
Eurographics Conference on Visualization (EuroVis) 2018
J. Heer, H. Leitte, and T. Ropinski
(Guest Editors)

A General Illumination Model for Molecular Visualization

P. Hermosilla1, P. Vázquez2, A. Vinacua2, T. Ropinski1

1Visual Computing Group, Ulm University, Ulm, Germany
2VIRVIG Group, Universitat Politècnica de Catalunya, Barcelona, Spain

Figure 1: Example of using our new diffuse illumination model for molecules. The system uses a regression analysis over a strategically
sampled set of spatial configurations to create a set of equations that can be evaluated in real time to shade molecular models based on
cylinders and spheres. The images illustrate the application of our illumination model to different representations of the same molecule.

Abstract
Several visual representations have been developed over the years to visualize molecular structures, and to enable a better
understanding of their underlying chemical processes. Today, the most frequently used atom-based representations are the
Space-filling, the Solvent Excluded Surface, the Balls-and-Sticks, and the Licorice models. While each of these representations
has its individual benefits, when applied to large-scale models spatial arrangements can be difficult to interpret when employing
current visualization techniques. In the past it has been shown that global illumination techniques improve the perception of
molecular visualizations; unfortunately existing approaches are tailored towards a single visual representation. We propose a
general illumination model for molecular visualization that is valid for different representations. With our illumination model,
it becomes possible, for the first time, to achieve consistent illumination among all atom-based molecular representations. The
proposed model can be further evaluated in real-time, as it employs an analytical solution to simulate diffuse light interactions
between objects. To be able to derive such a solution for the rather complicated and diverse visual representations, we propose
the use of regression analysis together with adapted parameter sampling strategies as well as shape parametrization guided
sampling, which are applied to the geometric building blocks of the targeted visual representations. We will discuss the pro-
posed sampling strategies, the derived illumination model, and demonstrate its capabilities when visualizing several dynamic
molecules.

CCS Concepts
•Human-centered computing → Scientific visualization; •Computing methodologies → Computer graphics; Rendering;

1. Introduction

Molecular simulations have become an important pillar of mod-
ern research in areas such as biology and chemistry, since running
experiments in silico effectively reduces time and resources in tra-
ditional wet labs. The output of these simulations is usually one or
multiple molecular trajectories composed of hundreds or thousands
of steps, whereby for each step a spatial atom arrangement repre-

senting the overall shape is stored. Analyzing such data can be a
tedious task without the proper tools. Visualization helps by pro-
viding insightful visual representations, highlighting specific fea-
tures and allowing to form new hypothesis based on the data at
hand. Nevertheless, to be beneficial it is of utmost importance that
the shape of the visualized molecule is unambiguously perceiv-
able. Unfortunately, due to the complex nature of molecules, and
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the representations typically used to visualize them, unambiguous
perception is not always guaranteed. To improve the situation, ad-
vanced illumination models have been proposed to increase the per-
ception in such cases [TCM06]. While the light intensity gradient
over a surface can provide enough cues to recognize the shape of
an object, in cluttered images such local shading is not sufficient
to understand the spatial relations of the different structures of the
model. Global illumination techniques, on the contrary, are able to
provide additional structural cues, and thus facilitate unambiguous
perception. Color bleeding is a good example of such a technique
since it provides information about the neighboring objects by sim-
ulating the reflection of light on their surfaces. Moreover, as in-
dicated by Color Constancy studies [Fos11], it maintains a good
perception of the individual objects, a crucial aspect in molecular
visualizations. Unfortunately, as they simulate multiple bounces of
light in a scene, global illumination models are of high compu-
tational complexity. Their recursive nature usually limits them to
off-line rendering, making them not suitable for interactive molec-
ular visualization. Nevertheless, in the past, a few techniques suc-
cessfully approximated global illumination effects for molecular
scenes (e.g., [SGG15, SVGR16]). However, due to the fact that ex-
isting techniques are limited to Space-filling representations only,
until today it has not been possible to achieve consistent illumina-
tion when combining different visual representations or switching
between them, which are tasks often performed when analyzing
molecular simulation data.

In this paper, we present the first general illumination model
which can be applied to the four most frequently used atom-based
molecular representations, namely the Space-filling, the Solvent
Excluded Surface, the Balls-and-Sticks, and the Licorice repre-
sentation. Other existing representation methods, such as Ribbons,
are also popular among domain experts. However, they perform a
high abstraction of the molecule by removing atomic information.
Whilst these models improve the analysis of certain properties of
proteins, in this work, we focus on atom-based representations. The
presented illumination model employs an analytical solution to the
light transport problem between perfectly diffuse convex objects,
which makes it applicable in real-time. To obtain our analytical so-
lution, we analyze the high dimensional parameter space implicitly
defined by the geometries of the visual representations and employ
symbolic regression [SL09] to fit an adequate function. The idea of
deriving an analytical solution for light transport through regression
analysis is not new [RWG∗13, SVGR16], but previous solutions
have focused on single rendering primitives, such as triangles or
spheres. While the reported outcomes for these primitives are con-
vincing, the nature of the regression process, which involves learn-
ing from a multitude of samples, has until now forbidden the appli-
cation to more complex geometries consisting of different shapes.
To resolve this limitation, we propose effective sampling strategies,
which drastically reduce the number of samples to be considered
during regression analysis. For an effective sampling, we show first
how to reduce the number of samples by limiting ourselves to a set
of representative spatial configurations. Then, each configuration
is reparameterized based on the nature of the shape of the func-
tion that we aim to approximate. We will show that by applying
these two strategies, we arrive at a number of samples which is low
enough to perform a regression analysis using symbolic regression,
while still arriving at high-quality illumination models. To demon-
strate the feasibility of the sampling strategies, we apply them to

obtain a general illumination model, that can be applied during an
interactive visualization process. As the model describes the radi-
ance at one point as the summation of the reflected light by the
nearby objects and their visibility, it results in molecular visualiza-
tions incorporating global illumination effects. We would like to
emphasize, that the proposed illumination model is only one possi-
ble area, where the improved sampling strategies enable regression
analysis, and that we expect to see more such models to be derived
based on these strategies. Thus, the main contributions of this paper
are:

• Sampling strategies developed to enable regression analysis of
illumination data for complex geometric structures composed
out of multiple geometric primitives.

