded parts of the volumes, since the
precomputation of Equation 2 is performed independently of
Equation 1. As, when taking into account single scattering, illu-
mination only needs to be computed for those sample locations
which are visible from the eye point, these additional costly
sampling operations should be avoided when dealing with mul-
tiple modalities. Thus, if we could avoid slice-based iterative
processing and precomputations, we could reduce the number
of sampling operations and the GPU memory footprint at the
same time. Furthermore, as we are not bound to one com-
mon sampling front, the integration of multiple light sources
becomes possible.

3.3. Sample Reduction
When using volume ray-casting there are two main possibil-

ities to reduce the number of sampling operations during ren-
dering. First, the number of sampling operations per ray can be
reduced and, second, the number of rays can be reduced. Both
can be achieved by taking into account two key observations:

Observation 1 Only those samples that are visible from the
camera should receive illumination.

Observation 2 Only those samples that are visible from the
light source need to be illuminated.

Just by considering these two key observations, the amount of
sampling operations can be reduced. We can reduce the cast

Figure 3: By taking into account two key observations, we can limit the sam-
pling operations for camera view projection and light view influence to the areas
which are visible from both, camera and light source (A). The other areas are
either not visible (C), receive no illumination (B), or both (D).

view rays to those for areas not in shadow and, when consider-
ing single scattering, we can reduce the cast light rays to those
reaching a visible sample position. The effect is illustrated in
Figure 3 where we show the illumination of a semi-transparent
volumetric structure. As opacity is accumulated during com-
positing, only those voxels close to the camera contribute to the
visible rendering. Furthermore, only those parts of these volu-
metric structures, which receive illumination will be visible in
the rendering, leaving parts not reached by the illumination out
of the illumination computation (Observation 2). As Figure 3
shows, this limits the volumetric regions to be sampled quite
drastically. Unfortunately, determining these regions again re-
quires order-dependent sampling, as we would need to simulta-
neously determine light source influence and camera visibility.

To cope with this problem we borrow from a theory support-
ing a refactoring of the order-dependent transparency problem
first introduced under the name adaptive transparency by Sin-
torn and Assarson [44]. They rewrite the alpha-blending equa-
tion used for compositing semi-transparent polygons such that
they avoid recursion and sorting. In our case we extend this
approach to volume rendering and employ it to solve the ray-
integrals in Equation 1 and Equation 2. We would like to em-
phasize that, in contrast to the original approach, we do not ap-
ply it to surfaces, and thus limit ourselves to iso-surface repre-
sentations, but instead apply it to direct volume rendering to en-
able true, semi-transparent volumetric compositing. To achieve
this goal we take into account a visibility function for each sam-
ple along a ray. This visibility function represents the total
transmittance between the sample and the camera, and enables
us to composite all samples along a ray in an order-independent
manner. Thus, when numerically solving the ray-integrals in
Equation 1 and Equation 2, we can write this order-independent
compositing as:

xe∑
x=xl

ρ(x, xe − x) · τ(si(x)) · v(xe, x), (4)

where v(xe, x) is the visibility function for x as seen from the
camera at xe.

Sintorn and Assarson have applied adaptive transparency
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to hair rendering while assuming a constant alpha value for
each strand [44]. More recently Salvi et al. have rendered
arbitrary transparent geometries with a similar approach [39].
They have also shown how to apply these principles to shadow
mapping [45]. Instead, we exploit the dualism between semi-
transparent shadow rendering and semi-transparent volumet-
ric rendering which has first been pointed out by Enderton et
al. [46].

In contrast with previous order-independent approaches used
for volume rendering [47], this process enables us to achieve a
correct direct volume rendering visibility composition beyond
MIP and X-ray representations. Thus, we can determine cam-
era space visibility by avoiding the storage of a shadow data
structure, and we can enable multimodal volumetric illumina-
tion with multiple light sources by considering our two key ob-
servations as follows.
Observation 1. Using Equation 4 enables us to project x to-
wards xe order-independently, as soon as we know the visibil-
ity function v(xe, x). Thus, during rendering we can focus on
the numerical solution of the light interactions as expressed in
Equation 2, instead of the numerical solution of the primary
rays as expressed in Equation 1, since the view ray sample or-
der can be neglected. Thus, it becomes possible to process light
sources in an order, which is independent of the camera loca-
tion. In practice this means that instead of rendering the mul-
tiple modalities in an order according to the camera view, we
can render the individual modalities unordered as seen from the
light view, whereby we project each sample into camera space.
During this process the visibility function, v(xe, x), enables us to
achieve correct compositing, without storing the light contribu-
tion in an illumination cache. As a consequence, in addition to
not needing to order the modalities, colored shadows and mul-
tiple light sources are supported without any extensions. By
incorporating early ray termination we can also ensure that Ob-
servation 1 is taken into account, that is, only those samples
which receive illumination are projected into camera space.
Observation 2. While we have limited the number of samples
projected into camera space to those receiving illumination by
using the visibility function, v(xe, x), we still compute illumi-
nation for all illuminated samples including those which are
occluded when looking from the camera. Avoiding this sam-
pling overhead becomes possible by, again, taking into account
v(xe, x). In standard semi-transparent volume rendering the vis-
ibility of structures along a view ray decreases, as we march
along the ray from the camera position. This is also the reason
why early ray-termination can often be exploited, as for many
view rays there is a point, xl, beyond which the visibility is zero
for all points further along on the ray. In our scenario, xl to-
gether with the first point hit in camera space, x f , defines for
each pixel the interval of samples for which illumination com-
putations need to be performed. Accordingly, when x f and xl

