
CGI2017

Interactive GPU-based Generation of Solvent Excluded Surfaces

Pedro Hermosilla · Michael Krone · Victor Guallar · Pere-Pau Vázquez ·
Àlvar Vinacua · Timo Ropinski

Abstract The Solvent Excluded Surface (SES) is a popu-
lar molecular representation that gives the boundary of the
molecular volume with respect to a specific solvent. SESs
depict which areas of a molecule are accessible by a specific
solvent, which is represented as a spherical probe. Despite
the popularity of SESs, their generation is still a compute-
intensive process, which is often performed in a pre-pro-
cessing stage prior to the actual rendering (except for small
models). For dynamic data or varying probe radii, however,
such a pre-processing is not feasible as it prevents inter-
active visual analysis. Thus, we present a novel approach
for the on-the-fly generation of SESs, a highly paralleliz-
able, grid-based algorithm where the SES is rendered using
ray-marching. By exploiting modern GPUs, we are able to
rapidly generate SESs directly within the mapping stage of
the visualization pipeline. Our algorithm can be applied to
large time-varying molecules and is scalable, as it can pro-
gressively refine the SES if GPU capabilities are insufficient.
In this paper, we show how our algorithm is realized and
how smooth transitions are achieved during progressive re-
finement. We further show visual results obtained from real
world data, and discuss the performance obtained, which im-
proves upon previous techniques in both the size of the mol-
ecules that can be handled and the resulting frame rate.

Keywords Molecular Visualization

P. Hermosilla, P.-P. Vázquez, À. Vinacua
Visualization, Virtual Reality and Graphics Interaction (ViRVIG), Uni-
versitat Politècnica de Catalunya, Spain

M. Krone
Visualization Research Center, University of Stuttgart, Germany

V. Guallar
Barcelona Supercomputing Center, Spain

T. Ropinski
Research Group Visual Computing, Ulm University, Germany

1 Introduction

When analyzing molecular structures, derived surfaces of-
ten are taken into account, as they represent the accessi-
bility of a molecule with respect to binding ligands. A fre-
quently used surface definition is the Solvent Excluded Sur-
face (SES) [22], which gives the boundary of the solvent-
excluded molecular volume with respect to a specific sol-
vent. Accordingly, SESs provide means for analyzing poten-
tial binding sites, as they depict which areas of a molecule
are accessible by a specific solvent. Due to the importance
of SESs, several algorithms that facilitate their computation
have been proposed (see Section 2).

Since the SES is very well suited for analyzing the mo-
lecular interface and cavities, its use is widespread in fa-
cilitating understanding molecular dynamics (MD) data. An
MD simulation can for example calculate the behavior of
a molecule and a ligand, and outputs a set of consecutive
spatial atom configurations (trajectories). The steps in these
trajectories are commonly known as frames. Due to the com-
plexity of the SES computation process, it is often performed
in a preprocessing stage, rather than the mapping stage of
the visualization pipeline (except for small models). While
this allows for SES generation for static molecules and fixed
probe radii, preprocessing is not feasible for dynamic setups,
where the atom positions change over time, or the probe ra-
dius is altered during a visual analysis. To allow for an inter-
active visual analysis of large, dynamic molecular data, our
aim was an on-the-fly generation of the SES for each frame.

We propose a novel SES computation algorithm that ex-
ploits modern GPUs to support the interactive generation of
SESs. The algorithm has been developed specifically for dy-
namic data. We further do not assume or rely on any par-
ticular frame ordering, since modern systems usually gen-
erate many of those configurations at once in parallel. To
achieve interactive SES updates, we have used a grid-based

2 Pedro Hermosilla et al.

Fig. 1 Illustration of the SES generation algorithm. To maintain interactivity, if GPU capabilities are not enough to generate the full SES in a
single frame, a coarse model is generated first, which is then progressively refined several steps. Progressive refinement occurs in a seamless way,
and the user can explore the molecule meanwhile.

approach, which is suitable for GPU implementation. The
grid is used to facilitate computation of the two phases of
our algorithm. In phase one, intersection points between the
probe and the molecule are computed, while the resulting
distances are computed in the second phase. Based on the
results, we are able to generate the actual SES. To make our
algorithm scalable, it has been designed such that for large
molecules, where real-time frame rates cannot be achieved
at full detail, a progressive update of the SES is supported
(see Figure 1). Thus, our contributions are as follows:

– Interactive SES generation without any preprocessing
– Progressive SES refinement to support full scalability
– Smooth transition between different levels of detail

2 Previous Work

As mentioned above, the idea behind the SES is to show the
surface of a molecule with respect to a certain solvent. That
is, everything within the surface is not reachable by this sol-
vent. The solvent is represented by a so-called probe sphere
with an appropriate radius (e.g., water is usually represented
by a sphere of radius 1.4 Å). The SES was first described by
Richards [22] as Smooth Molecular Surface. It can be de-
fined as the surface that is traced out by the spherical probe
rolling over the van der Waals (vdW) surface of the molecule
(see Figure 2). The vdW surface is the union of spheres for
all atoms where each sphere is centered at the location of the
corresponding atom and has a radius equal to the vdW radius
of the respective chemical element. Greer and Bush [7] gave
an alternative definition of the SES: The SES is the topolog-
ical boundary of the union of all possible probes that do not
intersect any atom of the molecule. Their work also coined
the term Solvent Excluded Surface.