• A general interactive illumination model for atom-based
molecular visualization, which is applicable to the Space-filling,
the Solvent Excluded Surface, the Balls-and-Sticks, and the
Licorice representation.

The remainder of the paper is structured as follows. Section 2
provides an overview of the work related to our approach. Section 3
formalizes light interactions between geometric primitives, such
that regression analysis becomes possible. Since analyzing these
interactions naively results in a prohibitive number of samples, we
introduce sampling strategies to reduce the samples to a practi-
cal level in Section 4. Section 6 demonstrates how these sampling
strategies can be applied to obtain a general illumination model for
the targeted visual representations, i.e., Space-filling, Solvent Ex-
cluded Surface, Balls-and-Sticks, and Licorice. Then, in Section 7,
the real-time algorithm that implements this model is introduced.
Section 8 presents results obtained for different molecules, and Sec-
tion 9 discusses the limitations of the presented approach. Finally,
the paper concludes in Section 10 by summarizing the findings and
discussing open future work.

2. Related Work

In this section, we will describe the most relevant methods de-
veloped to visualize the targeted molecular representations, i.e.,
Space-filling (SF), Solvent Excluded Surface (SES), Balls-and-
Sticks (B&S), and Licorice representations, with a special focus
on the perceptual enhancement through advanced illumination ef-
fects. Since providing a comprehensive review of molecular visual-
ization techniques is beyond the scope of this paper, we would like
to refer the reader to the recent state-of-the-art report published by
Kozlíková et al. for this matter [KKF∗16].

Molecular Representations. As different visual representations
for molecules exist, they all have their individual benefits and
downsides. The Space-filling model provides a good overview of
the space occupied by a molecule and its cavities, by represent-
ing the atoms as spheres. However, due to this dense representa-
tion, it occludes most of the internal structure of the molecule. The
Balls-and-Sticks and Licorice models, on the other hand, provide a
good balance between information presented and screen foot-print.
In these models, the atoms are also represented by spheres and the
bonds between atoms are represented by cylinders. In these models
the size of the objects is smaller than in the Space-filling, leaving
thus enough empty space to visualize the surrounding objects. Sol-
vent Excluded Surfaces are derived from the Space-filling model
and, therefore, they present the same benefits. Besides those, they
also provide information about the accessibility of the molecule.
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While many visual representations of molecules employ spheres
to depict atoms, the most commonly used technique to render these
spheres is by using glyphs [Gum03, RE05, TCM06, SWBG06].
However, some authors used more sophisticated techniques in order
to render millions of these particles in real time. Falk et. al [FKE13]
presented a system which was able to render large-scale molecu-
lar systems by ray-casting a grid-based data structure. Le Muzic et
al. [LMPSV14] also developed a technique which is able to render
molecular aggregations in real-time. By exploiting the capabilities
of modern GPUs, they were able to generate different levels-of-
detail on-the-fly. While sphere rendering is sufficient for the SF rep-
resentation, B&S and Licorice require also the integration of cylin-
drical primitives, which are also most commonly rendered using
glyphs. Tarini et al. [TCM06] and Sigg et al. [SWBG06], both pre-
sented in 2006 two such algorithms, while the technique presented
by Tarini et al. was limited to orthographic projections. The most
commonly used technique to visualize molecular surfaces, such as
SES, is by means of triangular meshes [SOS96, TA96, VBJ∗94].
However, this method requires the surface triangulation which
yields aliasing problems. A more advanced technique is ray-casting
the patches that compose the surface. This technique was first in-
troduced by Krone et al. [KBE09] and has been later also employed
for dynamic molecules by Lindow et al. [LBPH10].

Perception Enhancement. Several techniques have focused on
enhancing the perception of molecular structures. Tarini et
al. [TCM06] for example, developed a technique to generate sil-
houettes and halos around the atoms and bonds. Hermosilla et
al. [HGVV16] also used halos computed from a 3D data struc-
ture to highlight drugs during the visualization of docking simu-
lations. Krone et al. [KBE09] improved the perception of molecu-
lar structures through a set of techniques that could be combined
together, such as unsharp masking the depth buffer, silhouette ren-
dering, fogging or transparencies. Lawonn et al. [LKEP14] used
hatching lines on molecular surfaces to convey their shape. Van
der Zwan et al. [vdZLBI11] provided a system to perform smooth
transitions between different representation models, being able to
select the ones that best communicate the shape of the molecule.
Parulek et al. [PJR∗14] persented a technique to visualize smooth
transitions between sphere-based molecular representations.

Real-time Global Illumination. Simulating the light transport in
a scene at interactive frame rates is a difficult task due to the recur-
sive nature of the problem. However, several techniques have been
developed to approximate it in real-time. For a complete analysis
of these techniques, the reader can refer to [RDGK12]. Within this
paragraph, we rather focus on those techniques directly tailored to-
wards molecular visualization.

Staib et al. [SGG15] used a grid-based approach inspired by
Crassin et al. [CNS∗11], to simulate global illumination in scenes
composed of spheres. Later on, Skånberg et al. [SVGR16] have
proposed a regression analysis approach, which has been inspired
by the work of Ren et al. [RWG∗13]. Due to the inherent prob-
lems of regression analysis, with respect to the dimensionality of
parameter space to conquer, their approach can only be applied to
spherical shapes, in a similar fashion as the original technique pre-
sented by Ren et al. was applicable to triangles, only. Moreover,
the modulation of the contributions from different objects led to in-
correct radiance estimations, i. e. two contributions resulting in red

and blue colors would yield almost zero incoming radiance when
using modulation to estimate the total contribution.