are connected through line segments which are projected into
light space, the minimal set of entry points for which light view
rays have to be cast can be determined. Thus, by facilitating this
projection our approach can take Observation 2 into account,
that is, only those samples are illuminated which are visible
from the camera.

3.4. Approximate Visibility

Knowledge about the visibility function, v(xe, x), for each
camera view pixel is essential for our approach. Salvi et al.
could show that an approximate visibility function, with a low
number of control points is sufficient to allow transparency ef-
fects resulting from a high depth complexity [39]. Thus, in our
case, we can also represent volumetric visibility by using a low
number of control points, which approximate the decreasing
visibility along a view ray marching through a semi-transparent
volume. The number of control points used and their influence
on the visual quality are discussed in subsection 6.3.

To obtain the visibility information we employ a visibility
pass from which we derive an approximate visibility function,
ṽ(xe, x). Within this visibility pass we employ an unshaded ray-
casting pass with a sampling frequency of one sample per voxel,
while we use a visibility buffer to store ṽ(xe, x). To further in-
crease the accuracy of the approximate visibility we could uti-
lize peak finding similar to [48] while still keeping the same
number of control points. However, this would increase com-
putation time. Additionally during this traversal, we store the
first and the last hit point. By projecting the lines formed by
these point pairs into light space, we are able to obtain opti-
mized entry points as seen from the light source. Optionally,
during this visibility pass we also have the option to extract a
multimodal volume rendering of low intensity which can serve
as ambient light to account for multiple scattering effects. The
implementation details for our visibility pass are discussed in
Section 5.

4. Illumination-Aware Data Transformation

While the proposed rendering algorithm has been designed
to keep the number of sampling operations low, the individual
sampling operations are still costly and all modalities need to
be uploaded to the GPU. To improve this situation we interlink
our rendering algorithm with a data transformation step. In this
step we exploit intensity distribution similarity together with
illumination-aware quality metrics through a k-means based clus-
ter analysis. Therefore, we transform the original data set con-
sisting of multiple modalities, into a common data structure to
be able to perform a cluster analysis on the intensity vectors
given by all modalities. The output of the cluster analysis is
a common data space represented by a reference volume, con-
taining a cluster ID for each voxel. This cluster ID can then be
used to look up the multimodal intensity vector from a cluster
lookup map, in which we store the set of associated intensities
for each cluster ID. In order to keep the GPU memory footprint
of this lookup map low, it is essential to find an adequate clus-
tering which needs only a small number of clusters. Therefore,
we modify the cluster analysis used to incorporate illumination-
aware weighting, such that we can take into account the ex-
pected influence of each sample when applying volumetric illu-
mination.

When applying advanced illumination algorithms in com-
puter graphics perceptual properties of the illumination process
are often exploited to simplify computation, and thus speedup
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Figure 4: Our multimodal volume illumination algorithm is divided into four stages. After transforming the data (stage 1), we perform a visibility pass (stage 2),
which enables order-independent sample composition. Then we derive optimized light entry points for each light source from the results of the visibility pass (stage
3). Finally, light rays are cast in light space and light samples are projected into camera space by exploiting the approximate visibility function (stage 4).