Over the last four decades, many methods to compute
and visualize the SES were developed. The SES can be an-
alytically described as a set of patches: convex spherical
patches (the remaining parts of the vdW surface), concave
spherical triangles, and saddle-shaped toroidal patches (see

Fig. 2 The SES (red) can be defined analytically as the surface that is
traced out by a spherical probe (gray, shown in two sample positions)
rolling over the vdW surface of the atoms (blue) of a molecule.

Figure 3). Shortly after Richards [22] defined the SES, Con-
nolly found the analytical equations to compute the SES
patches [4]. Connolly’s work lead to the development of
several accelerated methods in the mid-90s that compute
the SES analytically: Varshney et al. [27] developed a par-
allelizable algorithm based on Power Diagrams. Similarly,
α-shapes can be used to compute the SES [5]. The Contour-
Buildup method by Totrov and Abagyan [26] extracts the
SES patches from the contours of the Solvent Accessible
Surface [22]. Sanner et al. [23] developed the Reduced Sur-
face algorithm which, thanks to an intermediate data struc-
ture, was able to compute the analytical SES. Due to the
nowadays widespread availability of multi-core CPUs and
programmable GPUs, optimized parallel implementations of
some of these algorithms were recently presented: Lindow
et al. [18] parallelized the Contour-Buildup for multi-core
CPUs. Krone et al. [15] adapted the same algorithm for the
GPU. These methods were the first ones that allowed to
compute the SES interactively for larger molecules (up to
10k atoms) and are to date still among the fastest ways to
compute the SES analytically. Both methods render the patches
of the SES using GPU-based ray casting in the fragment
shader as proposed by Krone et al. [14]. Jurcik et al. [12]
extended the method of Krone et al. [15] to support transpar-
ent rendering of the SES and detection of cavities. Parulek
and Viola [20] used implicit functions to retrieve the dis-

Interactive GPU-based Generation of Solvent Excluded Surfaces 3

Fig. 3 SES colored by the analytical patches that form the surface.
Blue: convex spherical patches, green: concave spherical triangles; yel-
low: toroidal patches. Image generated with MegaMol [8].

tance to the surface in real-time during ray marching. A de-
tailed review of SES visualizations was given by Kozlikova
et al. [13].

Besides the analytical algorithms, which are computa-
tionally very involved, Kozlikova et al. [13] identified a sec-
ond class of algorithms that compute the SES. These meth-
ods discretize the space around a molecule, that is, they com-
pute the SES based on a three-dimensional grid. Usually,
each voxel of the grid is first classified as within or outside
of the surface. Subsequently, an isosurface that matches the
SES can be extracted from the grid. While the resulting sur-
faces are less accurate than the analytical descriptions, these
algorithms have the advantage that they are are fast since the
computations are less involved, and that they are relatively
simple to implement. Can et al. [3] developed a method
based on level sets. Yu [29] presented an efficient algorithm
using lists to speed up the computations. EDTSurf by Xu
and Zhang [28] extracts high-quality SES meshes based on
Euclidean distance transformation.

Molecular surface descriptions that are related to the SES
are the Ligand Excluded Surface (LES) presented by Lin-
dow et al. [17] and Gaussian surfaces (Metaballs) introduced
by Blinn [2]. The LES can be seen as a generalization of the
SES. Here, the ligand is not represented by a spherical probe
but by the vdW representation of the actual atoms. Lindow
et al. presented a grid-based algorithm to compute the LES.
Gaussian surfaces can be used to approximate the SES. A
very fast grid-based algorithm to compute Gaussian surfaces
of very large molecules on the GPU was presented by Krone
et al. [16]. A comparison between SES, LES, and Gaussian
surfaces can be found in the report by Kozlikova et al. [13].

3 Algorithm

As mentioned above, Kozlikova et al. [13] classified the al-
gorithms to compute the SES in two main categories: the
ones that compute an analytical representation of the surface
and the ones that compute the surface by discretizing the
space around the molecule. Our algorithm falls in the sec-

ond category, as we use a regular 3D grid that represents a
signed distance field to the SES. Despite the resulting mem-
ory consumption requirements, this representation allows us
to easily compute a coarse representation of the SES in real-
time, to refine this coarse representation progressively, and
to create a smooth transition between different detail levels.

The work-flow of our algorithm is the following: When
the application receives a new frame of the simulation we
compute a signed distance field to the SES using a low-
resolution grid. This computation is carried out in millisec-
onds due to the low resolution of the grid, so the user does
not perceive any drop in performance. This coarse represen-
tation is immediately rendered and shown to the user. Mean-
while, the algorithm computes refined versions in the back-
ground by increasing the resolution of the grid. Once a new
level is computed, the algorithm performs a smooth transi-
tion between the current level and the one just computed.

3.1 SES Computation

Our algorithm to compute the SES is based on the one by
Lindow et al. [17]. It generates a 3D signed distance field
with positive values outside the SES and negative values
inside. Similar to Lindow et al., we limit the range of the
distances, that is, we only have to compute the exact dis-
tances in the proximity of the SES. In our case, this range
is [−rg,rp], where rg is the distance between two neighbor
grid points and rp is the probe radius.

Our algorithm, unlike the one proposed by Lindow et
al. [17] for the LES, has no collision problems and it can be
executed in parallel without using synchronization mecha-
nisms, making it suitable for GPU implementations. This is
accomplished by dividing the computation into two distinct
steps: probe intersection and distance field refinement.