Besides the simulation of these Radiosity-like effects, ambient
occlusion was used by several authors to improve the shape per-
ception of molecular structures. Tarini et al. [TCM06] computed
the visibility of each atom and bond in a pre-process and stored the
ambient occlusion terms for each object in a texture atlas. Later,
in 2012, Grottel et al. [GKSE12] presented an interactive technique
limited to scenes composed of spheres. They computed a coarse ap-
proximation of the scene and used it to compute a rough estimation
of the occlusion in each pixel. This technique led to two different
approaches that proposed a similar extension of the method. Staib
et al. [SGG15], limiting the technique to spheres, and Hermosilla
et al. [HGVV16], limiting the technique to spheres and cylinders,
used a hierarchical data structure to approximate the scene. Then,
for each pixel, they computed the ambient occlusion term using
Voxel Cone Tracing [CNS∗11]. An entirely different approach was
presented by Skånberg et al. [SVGR16], which approximated the
occlusion generated by a sphere by estimating its projected solid
angle. While all these techniques, allow for the incorporation of
advanced illumination effects in molecular representations, they are
all tailored towards a specific visual representation. To our knowl-
edge, no general molecular illumination models exist, which can be
applied to multiple representations.

3. Modeling Diffuse Light Interactions

To enable regression analysis for the derivation of an analytical il-
lumination model, light interactions first need to be formalized. In
this section, we describe how we formalize diffuse light interac-
tions and occlusions, which shall both form an integral part of the
formalized illumination model.

The amount of light reflected by a point is measured by the re-
flected radiance. It becomes possible to define this radiance as the
sum of the radiance reflected by the surrounding objects plus the
radiance arriving from the environment, as the rendering Equa-
tion [Kaj86] defines the outgoing radiance from a surface at a given
direction as a function of the incoming light from all directions
within the hemisphere defined by the normal at each point:

Lo(p,ωo) =
∫

Ω

f (p,ωo,ωi)Li(p,ωi)cosθidωi, (1)

where Lo(p,ωo) is the outgoing radiance at point p in direction ωo,
f (p,ωo,ωi) is the object’s Bidirectional Reflectance Distribution
Function (BRDF) and Li(p,ωi) is the incoming radiance from di-
rection ωi. However, for perfectly diffuse objects the same amount
of light is reflected in all directions, and, therefore, the BRDF be-
comes constant (c) and can be moved outside the integral.

Lo(p,ωo) =
c
π

∫
Ω

Li(p,ωi)cosθidωi (2)

Since
∫

Ω
cosθi = π, the albedo c of the object is divided by π.

Now, for explanatory purposes, let’s assume we have a scene
composed of two convex objects (A and B) separated by a cer-
tain distance (Figure 2). Assuming that the only light source in this
scene is an environmental radiance of La, the radiance reflected by
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object A at a given point p in direction ωo can be computed by the
sum of two integrals:

LAo(p,ωo) = c
(

1
π

∫
Ω

VB(p,ωi)Li(p,ωi)cosθidωi+

1
π

∫
Ω

(
1−VB(p,ωi)

)
Lacosθidωi

)
(3)

The first integral computes the radiance arriving at point p (on the
surface of the object A) bounced at the surface of object B. Here
the incoming radiance for a given direction ωi (Li) is modulated by
the visibility function VB(p,ωi), which is a binary function that is
evaluated to 1 when a ray defined by (p,ωi) has its first intersection
with object B:

VB(p,ωi) =

{
1 p occluded by object B in direction ωi
0 otherwise

Using the second integral we can calculate the radiance arriving at
the point p from the environment. Now let’s assume that we have
a scene similar to the one defined previously, in which we have a
convex object A and n convex objects B1...Bn. Using the same pro-
cedure as before, we can define the radiance reflected by object A
as a summation of the radiance that reaches p reflected by each in-
dividual object B j plus the radiance arriving from the environment:

LAo(p,wo) = c
(

1
π

∫
Ω

VB1(p,ωi)Li(p,ωi)cosθidωi+

...

1
π

∫
Ω

VBn(p,ωi)Li(p,ωi)cosθidωi+

1
π

∫
Ω

1−
n

∑
j=1

VB j (p,ωi)

Lacosθidωi)


= c

 n

∑
j=1

fB j−→A(p)+La

1−
n

∑
j=1

OB j−→A(p)




(4)

where fB j−→A(p) is a function which evaluates the radiance re-
flected by object B j onto point p, and OB j−→A(p) describes the
occlusion generated by object B j at point p. OB j−→A(p) is in the
range [0,1] and evaluates to 1 when object B j covers the entire
hemisphere and 0 when object B j does not generate any occlusion
wrt. point p.

With the previous derivation, our model defines the radiance at
any point on the scene as a summation of the radiance arriving from
the objects in its vicinity plus the environmental radiance modu-
lated by the visibility of these objects. Since this model does not
take into account self-occlusions, it is limited to scenes composed
of convex objects.

4. Sampling Strategies

Equation 4 formalizes the computation of the radiance at a given
point. However, fB−→A(p) and OB−→A(p) are complicated func-
tions which can be hard to evaluate. For simple objects, such as

B

A

Figure 2: The diffuse interaction between two objects, A and B, is
defined as the environmental light that reaches our point of interest
from both, the environment and reflected at object B (grey rays).

spheres, these functions can be easily approximated by regression
analysis since they are described by a small number of parameters.
In contrast, when dealing with more complex objects, a more so-
phisticated strategy has to be used in order to sample the parameter
space efficiently, as the number of samples required by the sym-
bolic regression algorithm increases exponentially with the number
of parameters used to describe the new shapes. In this section, we
describe strategies that are able to obtain an analytical solution to
fB−→A(p) using symbolic regression even for complex objects de-
fined by several parameters. The key idea is to reduce the number of
required samples by selecting those which are more representative.

4.1. Determining the Number of Combinations

Let us assume, that fB−→A(p) describes the radiance reflected by
object B into a point p on the surface of another object A. In order to
simplify its computation, we define a different equation fB−→A(p)
for each pair of types of objects B and A. Although, this procedure
results in conditional branching, it also reduces the complexity of
the function to be approximated. Hence, we initially determine the
number of equations to be approximated. For n different types of
objects, the number of required equations is n2 since we have to
cover all possible configurations. Once we have identified them,
the following simplifications are carried out for each of the cases.

4.2. Parameterize all Possible Spatial Configurations

For each case, we define a set of parameters which identify a unique
spatial configuration between two objects of the types studied. The
complexity of the regression problem is determined by the number
of parameters selected at this step since they determine the size of
the space to sample and the complexity of the resulting function.
In order to reduce the number of parameters we use the center of
one object as the origin of coordinates and define the other with its
relative coordinates.