image generation. With our technique, we follow the same
approach to reduce the lossiness which is inherent to cluster-
based data compression. The goal is to enable perceptually
plausible lighting effects while at the same time, reducing the
number of clusters and thus the data which needs to be ac-
cessed during rendering. We therefore need a mechanism to in-
put illumination-importance for individual voxels into the clus-
ter analysis stage. To do this we have identified two types
of weights, which we apply to modify the Euclidean distance
metric used in our k-means based clustering approach. These
weights are used to emphasize the importance of a particular
modality by rewriting the Euclidean distance metric for two in-
tensity vectors, xi and x j, as follows:

d(i, j) =

√
w1|xi1 − x j1|

2 + w2|xi2 − x j2|
2 + . . . + wn|xin − x jn|

2,

where wi are the local weights which we derive from the illu-
mination importance of the current voxel location. While there
are many possible ways to modify the clustering we would like
to outline the two which we have implemented in our system.
Occlusion-based. As we use the clustered data within a visu-
alization approach, we want to focus on those voxel’s which
contribute to the final image. We therefore propose the incor-
poration of occlusion-based weights. While local occlusion has
been exploited before in different application scenarios for vol-
ume rendering [49], within our approach we exploit a single
modality voxel occlusion to derive the weights for the k-means
algorithm. The rationale behind this approach is the fact that,
when a voxel of a certain intensity is surrounded by many vox-
els having the same intensity, this voxel is not visible if this
intensity is mapped to a high opacity through the transfer func-
tion. Therefore, we compute the degree of occlusion within
our clustering approach for each voxel and its intensity, si(x),
by considering a local neighborhood radius, r, and an intensity
window parameter, δ. The occlusion of a voxel for a certain
modality, i, is then derived based on the number of all vox-
els within the r neighborhood nr, and the number of voxels,
no, having an intensity lying in the range [si(x) − δ, si(x) + δ]:

occ(x) = no
nr

. Thus, by using 1−occ(x) as a local weight for each
modality, we can ensure that occluded voxels are considered as
less important during the clustering.
Boundary-based. The second illumination-aware weighting
scheme that we have implemented is based on the rationale that
viewers often focus on boundary layers within volumetric data
sets. When dealing with illumination, boundaries play an im-
portant role as they map to shadow silhouettes. These play an
important role in shape recognition, as they are one of the main
cues for object from ground separation [50]. To benefit from
this observation we map the gradient length of a voxel to a local
weight as used in our Euclidean distance function. Therefore,
we normalize the gradient magnitudes and map them to weights
such that we obtain a higher weighting for larger gradient mag-
nitudes. We would like to point out that this boundary-aware
weighting does not mean that we limit ourselves to isosurface
representations. Instead we support full semi-transparent direct
volume rendering, which potentially contains boundary features
as emphasized for instance through 2D transfer functions.

We would like to point out that, in addition to the discussed
similarity weights, more interesting adaptations are possible.
We could, for instance, use user-defined weights or derive
weights based on predominant light source directions. We could
also employ mutual information, which has been already ex-
ploited in the context of multimodal volume visualization [51].

5. Technical Realization

In this section, we describe the technical realization of the
proposed multimodal volume illumination algorithm. The en-
tire workflow consists of four stages. The first stage deals with
the data preparation and the remaining three stages are ren-
dering stages. As can be seen in Figure 4, after the data has
been clustered (stage 1) we perform the visibility pass (stage
2). Once the visibility information has been obtained, we can
generate optimized entry-points given in light space (stage 3),
before we perform the actual light ray-casting using these entry-
points (stage 4). In the remaining subsections we describe the
technical realization of these four stages.

7



5.1. Data Transformation
To perform the data transformation we apply the occlusion-

and boundary-based weights (see Section 4) within a CPU-based
k-means clustering. Once the clustering converges we have ob-
tained a single volumetric representation of the available modal-
ities, as illustrated in Figure 4 (stage 1). This reference volume
contains one cluster ID entry for each voxel, while each of these
IDs corresponds to a row of the 2D cluster lookup map that
holds the intensities of the n modalities. In this map each col-
umn corresponds to one modality, and each row to one intensity
vector used during the clustering. Since this lookup map is up-
loaded to the GPU for rendering we have to use offsetting to not
limit the number of clusters to the maximum texture dimension
of the GPU. Furthermore, to enable more rapid data fetches, we
always combine four modalities into a single texel consisting of
four channels as these can be fetched with a single texture fetch
operation. As a consequence, for up to four modalities, we can
query our data in constant time of one 3D and one additional
2D texture fetch.

5.2. Visibility Pass
For the main rendering pass we need the approximate visi-

bility function, ṽ(xe, x), for each view ray. We use an A-Buffer
based data structure to store these functions. This buffer, which
is represented as a 2D texture array, is similar to a deep shadow
map [52]. Each texture in this array consists of two channels:
one stores the depth to the camera and the other the visibility
at this depth. Thus, we can represent the accumulated trans-
parency along view rays as an approximate visibility function
where each texel stores one control point. By exploiting binary
search this data structure enables us to query the visibility for
arbitrary depth values along all view rays.