Probe intersection: In the first step of the algorithm, the
points of the grid are classified as points located outside the
SES, inside the SES, or on the boundary of the SES. This
classification uses two simple tests: checking both the cen-
ter of the grid point and a probe located at the center of the
grid point for intersections with the atoms of the molecule
(using the vdW radius). An illustration of these two tests is
shown in Figure 4. The interpretation of these tests is:
Outside SES: If there is no intersection between the probe

and the atoms, the grid point is classified as a point out-
side the SES and the algorithm assigns rp as the distance
to the SES (blue points in Figure 4).

Inside SES: If the distance between the grid point and at
least one atom of the molecule is less than the radius
of this atom minus rg (the distance between two closest
neighbors on the grid), the point is classified as an inte-
rior point of the SES (red points in Figure 4). In this case,
the algorithm assigns −rg as its distance to the SES.

4 Pedro Hermosilla et al.

Fig. 4 Step 1: Probe intersection. The figure shows how the tests at
the grid points are used to classify them. Red points are classified as
interior to the SES, blue ones are classified as exterior to the SES and
yellow ones as points on the boundary of the SES.

Boundary: If there is an intersection between the probe and
an atom but the distance between the grid point and all
the atoms of the molecule is larger than the radius of the
atoms minus rg, the grid point is classified as being on
the boundary of the SES (yellow points in Figure 4). The
distance between such a point and the SES is determined
in the second step of the algorithm.

Distance field refinement: In this second step, the remain-
ing distances to the SES for the points in the border region
are computed. Thus, the algorithm searches the neighbor-
hood of these boundary points for adjacent points that are
outside the SES. This neighborhood is defined by the set of
points at a distance rp + rg or less from the point of interest.
The algorithm initializes the distance of the central point to
−rg, and then it iterates over all the points in the neighbor-
hood and selects the closest one that lies outside the SES. If
no neighboring grid point was found that is outside the SES,
the distance of the point is not updated (e.g., it remains−rg).
If there is at least one, the distance of the current point is up-
dated using the following equation: d = rp−‖posn− posc‖,
where rp is the probe radius, posn ∈ R3 the position of the
neighbor grid point that is classified as outside and closest
to the current grid point, and posc ∈ R3 the position of the
current grid point. Figure 5 illustrates this process. Note that
updating the distances in parallel requires no synchroniza-
tion. The algorithm only searches the neighborhood of each
sample for points outside the SES and does not modify these
values in this step; they were computed in the first step.

3.1.1 Implementation

We have implemented our algorithm to run on the GPU, us-
ing compute shaders for both steps. To represent the signed
distance field we use a 3D texture centered at the molecule.
Each thread of the first compute shader classifies a grid point
of the distance field as described in the first step of the algo-
rithm. Then, each thread of the second compute shader com-
putes the distance to the SES of one boundary grid point. In

Fig. 5 Step 2: Distance field refinement. For each yellow point the
algorithm searches for the closest blue point in a neighborhood. The
distance to the SES is then computed as the difference between the
probe radius and the distance between these two points.

order to perform these computations efficiently, some opti-
mizations are applied, which we now describe.

In order to classify a point, the algorithm has to check
for intersections of every grid point against the atoms of
the molecule. This can be prohibitive when the number of
atoms increases, so it is crucial to only perform the intersec-
tion test with close-by atoms and discard the ones that are
farther away. Efficient retrieval of neighboring atoms within
a fixed radius is a common problem that is usually solved
using data structures for spatial subdivision (see, e.g., [6,
1,11]). We opted for the method of Green [6], which was
for example also used by Krone et al. [15], and Skånberg et
al. [24] for molecular visualization. This method subdivides
the space into a regular grid and sorts the atoms into the grid
cells based on their centers. Then, we can obtain neighbor-
ing atoms within a fixed radius in constant time. In our case,
we set the cell size to the probe radius plus the maximum
vdW radius. This cell size guarantees that we only have to
visit 27 cells of the grid to obtain all the atoms that possibly
intersect with our probe.

The second compute shader has to execute a thread for
each point classified as boundary, since these points have no
distance assigned yet. However, keeping track of all these
points is not a straightforward task in the context of a paral-
lel algorithm. One possible solution is to mark these points
in the first step and, on the CPU, pack them into a buffer, so
the second step can be executed only for them. Although this
is a simple solution, it does not scale well when the resolu-
tion of the grid increases and we lose spatial coherence in the
execution of a workgroup. Instead, we chose a more GPU-
friendly solution. We grouped the grid points into bricks of
83, and then, we selected those that need further refinement.
These bricks are defined as the ones that have at least one
boundary point (see the yellow bricks in Figure 7). The cho-
sen algorithm reduces the workload of the CPU and accel-
erates the selection process. In addition, it lowers the data
transfer between GPU and CPU, and it adds local coherence
inside the workgroups in the second step as we use a work-
group size equal to the brick size (83).

Interactive GPU-based Generation of Solvent Excluded Surfaces 5

Fig. 6 Overview of the progressive refinement process: First, the atoms of the molecule are sorted and then, a coarse version of the SES is
computed in real-time. The sorted atoms and the brick list obtained in the first computation are then used to compute a refined version of the SES.
Along the frames, new versions of the SES are computed using the brick list of the previous resolutions until the highest resolution is reached.