4.3. Parameter Space Sampling

As a next step, we determine the spatial configurations we will use
as input to the regression analysis. The accuracy of the resulting
function will depend on the number and variety of the configura-
tions we provide.

A straightforward solution would be to consider uniformly dis-
tributed samples in the parameter space by varying the value of
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one parameter each time. Ensuring that we sample each parameter
with enough resolution would allow the symbolic regression algo-
rithm to capture the behavior of our radiance function. However,
the number of samples required by this approach increases expo-
nentially with the number of parameters. Assuming that we only
take 20 samples for each parameter, for spatial configurations de-
fined by 6 parameters we would generate 64 million of samples,
which is infeasible with a limited amount of resources and time,
and the main reason why previous approaches have been restricted
to single shapes, e.g., [RWG∗13, SVGR16].

Therefore, instead of taking uniformly distributed samples, we
limit our sampling to those configurations which appear more of-
ten in our scenes. First, we discretize the domain of each parameter,
limiting them to k different values. Then, we analyze different real-
world scenes in order to determine which spatial configurations are
more frequent. Based on this analysis, we determine for each pair
of objects the values of the different parameters. The discretization
of the different domains allows us to identify each configuration
by a vector of m integers, rid = [r1, ...,rm], where m is the number
of parameters. The components of this vector can be understood
as indexes to the array of k different values of each parameter. Af-
ter analyzing the scenes corresponding to these parameters, we are
able to obtain a histogram of these identifiers, providing informa-
tion of how frequent a spatial configuration took place within the
scenes.

In order to obtain a set of configurations with appropriate pair-
wise differences, we perform another step that reduces the number
of spatial configurations even more. This step aims to remove con-
figurations which are very similar, the ones that only differ in one
or two parameters and whose values are very close. As a measure of
the difference between two configurations, we use the L2 distance
between their identifiers, d = |rid − r′id |. Using an iterative algo-
rithm , we select a subset of configurations in which all of them are
at a distance dmin or more from the rest of the configurations in the
subset. This algorithm selects in each iteration a new configuration
which meets this requirement. Therefore, dmin should be selected
experimentally, such that the resulting subset of configurations is
small enough (see Section 6.1). Lastly, from the configurations ob-
tained, we select the ones that appear more often in the analyzed
scenes until we achieve a small number of configurations which are
able to represent the light interactions between the studied objects.

4.4. Samples Reparameterization

Although regression analysis is a powerful tool able to provide an
analytical model from a reduced set of samples, it can also produce
models with high error. If the function we want to approximate is
too complex or the number of parameters of the function is too
large, the solution space is too big and, therefore, more difficult to
explore. This can result in a model which does not fit well the input
data. That was the case of our initial parametrization. Although it
helped us to easily determine a set of representative spatial config-
urations, the result of the regression analysis did not take into ac-
count relevant parameters, which lead to incorrect shading. In order
to solve this problem, we derive a new parametrization of the prob-
lem more closely related to the function we wanted to approximate,
guiding thus the algorithm to our desired solution.

The function we intend to approximate, fB−→A, is an integral

over the hemisphere defined by the normal at each point. Our ini-
tial parametrization, on the other hand, described the displacement
and rotation we should apply to object A to align it to object B. For
our new parametrization, we define instead object B by its spheri-
cal coordinates with respect to each point on the surface of object
A. This parametrization not only provides more information about
the function we want to obtain but also introduces more variation
in the samples. For each point on the surface of object A, object B
is described by different values since its projection is also different.

5. Regression Analysis

In this section we describe the regression analysis we use to ap-
proximate our functions. First, for the selected configurations, we
execute a path tracer algorithm on a simple scene composed of two
objects (as the scene illustrated in Figure 2). We use an environ-
mental radiance (La) of 1.0 and a reflectance function for both ob-
jects equal to 0.9. We selected this value for the reflectance func-
tion since objects with this reflectance function illustrate light ab-
sorption whilst reflecting almost all the received light. Then, dur-
ing the interactive visualization, we derive fB−→A(p) for different
reflectance functions in real-time (see Section 6.3). Moreover, for
simplicity, we only simulate a single bounce of the light (grey rays
in Figure 2). However, one bounce is enough to plausibly approxi-
mate global illumination effects such as diffuse interreflection.

The path tracer computes the following integral for 1282 differ-
ent points on the surface of object A using all the spatial configura-
tions selected in the previous step:

fB−→A(p) =
1
π

∫
Ω

VB(p,ωi)Li(p,ωi)cosθidωi (5)

This algorithm generates an image of 1282 pixels for each spatial
configuration. Each pixel of this image encodes the environmental
radiance reflected by object B that reaches a given point on the
surface of A (grey rays on Figure 2). All the pixels of the images
are then used as input to a symbolic regression algorithm.

We use Eureqa [SL09], a symbolic regression package by Nu-
tonian, to approximate our functions. We run the symbolic regres-
sion algorithm using the images obtained from the path tracer for
all the selected spatial configurations. For each pixel, we compute
the reparameterization of object B described in Section 4.4. These
values, together with the parameters describing the position of the
pixel on the surface of object A, are used as the parameters of the
functions the symbolic regression algorithm has to approximate.
With this strategy, we are able to obtain equations which fit our
input data with very low error.

6. Molecular Illumination Model

In this section we illustrate how, by using the strategies proposed
in the previous sections, we are able to obtain different equations
describing the diffuse interaction between spheres and cylinders.
Then, using these equations, we are able to define a general illumi-
nation model for molecular structures.

6.1. Parameter Space

First, we select, by performing the 4 steps of the sampling strategy
described in Section 4, the set of representative samples:
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Figure 3: Cylinder-to-cylinder parameterization. The relative po-
sition of a cylinder with respect to another can be determined by
the use of 6 parameters.

1- Determining the Number of Combinations. As described be-
fore, our scenes are only composed of two types of objects, spheres
and cylinders. Thus, we need to differentiate 4 possible cases:

Case 1: Object A and B are cylinders.

Case 2: Object A is a cylinder and object B is a sphere.