Similarly, as when generating a deep shadow map, the ap-
proximate visibility function, ṽ(xe, x), can be acquired by utiliz-
ing an error threshold. As soon as the difference in accumulated
opacity, computed during the visibility rendering pass, exceeds
this error threshold a new control point is added to the visibil-
ity function. An optimal visibility function, for a fixed number
of layers, can be determined through an iterative merging pro-
cess, as suggested by Salvi et al. [39]. The merging process is
initiated as soon as a new control point needs to be added to a
fully occupied visibility map. In this case the stored values are
analyzed and the existing control points decimated by remov-
ing the control point introducing the smallest difference, such
that a new control point can be introduced. Once the visibil-
ity buffer has been obtained, the visibility of a sample can be
determined by linearly interpolating the visibility of the clos-
est two control points framing the current sample. To optimize
storage requirements we neglect storing the first control point
of the visibility function, as the first hit point results in the first
visibility change.

A algorithm overview of the visibility pass is outlined in
algorithm 1.

5.3. Entry-Point Generation
Now that we have the approximate visibility functions, we

could already employ them to perform our main light-space

Algorithm 1 Pseudo-code for Visibility Pass
Unit: GPU (fragment stage, per-pixel)

1: Define ray from front to back (from camera)
2: for for all samples s along the ray do
3: Read/classify voxel at s to color/opacity c
4: if opacity in c > 0 then
5: perform compositing front-to-back along ray into r
6: if opacity in r > a-buffer storage threshold then
7: Calculate distance to camera d (volume space)
8: Calculate visibility v = 1 − r.a

(r.a = accumulated opacity)
9: if a-buffer is full then

10: Merge smallest threshold distance
11: end if
12: Store v and d as next entry in a-buffer
13: Write lv to write cache
14: end if
15: Determine next position
16: If ”end of ray” or ”accumulated opacity is

considered opaque”, then end for loop
17: end if
18: end for
19: Write first and last hit points into two textures

rendering pass. However, to do this efficiently, we employ
empty-space skipping and early ray-termination to ensure that
illumination computations are limited to those samples actually
affecting the image. We therefore generate optimized entry-
points as given in light space. As shown in Figure 3, for a cor-
rect illumination computation the area between the first and last
hit points as seen from the camera, need to be included. To gen-
erate optimized light space entry-points from this information
we form line segments based on each first and last hit point pair
and project these line segments as seen from the light source.
To achieve this we exploit a geometry shader which operates on
these hit point pairs, as derived from the visibility pass.

Representing the line segments as line primitives is appro-
priate, as long as the light direction is not collinear with the
camera direction. As this would lead to a degeneration of the
line primitives to points, holes would occur in the resulting
entry-point texture. To avoid this issue we represent line seg-
ments as cuboids, the depth of each cuboid corresponding to
the distance between the first and the last hit points, and the
width and height being calculated based on the pixel size and
the distance to the light source. Furthermore, there is no spe-
cific rasterization for the cuboids. The only difference is that
the cuboid will cover more pixels and as the synchronization
is per-pixel based, it does not matter how many pixels that a
cuboid covers in the rasterization.

To incorporate multiple light sources we simply project the
instantiated geometry to multiple output targets by taking into
account the projection matrix of the respective light source. We
could use the same procedure to generate optimized exit-points
but preliminary tests indicate that such exit-points yield no im-
provement in performance when we apply early ray-termination
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in the main rendering pass.

5.4. Main Rendering Pass

Once we have obtained the approximate visibility functions
and the optimized entry-points for the individual light sources
we can initiate the main rendering pass. As light is additive,
and we can use the generated visibility function for all light
sources, each light pass can be performed individually and with
no restriction on computation order nor any increase in memory
usage. To perform the actual rendering, we treat light rays simi-
larly to view rays of a co-located camera. A algorithm overview
of the main rendering pass is outlined in algorithm 2.