Fig. 7 The grid points are packed together into bricks. In the first step
of the algorithm, these bricks are classified. Yellow bricks have at least
one grid point labeled as SES border. The blue bricks are the ones
close to the yellow ones. Red ones have all grid points classified as
interior. The rest of the bricks (white) are not taken into account in the
computation of the refined SES.

3.2 SES Progressive Refinement

One of our main goals in this project was to ensure real-time
interaction. For this reason, in our system, the application
computes a SES using a low resolution 3D grid in real-time
and, in the background, refines the coarse surface to progres-
sively provide a more exact SES.

Our data structure is composed of a mipmapped 3D ar-
ray of floats with a base resolution of 5123, which is initial-
ized with the value of the probe radius. We have chosen this
maximum resolution as a compromise between SES quality
and memory consumption. For a virus capsid of 500k atoms
(1K4R), the grid cells are still below 1 Å.

For a given molecule, the algorithm calculates the SES
for a range of levels within the mippmaped array. The base
level, ls, is used to compute the coarse representation of the
molecule, and the end level, le, is the level used to compute
the most refined version of the SES. The main bottleneck of

the algorithm is in the distance field refinement step. When
increasing the number of neighboring points that are consid-
ered, the performance decreases. Thus, at ls, we choose the
smallest neighborhood that keeps an acceptable SES quality.
We choose the highest level in the hierarchy where the dis-
tance between two neighbor grid points is less than the probe
radius. With this configuration, the algorithm considers for
each grid point the cells at a (Manhattan) distance of less
than or equal to two, which makes a maximum of 124 neigh-
bors. To select le, the algorithm follows a similar criterion,
choosing the lowest level in the hierarchy where the distance
between two neighbor grid points is less than the probe ra-
dius divided by 7 —for each grid point the algorithm has to
visit seven neighbors in each direction.However, since our
data structure has a finite resolution of 5123, the final level
may not exceed this limit. These numbers have been chosen
empirically from tests performed on our hardware, but they
can be modified to tune the algorithm to different hardware.

Once ls and le are known, the algorithm computes the
SES for ls. To do so, the algorithm first sorts the atoms into a
spatial subdivision grid Ga, which will be used for the com-
putation of all levels in the range [ls, le]. Next, the two steps
of the algorithm are executed to calculate the coarse ver-
sion of the SES. In the first step, the classification of the
grid points and the selection of the bricks that need to be re-
fined (yellow bricks in Figure 7) are performed. In addition,
this step also keeps track of the bricks that need to be up-
dated in higher resolutions (all colored bricks in Figure 7).
In the second step, the bricks that need to be refined are up-
dated with the distance to the SES. At the coarse level, this
whole computation takes milliseconds and can be performed
in real-time during rendering. The outputs of this stage are:
a distance field that represents a coarse SES, the atoms dis-
tributed onto Ga, and the list of bricks that need to be recom-

6 Pedro Hermosilla et al.

Fig. 8 Discrete sampling can miss features inside the surface (e.g.,
cavities or tunnels). This image shows how a cavity is not detected
in a surface generated with a low grid resolution (top, generated with a
1283 grid resolution), while it is in a high resolution (bottom, generated
with a 2563 grid resolution). Updating interior bricks in all levels is
mandatory to overcome this limitation of the discrete sampling.

puted at the next levels. The algorithm immediately renders
the coarse SES, so that the user can interact and inspect.
Meanwhile, in the background, the algorithm computes the
following levels of the hierarchy using the information ob-
tained from the coarse level calculation.

In order to reduce the computation in the remaining lev-
els, only the volume of the SES and its vicinity is recom-
puted. These areas of the volume are defined by three types
of bricks: the bricks in the border of the SES (yellow bricks
in Figure 7), the bricks inside the SES (red bricks in Figure
7) and the bricks adjacent to the SES (blue bricks in Figure
7). The first ones are defined as the bricks containing at least
one point in the border of the SES, and they are obviously
recomputed as they contain the actual surface. However, the
two other types of bricks are also recomputed to avoid ar-
tifacts in the refined versions. The bricks inside of the SES
(red bricks in Figure 7) contain points completely inside the
SES, and they are recomputed to not miss internal features
of the SES (cavities or tunnels). Small interior features of
the SES are missed if the surface is poorly sampled, which
can happen in the first, coarse levels of the hierarchy. Re-
computing these areas with a higher sampling in the lower
levels can recover these missing features (see Figure 8).

The third type of bricks, the ones adjacent to the SES
(blue bricks in Figure 7), contains grid points completely
outside the SES that have at least one neighboring brick in
the boundary region. These bricks have to be recomputed in
the remaining levels to avoid incoherent distance values be-
tween adjacent grid points. A brick can be composed only
of grid points outside the SES at a certain resolution, but,
when more samples are used, that could not be the case any-
more. The new samples can be part of the SES boundary as
illustrated in Figure 9, hence they need to be updated.

Once this brick list is computed, it is downloaded to
CPU memory. In the background, the application then ex-

Fig. 9 The big blue point on the left belongs to a brick that does not
need to be refined but has a neighbor that belongs to another brick
that needs to be refined: the big yellow point to the right. In a higher
resolution, some of the points of the left brick became yellow (they
have an intersection with the molecule) even if all the points in the
previous resolution had no intersection. This bricks have to be updated
in the higher resolution levels to avoid artifacts on the resulting surface.

ecutes the algorithm of Section 3.1 for the selected bricks.
The algorithm works exactly in the same way as for the
coarse level. The result is presented to the user using a smooth
transition between the previous level and the new, refined
one. This process is repeated for further levels in the hierar-
chy until the algorithm computes the last one, le. These com-
putations are performed in parallel to the rendering, so for
each frame a fixed number of bricks are processed. To main-
tain an interactive framerate, we process only 512 bricks per
frame, but this number could be reduced on slower GPUs.