Case 3: Object A is a sphere and object B is a cylinder.

Case 4: Object A and B are spheres.

2- Parameterize Spatial Configurations. For each of the cases,
we define the parametrization of their spatial configurations. The
units used for all the parameters are Ångström (Å) for distances
and radians for angles.

Case 1: The configuration of a scene composed of two cylinders

Figure 4: Although during regression analysis we used a fixed ra-
dius to define cylinders, our analytical solution to the diffuse inter-
reflection can be scaled to approximate the diffuse interreflection
between cylinders with other radius. In the left figure we scaled by
0.8 the result of our function to simulate a thiner Licorice model.

lc

d

φ

rs

Figure 5: Parameterization of the cylinder-sphere spatial config-
uration. We need up to 4 parameters to define the relative position
of a sphere with respect to a cylinder.

can be fully described by 8 parameters (see Figure 3): the length
of both cylinders (lA and lB), the radius of both cylinders (rA and
rB), the distance between the closest extreme points (d), the angle
between cylinders in axis X (θx), the angle between cylinders in
axis Y (θy), and the angle formed by the vector between the closest
extreme points and the Z-axis (φ). This number can be reduced to 6
if we assume a constant cylinder radius. Since there is no standard
value for the radius of such elements, we use 0.2 Å for both Balls-
and-Sticks and Licorice models. However, if other values need to be
considered, the resulting function can be scaled to simulate diffuse
interreflections between objects of such radius (see Figure 4).

Cases 2 and 3: A scene composed of a cylinder and a sphere
can be defined by 4 parameters (see Figure 5). The length of the
cylinder (lc), the radius of the sphere (rs), the distance between the
center of the sphere and the closest extreme of the cylinder (d), and
the angle between the Z-axis and the vector that moves the center
of the sphere to the closest extreme of the cylinder (φ).

Case 4: A scene composed of two spheres, can be easily de-
scribed by 2 parameters: the ratio of radius between the two spheres
and the distance between them.

3- Parameter Space Sampling. In this step, first, we analyze real-
world molecular simulations involving different proteins. We have
analyzed 6 simulations composed of thousands of steps each one.
From this analysis, we obtained a histogram of the spatial config-
urations. Then we apply the iterative algorithm to select the most
representative ones using dmin = 5.

Case 1: In this case, we obtained a bit more than 37,000 possi-
ble configurations after analyzing the molecular simulations. Then,
we reduced them to 576 after our iterative algorithm. Finally, we
selected the 201 configurations which appear more than 100 times
in the simulations, accounting for 99.95% of the appearances of the
576 configurations.

Cases 2 and 3: In these cases we obtained around 20,000 pos-
sible configurations from the analysis of our data. After reducing
them to the most representative ones, we obtained 501 configura-
tions. As before, we selected the ones that appear more than 100
times in our simulations,yielding a total of 286 configurations that
account for 99.99% of the appearances of the 501 configurations.

Case 4: This case did not need sampling reduction since only 2
parameters needed to be sampled.

4- Samples Reparameterization. In our tests, the resulting equa-
tion obtained using regression analysis for the case 1 did not cap-
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d1

d2

dh

θp1

θp2

θph

φh

ψ1

ψ2

p

Figure 6: We reparameterize our samples, describing the cylinders
by their spherical coordinates with respect to our sampling points.
By this reparameterization we are able to introduce more vari-
ability in our values (for given cylinder, its spherical coordinates
are different for each sample) and introduce information about the
problem we want to solve into the regression analysis (our function
is basically an integral over the hemisphere defined at each point).

ture well the diffuse interaction between cylinders. The resulting
function did not use some of the input parameters, such as θy,
resulting in wrong interreflections for most of the configurations
were θy varied. Therefore, we performed the reparameterization
described in Section 4.4.

Cases 1 and 3: The reparametrization used when object B is a
cylinder is illustrated by Figure 6. First, we project the extremes
of cylinder B onto the hemisphere defined at the point p. For each
projected point we obtain two parameters, the distance from the ex-
treme to p (d1 and d2) and the angle between the projected points
and the normal (θp1 and θp2 ). Then, from the arc defined by the
cylinder in the hemisphere, we compute the closest point to the
center of the hemisphere, ph. From this point we obtain 3 more
parameters, its spherical coordinates (dh, θh and φh). Then, two
more parameters are computed which complete the definition of
cylinder B, the angle of the arc between the two points of the cylin-

Figure 7: In order to compute the value of the radiance for our
sampling points, we used a path-tracing algorithm. Each pixel on
the left image presents the radiance reaching different points at the
surface of a cylinder reflected by another cylinder. The right im-
age, on the other hand, presents the radiance that reaches different
points at the surface of a cylinder reflected by a sphere.

rs

d

θ

φ p

Figure 8: As with the case of cylinder-cylinder interaction, we pa-
rameterize the position of a sphere relative to a point using spher-
ical coordinates. Using this parametrization we are able to obtain
better approximations with the symbolic regression algorithm.

der B and the point ph: ψ1 and ψ2. The number of parameters re-
quired to define the relative position of a cylinder B from a point
p is now 9. Despite increasing the number of parameters, with this
new parametrization we are able to obtain an analytical solution for
the diffuse interreflection problem which fits our input data well.
Note that the proposed parametrization can be ambiguous because
the same values can define two different configurations. Nonethe-
less, these configurations are symmetric which will have almost the
same diffuse interaction.

Cases 2 and 4:We reparameterized the cases when object B is a
sphere in a similar way we parameterized the data in case 1 and 3
(see Figure 8). For each point on the surface of object A, we project
sphere B into the hemisphere defined by the normal of the point,
obtaining thus the following parameters: the radius of the sphere
(rs), and the polar coordinates of its center (d, θ and φ).

6.2. Regression Results

For the selected configurations we generate the samples using a
path tracer algorithm. This algorithm takes less than 30 seconds to
generate one of these images, however, this is a pre-process that is
executed only once. Figure 7 presents some results obtained by the
path tracer algorithm for cases 1 and 2.