Based on this camera’s projection matrix we can support
different light source types. The most common would be per-
spective projections representing point light sources, and or-
thogonal projections representing directional light sources, al-
though more advanced light representations are possible. Area
light sources can, for instance, be simulated using fish-eye lenses.
In all cases the main rendering pass is performed by rendering
the volume from each light source’s position and projecting the
light samples into camera space before carrying out the com-
positing based on the approximate visibility functions. In the
following paragraphs we describe these subsequent steps.
Data access. During rendering each light ray is traversed in
the same manner as view rays would be in standard volume
rendering. During this traversal we access the multimodal data
stored in our optimized data representation for each sample, as
introduced in Section 4. This data access requires one addi-
tional texture fetch to retrieve the clustered intensities. Dur-
ing this dependent 2D texture fetch, we support pre- and post-
classification. The former enables us to modulate the depen-
dent 2D texture with the transfer function prior to rendering,
and composite the colors for the individual modalities. Thus,
we only need to fetch one color value during the dependent
lookup, and can use it directly during compositing. When ap-
plying post-classified interpolation we take into account the de-
pendent lookup for all neighbors and can, therefore, facilitate an
error-aware data sampling. To achieve this we not only weight
the intensities of the neighbors based on the sampling positions
but also the clustering error, which we can optionally store for
each voxel in our reference volume.
Visibility computation. Once we have fetched the data, before
projecting the current light sample value into camera space, we
have to perform a binary search in the visibility buffer to de-
termine the sample’s camera visibility. To enable this binary
search we make sure that we always have 2k − 1 layers, thus we
know that we always can find the middle layer by calculating
minLayer + (maxLayer − minLayer)/2. k can be either man-
ually specified or set automatically through an analysis of the
variation in the data set. To further optimize visibility queries
we assume that the depth extent is larger between the entry and
the first hit point as well as between the last hit and the exit
point, than between the individual layers in the visibility buffer.
Performing a check against the first and last layer before initiat-
ing a binary search will, therefore further decrease the average
search time.

Algorithm 2 Pseudo-code for Main Rendering Pass
Unit: GPU (fragment stage, per-pixel)

1: Define ray from front to back (from light source)
2: for for all samples s along the ray do
3: Read/classify voxel at s to color/opacity c
4: if opacity in c > 0 then
5: Project s to camera space and get texture coord t
6: Calculate distance d to camera (in volume space)
7: Retrieve closest layers to s based on t and d

(binary search)
8: Calculate visibility v through linear interpolation

between closest layers with respect to d
9: Perform compositing front-to-back along ray into r

10: Compute color/opacity as seen from camera
11: Project s onto camera to determine covered pixels c
12: for for all pixels p in c do
13: Add contribution to pixels in resulting image

(atomic add operation needed here)
14: end for
15: Determine next position or if we are done

(early ray termination is enabled)
16: end if
17: end for

Light sample projection. After a sample’s visibility has been
determined we can project it into camera space. Depending on
the camera and light source position, as well as the light source
type, different representations for the cast light rays might be
optimal. To compensate for perspective projection we have to
change a light sample’s footprint. This compensation is very
similar in nature to computing the footprint of a splat when us-
ing splat-based rendering. Accordingly, we can draw from the
pool of solutions developed for volume splatting [53]. Another
alternative solution could be to use cone tracing to deal with
this varying footprint. However, due do the highly parallel na-
ture of the GPU as well as our efficient multimodal data access
structure, in practice we could solve the problem much more
easily. By oversampling the amount of light rays, so as to not
miss structures seen from the camera, we could achieve the vi-
sual results shown throughout this paper while the performance
impact would be lower than when dealing with more complex
implementations. We would like to explicitly point out, that the
reduced multimodal data access costs play a crucial role, as the
oversampling requires additional data access.
Compositing. When finally compositing samples in camera
space, the order of the light space samples with respect to the
camera does not matter as we employ Equation 4. The most
obvious way of realizing the addition in Equation 4 would be
to use an atomic add operation, accessible since OpenGL 4.0.
However, the newest specification at the time, OpenGL 4.4,
only supports add operations of single 32-bit signed/unsigned
integers. NVIDIA further supports single 32-bit float atomic
add operations, through the GL NV shader atomic float
extension. By using this extension, we would save a software
conversion from float to integer. However, we still require three
channels to store the RGB values of the light samples. As mod-
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(a) no illumination (b) one light source (c) two light sources (d) two colored light sources

Figure 5: Three modalities (cloud, precipitation, terrain) of the Hurricane Isabel simulation data set (500 × 500 × 100 voxels) visualized without (a) and with
multimodal volume illumination (b). Adding one light source improves the spatial comprehension of the cloud layer, while a second light source can help to better
show their structures (c). Colored light can be further used to increase the contrast (d).

Figure 6: Multimodal volume illumination applied to three modalities (CT,
MRI T1, MRI T2) acquired before a cranial intervention (top). Advanced illu-
mination helps to spatially comprehend the relation between structures present
in the different modalities, which cannot be conveyed through the individual
modalities themselves (bottom).

ern software implementations of atomic add operations for mul-
tiple channels constrain the channel bit depth and have a sig-
nificant performance impact [54], we perform the addition in
Equation 4 for each color channel separately. The impact of the
atomic add operation thus directly depends on how many other
rays try to access the same pixel in the same iteration. Fortu-
nately, as most entry-points lie at different depths along a view
ray, this realization results in interactive behavior for the tested
setups. Once all light samples have been projected and compos-
ited we can combine the retrieved result with the ambient light
layer which we can optionally compute in the visibility pass.