3.3 Detection of missing features

Due to the discrete nature of our representation, the vol-
ume of the SES can be overestimated. Each point of the
grid stores only an approximation of the distance between
the point and the surface. The real distance, however, is in
the range [d,d+(

√
3 · rg)], where d is the approximated dis-

tance stored in a grid cell and rg the distance between two
neighboring cells along one axis. That is, rg defines the max-
imum error of our solution. Consequently, the probability of
missing internal features of the molecule (cavities or tun-
nels) increases if rg increases. Simply speaking, the chances
of missing a small cavity are higher if the space is sampled
by a small number of points (i.e., a coarser grid).

These limitations may not be relevant for small rg, but,
when rg is larger than a certain value, the result can deviate
significantly from the analytical solution. Thus, we imple-
mented a solution that refines the last resolution level of our
SES in certain areas. The algorithm analyzes the bricks of
the currently highest resolution grid to find areas with possi-
ble missing features. These bricks have been defined as hav-
ing at least one point that satisfies the following conditions:
first, this point has to be located inside the SES but outside
of the atoms; second, it has to be surrounded only by in-
terior points; and third, one of its neighbors also has to be

Interactive GPU-based Generation of Solvent Excluded Surfaces 7

Fig. 10 Left: the SES is colored using the CPK color convention to identify the atoms; center: color mapping showing the residue types; right:
(per residue) electrostatic potential.

outside of the atoms and, together, they have to satisfy the
following condition: dp1 + dp2 + |pos1− pos2| ≥ 2 · rp · µ ,
where dp1 and dp2 are the distances between the points and
their closest atoms, pos1 ∈ R3 and pos2 ∈ R3 are the posi-
tions of the grid points, rp is the probe radius, and µ is a
user-defined parameter that controls the number of selected
bricks. If two points satisfy these conditions, a probe might
fit between them. For these bricks, our algorithm is executed
with a resolution of 643. If a probe can be placed in one of
these new sample points, our mipmap is updated with the
newly calculated distances at the highest resolution.

3.4 SES Coloring

Researchers often use the SES to detect tunnels or cavities
in the surface, but it is also important for them be able to
identify the atoms/residues, the electrostatic potential, the
hydrophobicity, and other properties in the surface. To sup-
port the visual analysis, we store another 3D texture at the
lowest resolution selected for this molecule, and for each
texel we store the color or property associated to the near-
est atom. Using this texture, the surface can be smoothly
colored according to the stored properties. We chose to en-
code these properties at the lower resolution to have smooth
transitions between colors, since higher resolutions would
make the borders between colors clearly visible. Moreover,
it does not add extra computational costs —it can be com-
puted once together with the coarsest level— and it uses lim-
ited extra memory, as the selected resolution is never greater
than 1283. Different examples are presented in Figure 10.

3.5 SES Rendering

In this section, we detail the rendering of the SES from the
previously computed distance field. The most common tech-
niques to visualize a surface from a distance field are either
by extracting a mesh using Marching Cubes (MC) [19], or
by ray-marching it directly [9]. We chose to ray-march the
distance field, as this does not require extra storage and can
be done efficiently from any resolution level of the distance
field. The classical algorithm of ray-marching takes steps
along the ray separated by a specific distance, but we use the

distance stored in the grid points instead. This speeds up the
rendering and removes some possible artifacts (e.g. missing
the surface on the border). When the ray hits the surface, we
use a Sobel filter to compute the normal at that point. This
method results in high-quality normals but needs 26 texture
lookups. On less performant hardware, a simpler filter could
be used instead (e.g. central differences).

Another advantage of ray-marching over MC is that it al-
lows us to perform smooth transitions between the different
levels of detail. When a new level i of the distance field hier-
archy is computed, the renderer has to perform a transition
from the current level i+1 to the level i along a time frame
t. This transition is done by the hardware trilinear interpo-
lation. The render performs a linear interpolation along the
time of the level identifier, from i+1 to i. This interpolated
value is then used as the LOD parameter in the textureLod
call during the ray-marching. When the hit point is reached
and the normal has to be calculated, the algorithm also lin-
early interpolates the distance between the hit point and the
neighbor samples used to compute it. This simple algorithm
gives us a smooth transition between different grid resolu-
tions for both surface shape and lighting. In Figure 11, a
molecule was rendered with different grid resolutions from
left to right using this algorithm for the transitions.

Moreover, we improved the performance of our ray-mar-
ching algorithm using a well-known technique from GPU-
based volume raycasting. In order to reduce the ray traversal
distance, we render the bricks to be refined to encode a tex-
ture with the entry and exit points of the rays, skipping thus
the empty space of the volume.

Similar to Tarini et al. [25], we apply rendering tech-
niques that enhance the visualization and facilitate the un-
derstanding of the shape of the surface. We have imple-
mented the ambient occlusion algorithm proposed by Her-
mosilla et al. [10]. We have chosen this algorithm despite it
was designed only for the Space-filling and Ball-and-Stick
representations since it works in real-time without pre-com-
putations. It works in object-space and is, therefore, inde-
pendent of the camera orientation. As the SES is derived
from the Space-filling representation, we can directly apply
this algorithm. In a previous pass to the rendering, the atoms
are used to compute an occupancy grid, and the ambient oc-
clusion factor is computed in screen-space for each pixel.