Figure 9: These images present the evaluation in real-time of the
functions obtained by the regression analysis to simulate the dif-
fuse interaction between spheres and cylinders. The objects are
rendered without color, to illustrate the diffuse interactions they re-
ceive. These are calculated assuming the vertical cylinder is blue,
while the horizontal one and the sphere are white.
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Lastly, we execute the symbolic regression algorithm, obtaining
thus the final equations (see Figure 9).

Cases 1 and 3: We used the samples generated for case 1 as input
to the symbolic regression algorithm. After 15 hours, we obtained
a function which approximates our original input data, with values
ranging from 0 to 1, with a mean squared error of 0.000185:

fB−→A(ψ1,ψ2,d2,dh,θp1 ,θp2) =

= 1.25 exp


 ψ1 +0.872ψ2

1.19+d2 +
(

dhθp1 θp2 θ1.19
p1

)θp2


1.25
−1.25

(6)

Note that this equation does not take into account any parameter
defining the position in the surface of cylinder A, i. e. the symbolic
regression algorithm approximated the occlusion generated by ob-
ject A over the surface of object B with a constant. Therefore, we
used this same equation to compute the radiance in case 3, where
object A is a sphere.

Cases 2 and 4: We also executed the symbolic regression algo-
rithm for the samples generated for case 2. After computing for 17
hours, we obtained a function which approximates our original in-
put data, with values ranging from 0 to 1, with a mean squared error
of 0.00034:

fB−→A(rs,d,θ) = atan

(
34.3r7

s

d7exp(θ2)
+

5.35r2
s

d2exp(θ2)

)
−0.00196

(7)

Again, the obtained function does not depend on object A. There-
fore, we used this equation to compute the radiance in case 4 too.
Skånberg et al. [SVGR16] also proposed an analytical solution for
case 4. However, their formula computes the diffuse interreflection
between spheres plus the environmental radiance. This makes it not
suitable for our illumination model.

6.3. Model Instance

The equations obtained using our sampling reduction techniques,
equations 6 and 7, allow us to define an illumination model follow-
ing Equation 4. In the following paragraphs, we describe how we
derived our illumination model for molecules:

Occlusion Estimation. Equation 4 uses functions fB−→A(p) to
compute the diffuse interactions between objects. However, Equa-
tion 4 also relies on the occlusion generated by neighboring objects,
OB−→A(p), to determine the amount of environmental radiance that
reaches a point. OB−→A(p) could be also approximated using re-
gression analysis as fB−→A(p). In this paper instead, we approxi-
mated OB−→A(p) by scaling the result of equation fB−→A(p).

From the definition of fB−→A(p) (Equation 5) we know that the
incoming radiance, Li, will only contribute to fB−→A(p) when it is
reflected by object B. Therefore, the incoming radiance at a point
p on the surface of object A for a given direction ωi is equal to the
outgoing radiance from a point p′ on the surface of object B in the
same direction ωi. Assuming only one bounce of the light we can
define Li as:

Li(p,ωi) =LBo(p′,ωi)

=
cB

π

∫
Ω

(
1−V (p′,ωm)

)
Lacosθmdωm

=cBLa

(
1
π

∫
Ω

(1−V (p′,ωm))cosθmdωm

)
=cBLaAO(p′) (8)

where cB is the reflectance function of object B, La is the envi-
ronmental radiance, and AO(p′) is the ambient occlusion term at
point p′. Following the approximation carried out by the symbolic
regression algorithm, we also consider the occlusion generated by
object A constant over the surface of object B. This assumption
allows us to approximate AO(p′) by a constant, ko, and therefore
derive OB−→A(p) from fB−→A(p):

fB−→A(p) =
1
π

∫
Ω

VB(p,ωi)Licosθidωi

=
1
π

∫
Ω

VB(p,ωi)cBLakocosθidωi

=cBLako
1
π

∫
Ω

VB(p,ωi)cosθidωi

=cBLakoOB−→A(p)

OB j−→A(p) =
fB−→A(p)
cBLako

(9)

This approximation of the occlusion generated by an object is
able to provide realistic results as shown in Figure 10. However, if
a more exact solution is required the occlusion can be computed
using other methods, such as ambient occlusion algorithms (see
the algorithm proposed by Shanmugan et al. [SA07]) or finding an
analytical solution by using regression analysis.

Supporting Different Reflectance Functions. During the compu-
tation of Equation 6 and Equation 7 we assumed that objects have
a constant reflectance function equal to 0.9. Nevertheless, this is
not the case for real scenes. In order to support different reflectance
functions, we perform simple manipulations on Equation 5, which
allow us to define the radiance reflected by an object B′ with a re-
flectance function cB′ by equation fB−→A(p) defined for an object
B with a reflectance function of cB = 0.9. Note that fB′−→A(p) can
be obtained from fB−→A(p) multiplying by cB′ and dividing by cB,
since the outgoing radiance from object B′, can be derived in the
same way from the outgoing radiance defined for object B:

fB′−→A(p) =
fB−→A(p)cB′

cB
(10)

LB′o(p′,ωi) =
LBo(p′,ωi)cB′

cB

=
cB′cB

πcB

∫
Ω

(1−VA(p′,ω j))Lacosθ jdω j

=
cB′

π

∫
Ω

(1−VA(p′,ω j))Lacosθ jdω j

Model Parameters. Our molecular illumination model only has
one parameter, ko, which controls the occlusion generated by the
objects of the scene. However, in order to provide control over the
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Figure 10: These images illustrate the effect of the parameter ko,
used to approximate the occlusion generated by the nearby objects.
The top image was obtained using ko = 0.75 whilst the bottom one
was obtained by ko = 0.95. Note that, since ko divides fB−→A, lower
values of this parameter generates higher occlusions.

intensity of the diffuse interactions, we also incorporated a scal-
ing, s f , and a power, p f , factors that are applied to the functions
fB j−→A(p). The effects of these parameters on the visualization are
illustrated by Figure 11 and Figure 10.

Supported Representations. This model is used to simulate dif-
fuse interreflections in molecular scenes represented by the most
commonly used atomic-based representation methods. Since, the
Space-filling, Balls-and-Sticks and Licorice models are represen-
tations based on only two geometric primitives, spheres and cylin-
ders, our illumination model can be directly applied here to sim-
ulate global illumination effects. The system was developed for
cylinders and spheres, however, with some approximations, we can
make it work also for SES (see Figure 12): Since SESs are derived
from the Space-filling model, for each point in the SES, we com-
pute their final color by using our illumination model as if the scene
was composed only of spheres.