Thus, we are able to simulate lighting effects which omit pitch
black shadows in the absence of multiple scattering.

6. Results & Discussion

To demonstrate the concepts proposed in this paper we have
applied it to real-world data sets from different scientific dis-
ciplines. In this section we discuss the achieved results with
respect to quality and performance.

Figure 7: Application to a multi-parametric simulation of temporally-evolving
plane jet flames, whereby the parameters chi, hr, mixed fraction, vorticity and
Y OH at time step 41 are shown.

6.1. Rendering Results

For the rendering results shown throughout this paper we
have used pre-classification within the visibility pass, while we
use post-classification during the main rendering pass. Further-
more, in all cases the maximum available layers in the visibility
buffer is set to 32. Figure 1 shows the application to a two
modality raster microscopy scan of a Lily pollen grain (367 ×
331 × 135 voxels). As can be seen the multimodal illumination
approach brings both modalities into a common frame of refer-
ence and thus allows inspection of correlations between the two
modalities. To demonstrate the applicability to meterology data
we have applied our technique to three modalities (cloud, pre-
cipitation, and terrain) of the Hurricane Isabel simulation data
set (500 × 500 × 100 voxels) as shown in Figure 5. As can be
seen the relation between the clouds and the terrain, which are
specified in different modalities, only becomes apparent when
applying multimodal volume illumination. Furthermore, shape
perception benefits from the use of two light sources together
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Standard Ours (L=Lights)
Data
set

Modality Original ID volume Cluster Data Image FPS FPS FPS FPS

resolution resolution count comp size (0xL) (0xL) (1xL) (2xL)
Lily- EM 367 × 331 × 135 400 × 360 × 147 2407 1.55x 2562 61.8 51.0 18.4 16.2
Pollen EM 367 × 331 × 135 5122 33.7 30.8 14.7 10.5

10242 9.4 10.9 7.9 5.4
Hurri- Cloud 500 × 500 × 100 549 × 549 × 110 1317 1.08x 2562 36.2 54.8 17.5 14.8
cane Terrain 500 × 500 × 100 5122 29.7 44.2 14.6 11.7

Precip 500 × 500 × 100 10242 9.9 18.7 9.56 6.78
Vis CT 414 × 535 × 577 240 × 303 × 297 5724003 4.70x 2562 15.6 45.1 16.2 12.2
Contest T1 MRI 176 × 512 × 512 5122 6.9 19.4 9.9 6.2

T2 MRI 544 × 640 × 24 10242 2.4 5.9 4.0 2.8
Jet Chi 480 × 720 × 120 366 × 549 × 91 4671398 2.26x 2562 55.1 58.1 16.6 14.2
Flames HR 480 × 720 × 120 5122 30.1 28.7 12.3 8.2

MixFrac 480 × 720 × 120 10242 8.4 9.2 6.1 4.3
Vorticity 480 × 720 × 120

Y-OH 480 × 720 × 120

Table 1: Performance measurements and data transformation analysis of our approach.

with colored light further increases the image contrast. Medi-
cal visualization is another application area, where multimodal
data frequently arises. Figure 6 shows the application of the
presented approach to a multimodal data set as acquired prior
to a cranial intervention. The data set contains three modalities
(CT, MRI T1, MRI T2) and as can be seen in Figure 6, mul-
timodal volume illumination enables to emphasize the spatial
relations between these modalities. For instance the relation
between the vessels, imaged in the contrast-enhanced MRI data
set, and the skull, imaged in CT, becomes apparent. Finally, we
have applied the presented approach to a combustion simulation
data set (480 × 720 × 120 voxels), which contains five param-
eters for a simulation of temporally-evolving plane jet flames
(see Figure 7).

6.2. Performance Analysis

When analyzing the performance of the presented approach,
the performance of the data transformation stage as well as
the rendering needs to be taken into account. As for all data
sets used throughout this paper, clustering times were below
20 minutes when using an OpenMP version running on a stan-
dard desktop PC. GPU acceleration of the clustering algorithm
would be highly beneficial in the complete work flow, however,
we did not thought this acceleration would be critical for this
paper and as we deemed it required much more extensive work,
both in examining related work as well as implementation, we
thought of this a future work. Thus, we solely focus on the
rendering performance in this section.