8 Pedro Hermosilla et al.

Fig. 11 The image shows from left to right the progressive refinement in the SES generation process. Note the continuity through the different
steps thanks to our algorithm.

Table 1 Performance for different molecule obtained using the following hardware configuration: GeForce GTX 970, Intel i7 and 12 GB RAM.
The different columns show the time required to sort the atoms in the regular grid, the resolution of the distance field in the base level and the time
in milliseconds needed to compute it, the resolution of the distance field used in the last refined level, the time in milliseconds needed to compute
all the refined levels, the mean frames per second obtained during the refinement and, in the last column, the cell size of the last refined level.

Molecule Sort atoms Base level Base level Last refined Computation FPS during Cell size last
(#atoms) (ms) resolution computation (ms) level resolution refined levels (ms) computation refined level (Å)

Traj 1 (2,066) 0.16 643 5.42 2563 775 51.61 0.21
Traj 2 (3,967) 0.20 643 5.23 2563 464 79.74 0.28
Traj 3 (11,224) 0.47 1283 10.09 5123 4,149 45.55 0.20
2G47 (16,962) 0.60 1283 9.72 5123 2,151 90.63 0.29
1S3S (22,367) 0.80 1283 7.58 5123 930 133.29 0.40
3J3A (46,276) 1.55 1283 8.94 5123 1,822 136.66 0.43
3EXG (83,339) 2.18 1283 8.81 5123 1,242 165.06 0.51
1CWP (227k) 6.24 1283 11.52 5123 2,468 164.51 0.58
1K4R (545k) 11.96 1283 15.89 5123 1,649 177.08 0.98

We also added a simple silhouette rendering algorithm to fa-
cilitate the understanding of the molecular shape. This algo-
rithm detects depth differences between neighboring pixels
and renders a black silhouette where this difference is higher
than a user-defined threshold value. Figure 13 shows a SES
rendering including those two effects.

4 Results & Discussion

We have evaluated our technique by comparing it to the
GPU-based Contour-Buildup method by Krone et al. [15],
which is implemented using CUDA and included in the pub-
licly available visualization system MegaMol [8]. Our re-
sults show that our technique is at least two to three times
faster than the CUDA-Contour-Buildup for the lowest (base)
resolution. Owing to the progressive refinement, our method
can deal with large models seamlessly, with a sustained in-
teractive frame rate. The progressive SES computation thus
enables a fast rendering of large molecular simulation tra-
jectories on the fly. Users can interactively get a feel for the
evolution of the simulated molecule over time running the
computation with the base resolution. When the playback
stops at any point of the trajectory, the progressive refine-
ment will automatically produce a high-quality SES within
seconds, even for very large molecular complexes like virus

capsids (1CWP and 1K4R) (see Table 1). A drawback of the
CUDA implementation of the Contour-Buildup in MegaMol
is that it requires a lot of GPU memory. For the test data
set 1S3S with 22 k atoms, it requires 1.9 GB of memory
(the SES computation takes 32 ms on a Nvidia GTX 970),
while a protein of about 30 k atoms (PDB ID: 3K19) re-
quires already 2.7 GB of memory. Consequently, even newer
consumer graphics cards with 4 GB VRAM or more will
quickly run out of memory for very large structures like
virus capsids. This prevents the use of the CUDA-Contour-
Buildup for such large structures. In contrast, our technique
requires just 620 MB for a data structure with a maximum
resolution of 5123 and 32b for each atom of the molecule,
making it very scalable. Notice that for small test cases, like
Traj 3 in Table 1, our algorithm takes longer to complete
the computation of the highest resolution, whereas times de-
scend for larger molecules. This is because for small mol-
ecules the cells in the high-resolution grid are very small,
and there is a large number of them inside the probe. There-
fore, the algorithm needs to visit many neighbors and slows
down. This can be easily avoided in practice since such high
resolution is not needed for small models.

We also compared the rendering speed of our method to
that of MegaMol. While our method uses volume ray march-
ing (see section 3.5), MegaMol uses GPU-based ray casting
to render the implicit patches of the SES [14]. A compar-

Interactive GPU-based Generation of Solvent Excluded Surfaces 9

Table 2 Performance in frames per second when rendering the dis-
tance field for different resolutions and molecules using the ray march-
ing algorithm. Moreover, the last column shows the frames per sec-
ond of our method using ambient occlusion. When we compare our
method with MegaMol (the last column RC shows the performance
in fps of that system), we see that our system is capable of achieving
sustained interactive framerates even for large molecules. The timings
were computed by averaging the rendering time from 512 distinct ran-
dom directions that uniformly sample a sphere, to even out variations
due to camera placement.