The structure of the scenes is very different for each of these
representations. Whilst the SF and SES models have a high spa-
tial density, generating a high number of occlusions, the B&S and
Licorice models create more sparse visualizations. In order to adapt
our functions to these different representations, we adjusted the pa-
rameters of our model for each of the representations. The values
used for the images of the paper were:

• Space-filling: s f = 0.2, p f = 0.9, and ko = 0.9.
• Balls-and-Sticks: s f = 0.5, p f = 0.95, and ko = 0.85.
• Licorice: s f = 2.0, p f = 0.95, and ko = 1.0.
• SES: s f = 0.55, p f = 1.15, and ko = 1.05.

With these values, we are able to obtain realistic results like the
ones shown in Figure 1.

7. Implementation

We described an illumination model used to visualize molecules.
In this section, instead, we describe some implementation details
which allowed us to use this model in real-time.

Figure 11: Parameter s f is used to modulate the diffuse inter-
reflection. By increasing this parameter we are able to exaggerate
the color bleeding effect. Top image was obtained using s f = 0.5
whilst the bottom image used a s f = 1.0.

7.1. Acceleration Data Structures

Evaluating the diffuse interaction for every pair of objects in the
scene can be prohibitive for medium-sized molecules. However,
since the sizes of the objects in our scenes are in a well-defined
range, we can discard those objects that are farther than a certain
distance. Objects far away will have a small projected solid an-
gle and thus, a small diffuse interaction with the point of interest.
Hence, to compute the radiance reaching a point, we only have to
compute the diffuse interactions with the objects in its vicinity. De-
termining these objects can be efficiently implemented by using
spatial partitioning.

Efficient retrieval of neighboring atoms within a fixed radius is a
common problem that is usually solved by using spatial subdivision
data structures [Gre07, BSC15, Hoe14]. We adopted the method
proposed by Green [Gre07], which was later used in different
molecular visualization techniques [KGE11, SVGR16, HKG∗17].
We create two data structures, one for atoms and other for bonds,
in which we distribute our geometric primitives. These two data
structures are computed in milliseconds by the GPU each time the
molecular structure is changed. This allows us to maintain real-time
interaction during the inspection of full trajectories.

In order to achieve a correct simulation of the diffuse interac-
tions, the cell size needs to be accurately selected. A cell size too
small could not take into account, during the retrieval, objects that
would generate a significant diffuse interaction with our point of
interest. The size of the cells, then, has to ensure that for a given
point all the objects of interest are selected whilst only the grid
cell in which the point is located and the 26 surrounding cells are
queried. This can be achieved by determining the distance at which
diffuse interaction is negligible. After trying different spatial con-
figurations in our path tracer, we determined that for a projected
solid angle, ω, smaller than 0.04 the diffuse contribution of such
objects is no longer relevant. From the equations which define the
projected solid angle of our geometric shapes ( [Raj14]), we isolate
the distance terms and determine at which distances spheres and
cylinders project a solid angle of 0.04. These values are then used
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Figure 12: Although solvent excluded surfaces are not formed
by spheres and/or cylinders, the representation is derived from the
Space-filling model. Using the same illumination model to compute
the reflected light by near structures as if our scene was composed
only of spheres works well in these cases.

as the size of our regular grids. The cell sizes used for different
scenes and different values of ω can be found in Table 2.

With this method, we ensure that we do not miss any relevant
diffuse interaction. However, in low performant hardware, the grid
cell sizes can be manually selected, reducing thus the number of
objects tested.

7.2. Real-time Evaluation of the Interreflections

Once the acceleration data structures are computed, the following
algorithm renders our scenes with the proposed illumination model:
First, we render our objects into a frame buffer. We store the depth,
normal, and object identifier in different render targets. Then, in a
second pass, we fetch this information for each pixel and compute
the output radiance of the point. To achieve this, we retrieve the ob-
jects in the vicinity of the point from the two data structures and, for
each one, we use Equation 6 or Equation 7 (depending on the ob-
ject type) to compute the radiance reflected by the object. The final
radiance is computed adding these values following Equation 4.

7.3. Ambient Occlusion

The illumination model proposed in this paper provides a good ap-
proximation of global illumination effects (see Figure 13). How-
ever, this model only takes into account objects in the vicinity of the
point of interest in its computations. When the molecule we intend
to visualize is composed of several thousand atoms, far objects, de-
spite not having a significantly diffuse interaction, can occlude the
light in their direction.

In order to compute the occlusion generated by these far objects,
we use ambient occlusion. Ambient occlusion approximates indi-
rect illumination by modulating the shading of each point by its
visibility. In this paper, we adapted the method proposed by Her-
mosilla et al. [HGVV16] to only compute distant occlusions. For

Figure 13: We compared our illumination model (right images)
with the results of a path-tracing algorithm (left images). Whilst the
Balls-and-Sticks and Licorice models achieve very similar results,
the Space-filling model generates less pronounced shadows, though
still plausible. And the diffuse interactions appear in the same areas
as with the path tracing algorithm.

more information about this technique, the user can refer to the
original paper.

8. Results

In this section, we present the results obtained by our algorithm, in
terms of image quality and performance achieved. All the measures
were taken using a computer with the following configuration: Intel
i7 at 3.6 GHz, with 16 Gb of RAM, and a GeForce GTX980, using
a screen resolution of 1280×720 pixels.