All the images shown have been generated such that the
achieved frame rates give us full flexibility when changing the
transfer function or other rendering parameters, when exclud-
ing the occlusion-based weighting based method which is de-
pendent on the transfer function. To analyze the rendering per-
formance in more detail, we have measured the average frames

(a) Non-weighted clustering (b) Weighted clustering

Figure 8: Microscopy data set (685 × 961 × 85 voxels), which has three modal-
ities (DAPI, FITC, TRITC) that are clustered without weighting (a) and with
occlusion-based weighting assigned to one of the modalities coloured green (b).
The non-weighted and weighted clustering, resulted in clusters of size 13849
and 14386 respectively.

per second (fps) over 60 frames while performing a camera ro-
tation. We have also varied the screen resolution and number
of light sources. Table 1 shows the results achieved on a stan-
dard desktop computer, equipped with an Intel Xeon W3550
processor running at 3.07 GHz, 6 GB of RAM and an NVIDIA
GeForce GTX 580 GPU.

As can be seen in the table we achieve interactive render-
ing times in all cases. In many cases the achieved frame rates
were even higher as compared to standard multimodal volume
ray-casting without illumination. The performance benefit of
the optimized entry-points has, in our tests, resulted in an aver-
age performance increase of 25%. Furthermore, the approach
of storing four modalities in one texel instead of in individual
texels, as described in Section 4, brought an additional perfor-
mance increase up to 60%. The measurements in Table 1 bene-
fit from these optimizations.
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(a) Visual error in relation to ratio between the number of clusters
and the number of points.
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(b) Visual error in relation to maximum number of available vis-
ibility layers per pixel.

Figure 9: Comparison of the visual errors resulting from varying the number of
clusters (a), and the number of layers in the visibility buffer (b).

6.3. Error Analysis
Clustering error. As can be seen in Figure 8, the weighting
introduced during clustering preserved the cluster points with
higher weights, as desired. There is no significant change in
cluster size but rather it affected the distribution of clusters val-
ues. The visual error in relation to the number of clusters has
been examined and our findings are plotted in Figure 9 (a). As
can be expected the normalized absolute error increases as the
ratio between the number of points and the number of clusters
increases. The highest compression rate shown in this measure-
ment has an average of 134 points per cluster, which results in
a normalized absolute error of 0.0032. Thus we can conclude
that a reasonably high ratio between the number of points and
the number of clusters can be achieved without introducing any
noticeable visual artifacts in the resulting image.
Visibility buffer error. In this evaluation we vary the number
of maximum layers available per pixel, l where n is an integer
from 3 to 6, and l is equal to 2 to the power of n. As can be ex-
pected the normalized absolute error decreases as the maximum
number of layers available in the visibility buffer increases. As
shown in the graph, allowing a minimum of 32 layers per pixel
is required to keep the normalized absolute error below 0.01,
which is desired to ensure that no noticeable visual artifacts oc-

(a) 8 Layers (b) 16 Layers

(c) 32 Layers (d) 64 Layers

Figure 10: The visual error resulting from varying the number of visibility
buffer layers. For each subfigure, top left shows the resulting rendering, and
bottom right shows the visual error emphasized 100x.

cur in the resulting image. Accordingly, we have used 32 layers
for all results shown throughout this paper. In Figure 10 we
show the visual impact for the microscopy case, whereby we
show the renderings top left and the visual errors emphasized
by 100x in the bottom right of each image. As can be seen,
with respect to the required number of layers in the visibility
buffer, we can confirm the positive findings made by Salvi et
al. [39].

6.4. Limitations
While the proposed approach works well in the tested sce-

narios, it has some limitations which would become apparent
when dealing with non-overlapping modalities.

While the used reference volume is easy to handle, in cases
where no or only a little overlap between the modalities exists
it is not optimal and should be combined with other multimodal
volume space partitioning techniques to obtain a better mem-
ory layout, for example, a binary space partitioning [11]. In
cases where low overlap becomes an issue space partitioning
data structures can be used to adapt the size of the reference
volume. In a similar manner multi-resolution techniques might
be used to deal with volumes having vastly different resolu-
tions. In practice however, we could not observe such data sets,
and our approach always lead to meaningful results. We believe
that this is commonly the case since the goal of multimodal and
multi-parametric imaging is, in general, to get a broader set of
information for the same spatial positions.