Molecule #atoms 1283 2563 5123 RC[15] 5123 + AO

Traj 1 2,066 250.80 233.69 — — —
Traj 2 3,967 254.34 248.42 — — —
Traj 3 11,224 225.11 237.54 227.90 — 176.76
2G47 16,962 212.77 221.33 205.89 188.1 175.08
1S3S 22,367 229.86 223.73 212.74 126.3 151.46
3J3A 46,276 202.17 185.91 137.60 72.0 114.79
3EXG 83,339 200.18 202.94 180.56 69.2 137.81
1CWP 227 k 175.47 167.71 158.93 27.7 110.57
1K4R 545 k 165.71 162.27 144.35 12.6 76.40

Fig. 12 Visualization of the distance between our result and the ana-
lytical solution. The distance is represented by a color scale from red
(distance 0) to blue (distance equal to the probe radius). On the left part
of the image, a histogram of the distances is shown.

ison of the frame rates can be found in Table 2. Despite
having similar performance for up to medium-sized proteins
(2G47), ray marching clearly outperforms ray casting for
very large data sets even when using high-resolution vol-
umes. The rendering performance on MegaMol is limited
by the number of implicit patches generated (i.e. number of
atoms), our rendering method, on the contrary, depends on
the grid resolution and the shape of the molecule. All tests
were run at resolution 1024×768 px.

We also compared the performance of our algorithm to
that of EDTSurf [28] (see Table 3). Although the compari-
son is not precise since we only use powers of two as grid
resolutions, it shows that our algorithm is consistently faster.

We have compared the exact SES surface using chimera
for a molecule of 3,967 atoms (this computation is not prac-
tical for very large molecules), and the result of our algo-
rithm using a resolution of 2563. To this end, we sampled
2,676,613 random points uniformly distributed over the sur-
face given by our algorithm, and computed their distance to

Table 3 Performance comparison between our method and the EDT-
Surf software [28]. The table shows the resolution of the discretization
used by the EDTSurf algorithm and the time in seconds needed to com-
pute the SES with the CPU implementation provided in their website.
We compared these results with the time required by our technique to
compute—progressively—the SES until a grid resolution of 2563 was
reached, since we use power-of-two grid resolutions and they do not.

Molecule #atoms
EDTSurf

Grid Resolution
EDTSurf
Time (s)

Our method

at 2563 (s)

Traj 1 2,060 203×181×172 1.64 0.78
Traj 2 3,967 217×194×271 3.22 0.46
Traj 3 11,224 275×225×299 5.19 0.20
2G47 16,962 201×299×234 3.34 0.16
1S3S 22,367 254×299×89 1.99 0.09
3J3A 46,276 299×287×299 4.44 0.19
3EXG 83,339 216×225×299 3.64 0.16

Fig. 13 SES of the virus capsid 1CWP with 227 k atoms generated
with a distance field resolution of 5123.

the exact surface computed by Chimera [21] (see Figure 12).
The result was an average distance of 0.231743Å with a root
mean square error of 0.269498Å. Notice that this amounts to
a standard deviation of roughly 0.14Å, so even if there are
points at zero distance of the exact SES, and others at up to
1.43Å, they are extremely rare (see histogram on figure 12).
This means that our algorithm yields a surface with a small
outward bias (of the order of magnitude of the spacing be-
tween samples) originated by its conservative nature. Occa-
sionally, it may miss some small cavity, but this will happen
only if inspecting a whole molecule, at a scale at which this
cavity cannot be seen. In order to explore all possible cavi-
ties, we could adapt our data structure to only the visible part
of the molecule when zooming in, so that a higher resolution
computation (for a smaller number of atoms) is performed.

5 Conclusions & Future Work

In this paper we have presented a new GPU-accelerated al-
gorithm that computes the SES on the fly. In contrast to pre-

10 Pedro Hermosilla et al.

vious approaches, we are able to progressively refine the re-
sult, which allows calculation and rendering of SES at inter-
active framerates for very large models like the virus capsid
shown in Figure 13. Our system requires no precomputation
and thus, we can handle dynamic models. The progressive
component of our algorithm is achieved using a space dis-
cretization. At first sight, this might be considered a disad-
vantage, since too coarse a refinement might lead to missed
cavities or incorrect surface shapes. However, the resolution
we use is fine enough to avoid such problems, as shown
by the tests where we compared the surface obtained by
our method to the analytical solution, and found that they
only had small discrepancies, as shown in Figure 12. An-
other advantage of our approach is that we support visually
smooth transitions between refinement levels, thus, the pro-
gressive improvement happens seamlessly. Finally, we have
also shown how we can encode atom properties on the gen-
erated surface using color to support visual analysis.

In the future, we are planning to reduce the memory con-
sumption using virtual texturing, opening the possibility of
using even larger resolutions. Moreover, we are working to
improve our algorithm by balancing the cost of the compute
shader threads in the distance field refinement step, to cope
with the increasing computational cost at higher resolutions
due to the cell-neighborhood growth.

Acknowledgements This work has been partially supported by grant
TIN2014-52211-C2-1-R and grant CTQ2016-79138-R from the Span-
ish Ministerio de Economı́a y Competitividad with FEDER funds, and
by the German Research Foundation (DFG) as part of Collaborative
Research Center SFB 716.