The illumination model we introduced in this paper works in
real-time for molecules up to 45 K atoms. Table 1 presents the re-
sults obtained for different scenes. Since the bottleneck of our al-
gorithm is the pixel shader, we provide different configurations for
analysis purposes. We rendered the tested molecules making them
occupy as much of the screen as possible without being clipped,
testing thus the worst case scenario. For all the representations our
method supports, we provide the milliseconds required to draw a
frame using different cell sizes. The Space-filling and SES repre-
sentations are able to render molecules up to 45 k atoms at more
than 60 frames per second for all the cell sizes tested. On the con-
trary, the Balls-and-Sticks and Licorice models present a drop in
performance for higher cell sizes, since they require to query two
data structures. For these models, we measured a performance of
around 20 frames per second. However, these cell sizes are bigger
than the ones used in real scenarios. Table 2 presents the cell sizes
calculated for different values of ω in molecules represented by the
Balls-and-Sticks model. For a ω equal to 0.04 (for which we cap-
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Table 1: Results obtained for different representation methods. Each column presents the time in milliseconds needed to render a frame
using the different representation methods with different cell sizes (in Å) of our acceleration data structures. The first number indicates the
cell size of the data structure used to store the atoms and the second one the cell size of the data structure used to store bonds. Since the
Space-filling and SES models do not visualize bonds between atoms, only the cell size for the data structure storing the atoms is presented.
Notice how we obtain interactive to real-time frame rates for even the largest models evaluated.

Molecule (#atoms / #bonds)
Space-filling Balls-and-Sticks Licorice SES

2 / - 4 / - 8 / - 2 / 1 4 / 2 8 / 4 2 / 1 4 / 2 8 / 4 2 / - 4 / - 8 / -

1OGZ (2114 / 2014) 3.723 4.461 7.584 4.811 7.418 20.909 4.656 6.522 17.869 4.376 4.802 8.769

4NKG (4507 / 4596) 3.543 4.169 7.143 4.991 7.878 23.509 4.411 7.029 20.127 4.016 4.671 8.841

1AF6 (10517 / 10485) 4.354 5.602 12.355 7.058 13.151 48.638 6.495 11.510 41.973 5.054 6.782 14.712

5XYU (45157 / 48953) 4.369 5.332 8.525 12.892 14.932 42.522 12.226 13.866 38.339 4.444 5.724 9.828

Table 2: Cell sizes (in Å) of the data structures storing atoms (ca)
and storing bonds (cb), for the minimum solid angle considered (ω)
in the Balls-and-Sticks model. Moreover, we provide the mean oc-
cupancy of these cells in parenthesis. In our tests, we found that
structures with a projected solid angle of 0.04, we are able to cap-
ture all the relevant diffuse interactions. In this table, we provide
cell sizes for other values of ω for analysis purposes.

Molecule
ω = 0.1 ω = 0.04 ω = 0.01

ca cb ca cb ca cb

1OGZ
3.04 1.31 4.79 2.07 9.57 4.13

(1.86) (2.00) (4.25) (3.02) (13.72) (7.50)

4NKG
3.04 1.30 4.79 2.05 9.57 4.09

(1.97) (1.94) (4.63) (2.95) (14.73) (7.16)

1AF6
3.04 2.01 4.79 3.20 9.57 6.43

(1.95) (2.87) (4.97) (4.86) (16.96) (21.22)

5XYU
3.04 2.02 4.79 3.22 9.57 6.47

(2.04) (3.04) (4.77) (5.29) (15.87) (21.38)

ture almost all the diffuse interactions) we determined cell sizes of
5Å (Atoms) and 3Å (Bonds). As we present in Table 1, similar cell
sizes present a performance of more than 60 frames per second in
all the representations.

Moreover, we compared our method with the results of a path
tracing algorithm. The images in Figure 13 show that for the Balls-
and-Sticks and Licorice models, our algorithm almost presents no
difference. On the other hand, for the Space-filling model (and
therefore SES), the results of our algorithm differ from the ground
truth. We believe that this is the result of the occlusion approxima-
tion carried out in Section 7. Nevertheless, our technique generates
diffuse interreflections in the same areas as the path tracer.

Lastly, we conducted a domain expert interview. All received
comments were very positive. However, they found the major im-
provement in the visualizations of Balls-and-Sticks and Licorice
models. They pointed out that usually, with these models, one needs
to constantly move the molecule in order to gain a sense of the rel-
ative positions. With our illumination model, it is not necessary,
since even static images are able to communicate such information.

9. Limitations

The proposed method efficiently approximates diffuse interreflec-
tions for molecular models. However, it is not exempt from lim-
itations. Equation 4, describes the radiance arriving at a point on
the surface of object A as the summation of individual contribu-
tions from the objects in its vicinity, {B j|0 < i≤ n}. Although this
model takes into account whether object B j is partially or com-
pletely occluded by another object Bk through the visibility func-
tion VB j (p,ωi), our implementation of the model assumes that no
occlusions exist between objects B j and Bk. However, this is not
the case for real scenes. The radiance arriving from object B j to
p should be modulated by the part of object B j that is occluded by
objects Bk when is observed from point p. We could apply a similar
technique as the one used by Skånberg et al. [SVGR16]. Neverthe-
less, as they described in the paper, the effect of overbleeding was
rarely noticed in the scenes they tested. Since our cell sizes have a
reduced size and the diffuse interaction is a local effect that loses
strength with the distance, we decided to not apply any weighting
factor based on occlusions between different objects.

Moreover, our current implementation is only able to take into
account one representation type at a time. In order to combine dif-
ferent representations in the same visualization, extra logic should
be added into the fragment shader. The application should main-
tain a set of data structures for each type of representation. Then,
the fragment shader should retrieve the objects in the vicinity from
each of these data structures and apply the corresponding values of
the parameters s f , p f , and ko.

10. Conclusions

In conclusion, we have introduced a set of sampling strategies, in
the context of regression analysis, that are able to reduce the sam-
pling of the parameter space by selecting the most representative
samples and reparameterizing them based on the shape of the equa-
tion we aim to approximate. Furthermore, we applied these strate-
gies to obtain an analytical solution for the diffuse interaction be-
tween spheres and cylinders. In these cases, we reduced the number
samples to around 200 images which allowed us to obtain models
with a very low error in less than 17 hours. Lastly, we applied these
new found equations to define a general illumination model which
simulates global illumination effects in real-time for the most com-
monly used atom-based molecular representations. This model de-
fines the radiance arriving at a point as the summation of the re-
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flected light by the objects in the vicinity plus the radiance of the
environment modulated by the visibility of these objects.

In the future, we will like to study the applicability of our meth-
ods to simulate diffuse interaction in other types of scenes, such as
triangular meshes.
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