Furthermore, since the optimized entry-points are generated
based on camera visibility, the outlined procedure works as long
as all volumes lie entirely inside the camera frustum. When us-
ing early ray-termination in the visibility pass, however, there
could exist cases where the illumination contribution would suf-
fer from light leaks. As there might be occluding scene parts be-
hind the last hit points acquired from the visibility computation,
light rays which are not affected by these parts, but contribute to
the visual appearance, might appear too bright. As this is only
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(a) Half Angle Slicing (b) Our approach

Figure 11: Comparison between half angle slicing (a) and our illumination
method (b). Our method can also be applied to unimodal data to achieve a
high quality result.

the case when the visibility function has a high variability with
respect to the light angle and the penetrated medium, these con-
siderations do not seem to play a role in practice. Nevertheless,
these issues could be avoided completely either by choosing a
light source position which lies in the same hemisphere as the
camera, or by using the exit-points of the proxy geometry seen
from the camera as last hit points for the light pass.

6.5. Discussion

The evaluation of performance and visual quality of our
clustering indicates that we can decrease the data size by a large
factor without noticeable decrease in image quality. While the
number of clusters has no severe impact on rendering perfor-
mance, varying the maximum number of layers in the visibility
buffer directly impacts performance through the longer binary
search. Thus, while a larger number of layers will decrease
the visual error, as detailed in Subsection 6.3, a larger number
will unfortunately also decrease rendering performance. Thus
based on our experience, we prefer to keep the maximum num-
ber of layers per pixel at 32 in order to facilitate a small memory
representation of the visibility buffer, while obtaining sufficient
accuracy. Thus, the required data is equal to 32 times the screen
resolution, times two 32-bit floats which store the visibility and
the depth.

Jönsson et al have conducted a survey of various methods
for advanced interactive volumetric illumination. They com-
pare the well-known methods in the field with regard to scal-
ability, performance and illumination complexity [3] . While
none of the surveyed illumination methods explicitly support
multimodal data, our algorithm is quite similar with respect to
the supported illumination features.

We have also applied our illuminaton technique to unimodal
data, and an example is shown in comparison with half angle
slicing [26] in Figure 11, to show that our approach have the
same good qualities compared previous work. In the same as-
pect as the other surveyed methods our approach supports di-
rectional and/or point light sources. On top of this we have no
limitation in the number of light sources, as memory consump-
tion can be considered low. The scaling with respect to image
size is, however, less optimal as it is based on ray-casting and
each layer in the visibility buffer will essentially be as large as
the image resolution.

7. Conclusions & Future Work

In this paper we have introduced a novel approach for multi-
modal volume illumination, which supports advanced illumina-
tion effects with multiple light sources when interactively ex-
ploring multimodal volumetric data sets. We have proposed
a novel light space illumination algorithm which reduces the
number of sampling operations when sampling multiple modal-
ities. Furthermore, by introducing an illumination-driven vol-
ume compression approach, we can transform multimodal vol-
ume data into a data structure which simultaneously reduces
memory consumption and sampling costs. While the memory
reduction enables the application to large data sets, the reduced
sampling costs are crucial for all multimodal illumination sce-
narios as sampling is one of the limiting factors. Besides the
data structure, the rendering algorithm also minimizes the GPU
memory footprint which is important when dealing with multi-
modal volumetric data sets. By incorporating the data compres-
sion error into the proposed rendering approach we, further-
more, tightly couple the data transformation and the interactive
visualization stages in order to obtain high quality rendering re-
sults. This interlinking also enables fast switching between sets
of modalities. The presented approach supports interactive ren-
dering, while enabling advanced illumination for a large num-
ber of modalities and multiple light sources. To our knowledge,
this is the first approach, which allows interactive multimodal
volume illumination.

In the future we would like to further extend the presented
approach in various ways. First, we would like to integrate mul-
tiple scattering effects and investigate how varying light space
sampling patterns effect the performance. Secondly, we would
like to combine our approach with multi-resolution data struc-
tures, for example [55], to optimize the memory footprint of
modalities with little overlap as well as to optimize sampling
when a large difference in data resolution is present.
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transfer functions for multimodal visualization. In: EG VCBM. 2008,
p. 101–8.

[52] Hadwiger M, Kratz A, Sigg C, Bühler K. GPU-Accelerated Deep Shadow
Maps for Direct Volume Rendering. In: ACM SIGGRAPH/EG Confer-
ence on Graphics Hardware. 2006, p. 27–8.

[53] Mueller K, Moller T, Crawlis R. Splatting without the blur. In: IEEE
Visualization. 1999, p. 363–544.

[54] Crassin C, Green S. Octree-Based Sparse Voxelization Using The GPU
Hardware Rasterizer. In: OpenGL Insights. CRC Press, Patrick Cozzi
and Christophe Riccio; 2012, p. 303–19.
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