References

1. Behley, J., Steinhage, V., Cremers, A.B.: Efficient radius neigh-
bor search in three-dimensional point clouds. In: 2015 IEEE In-
ternational Conference on Robotics and Automation (ICRA), pp.
3625–3630 (2015)

2. Blinn, J.F.: A Generalization of Algebraic Surface Drawing. ACM
Transactions on Graphics 1(3), 235–256 (1982)

3. Can, T., Chen, C.I., Wang, Y.F.: Efficient Molecular Surface Gen-
eration Using Level-Set Methods. Journal of Molecular Graphics
and Modelling 25(4), 442–454 (2006)

4. Connolly, M.L.: Analytical Molecular Surface Calculation. Jour-
nal of Applied Crystallography 16(5), 548–558 (1983)

5. Edelsbrunner, H., Mücke, E.P.: Three-dimensional Alpha Shapes.
ACM Transactions on Graphics 13(1), 43–72 (1994)

6. Green, S.: White paper: Cuda particles. Tech. rep. (2007)
7. Greer, J., Bush, B.L.: Macromolecular shape and surface maps by

solvent exclusion. Proceedings of the National Academy of Sci-
ences 75, 303–307 (1978)

8. Grottel, S., Krone, M., Müller, C., Reina, G., Ertl, T.: Megamol—
a prototyping framework for particle-based visualization. IEEE
Transactions on Visualization and Computer Graphics 21(2), 201–
214 (2015)

9. Hadwiger, M., Sigg, C., Scharsach, H., Bhler, K., Gross, M.: Real-
time ray-casting and advanced shading of discrete isosurfaces.
Computer Graphics Forum 24(3), 303–312 (2005)

10. Hermosilla, P., Guallar, V., Vinacua, A., Vázquez, P.: High quality
illustrative effects for molecular rendering. Computers & Graphics
pp. – (2015)

11. Hoetzlein, R.C.: Fast fixed-radius nearest neighbors: Interactive
million-particle fluids. In: GPU Technology Conference (2014)

12. Jurcik, A., Parulek, J., Sochor, J., Kozlikova, B.: Accelerated Vi-
sualization of Transparent Molecular Surfaces in Molecular Dy-
namics. In: IEEE Pacific Visualization Symposium, pp. 112–119
(2016)

13. Kozlı́ková, B., Krone, M., Lindow, N., Falk, M., Baaden, M.,
Baum, D., Viola, I., Parulek, J., Hege, H.C.: Visualization of mo-
lecular structure: State of the art revisited. Computer Graphics
Forum (2016). (to appear)

14. Krone, M., Bidmon, K., Ertl, T.: Interactive Visualization of Mo-
lecular Surface Dynamics. IEEE Transactions on Visualization
and Computer Graphics 15(6), 1391–1398 (2009)

15. Krone, M., Grottel, S., Ertl, T.: Parallel Contour-Buildup Algo-
rithm for the Molecular Surface. In: IEEE Symposium on Biolog-
ical Data Visualization, pp. 17–22 (2011)

16. Krone, M., Stone, J.E., Ertl, T., Schulten, K.: Fast Visualization of
Gaussian Density Surfaces for Molecular Dynamics and Particle
System Trajectories. In: EuroVis - Short Papers, vol. 1, pp. 67–71
(2012)

17. Lindow, N., Baum, D., Hege, H.C.: Ligand excluded surface: A
new type of molecular surface. IEEE Transactions on Visualiza-
tion and Computer Graphics 20(12), 2486–2495 (2014)

18. Lindow, N., Baum, D., Prohaska, S., Hege, H.C.: Accelerated Vi-
sualization of Dynamic Molecular Surfaces. Computer Graphics
Forum 29(3), 943–952 (2010)

19. Lorensen, W.E., Cline, H.E.: Marching Cubes: A High Resolution
3d Surface Construction Algorithm. In: ACM SIGGRAPH Com-
puter Graphics and Interactive Techniques, vol. 21, pp. 163–169
(1987)

20. Parulek, J., Viola, I.: Implicit representation of molecular sur-
faces. In: 2012 IEEE Pacific Visualization Symposium, pp. 217–
224 (2012). DOI 10.1109/PacificVis.2012.6183594

21. Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Green-
blatt, D.M., Meng, E.C., Ferrin, T.E.: UCSF Chimera - A visual-
ization system for exploratory research and analysis. Journal of
Computational Chemistry 25(13), 1605–1612 (2004)

22. Richards, F.M.: Areas, Volumes, Packing, and Protein Structure.
Annual Review of Biophysics and Bioengineering 6(1), 151–176
(1977)

23. Sanner, M.F., Olson, A.J., Spehner, J.C.: Reduced Surface: An Ef-
ficient Way to Compute Molecular Surfaces. Biopolymers 38(3),
305–320 (1996)

24. Skånberg, R., Vázquez, P.P., Guallar, V., Ropinski, T.: Real-time
molecular visualization supporting diffuse interreflections and
ambient occlusion. IEEE Transactions on Visualization and Com-
puter Graphics 22(1), 718–727 (2016)

25. Tarini, M., Cignoni, P., Montani, C.: Ambient Occlusion and
Edge Cueing for Enhancing Real Time Molecular Visualiza-
tion. IEEE Transactions on Visualization and Computer Graphics
12(5), 1237–1244 (2006)

26. Totrov, M., Abagyan, R.: The Contour-Buildup Algorithm to Cal-
culate the Analytical Molecular Surface. Journal of Structural Bi-
ology 116, 138–143 (1995)

27. Varshney, A., Brooks, F.P., Wright, W.V.: Linearly Scalable Com-
putation of Smooth Molecular Surfaces. IEEE Computer Graphics
and Applications 14(5), 19–25 (1994)

28. Xu, D., Zhang, Y.: Generating Triangulated Macromolecular Sur-
faces by Euclidean Distance Transform. PLOS ONE 4(12), e8140
(2009)

29. Yu, Z.: A List-Based Method for Fast Generation of Molecular
Surfaces. In: Int. Conf. of the IEEE Engineering in Medicine and
Biology Society, vol. 31, pp. 5909–5912 (2009)

