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Fig. 1: High-resolution manometry provides large sets of spatio-temporal pressure data along the esophagus during swallowing. The
pressure data is required for the diagnosis of motility disorders by the application of aggregated metrics. We alleviate this process by
the creation of abstract illustrations of single swallows (left) and their arrangement in a novel, visual representation of a diagnostic
decision graph (middle) based on these aggregated parameters. A multitude of patients can also be simultaneously visualized by the
usage of an even more simplified version of this decision graph and the creation of small multiples (right).

Abstract— High-resolution manometry is an imaging modality which enables the categorization of esophageal motility disorders.
Spatio-temporal pressure data along the esophagus is acquired using a tubular device and multiple test swallows are performed by the
patient. Current approaches visualize these swallows as individual instances, despite the fact that aggregated metrics are relevant in
the diagnostic process. Based on the current Chicago Classification, which serves as the gold standard in this area, we introduce a
visualization supporting an efficient and correct diagnosis. To reach this goal, we propose a novel decision graph representing the
Chicago Classification with workflow optimization in mind. Based on this graph, we are further able to prioritize the different metrics
used during diagnosis and can exploit this prioritization in the actual data visualization. Thus, different disorders and their related
parameters are directly represented and intuitively influence the appearance of our visualization. Within this paper, we introduce our
novel visualization, justify the design decisions, and provide the results of a user study we performed with medical students as well as a
domain expert. On top of the presented visualization, we further discuss how to derive a visual signature for individual patients that
allows us for the first time to perform an intuitive comparison between subjects, in the form of small multiples.

Index Terms—Small multiples, manometry, chicago classification.

1 INTRODUCTION

The esophageal tube presents a connection between the oral cavity
and the stomach performing the bolus-transit by well-synchronized
propulsive motility during the swallowing process. Imbalance in this
system results in dysphagia symptoms and diseases like achalasia,
distal esophageal spasm or ineffective esophageal motility [13]. As the
frequency of these diseases vary, if untreated, the dysphagia symptoms
can lead to a significant weight loss and malnutrition, which makes an
early detection essential. Esophageal manometry is the standard-of-
care procedure for the diagnosis of such esophageal motility disorders.
In today’s high-resolution manometry (HRM), electronic solid-state
catheters with circumferential conduction of pressure waves allow for
the assessment of swallow-activities in the entire esophagus at a high
spatial and temporal resolution [16]. The Chicago Classification of
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motility disorders [13] has been proposed as the gold standard for
guiding physicians during the diagnosis.

Within this paper we propose a novel visualization technique for
HRM diagnosis based on the Chicago Classification v3.0 (CC3). The
proposed approach was motivated by the needs of our medical partners
who were unsatisfied with their current diagnosis workflow which is
time consuming and requires full concentration. Whereas the CC3 is
based on aggregated metrics, current diagnosis systems visualize the in-
dividual swallows one-by-one and the medical doctor needs to mentally
derive the required aggregates. This proceeding clearly violates the
widely accepted concept of eyes-beat-memory [21, pg.131]. Therefore,
our visualization technique directly communicates these cumulated
values to the medical doctor and thus allows for a more effective diag-
nosis. The visualization of aggregates often implies that the underlying
data is more difficult to access, therefore we exploit small multiples
to also visualize the individual swallows together with the aggregates.
We achieve this by hierarchically subdividing the screen real estate
to correlate with the decision nodes of an optimized decision graph,
which we have derived from the CC3. To obtain this graph, we have per-
formed a technical analysis of the original decision graph representing
the CC3. Since this analysis revealed that the graph does not correctly
capture the intended data analysis procedure, the modified decision
graph has been developed in a mutual effort of visualization researchers
and experienced physicians. It is important to point out, that the new
decision graph does not alter, but instead correctly captures the data
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(a) Healthy.
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pressure [mmHg]

(b) Used rainbow color map in HRM.

(c) Fragmented peristalsis. (d) Jackhammer esophagus.

(e) Achalasia type I. (f) Achalasia type II.

Fig. 2: HRM images of characteristic swallows for different disorders.
The coordinate frame of the HRM data sets is shown in (a). The
widely used rainbow color map, which introduces artificial contrasts,
not aligned with important isovalues, is illustrated in (b).

analysis procedure, as it is verbally described in the CC3 [13]. Based
on the modified graph, we later derive the hierarchical screen real estate
layout and the embedding of the individual swallows. Furthermore, as
the CC3 implicitly incorporates a severity measure of the diseases to
be diagnosed, we were able to design the resulting visualization such,
that it perceptually guides the medical doctor during diagnosis based
on the importance of the visual entities.

While the proposed visualization has initially been designed with
the goal to make the diagnosis of individual patients more effective,
we will also show how it can be used to visually compare groups of
patients, which was not possible before. To reach this objective, we
have developed a simplified visual signature based on the proposed
visualization, that - given enough training time - shall enable medical
doctors to detect and compare disease indicators among multiple pa-
tients by means of a small iconic representation. Thus, we effectively
propose a hierarchical visual analysis, which supports the physicians
in seamlessly navigating between single swallows, single patients, and
groups of patients. Figure 1 illustrates this hierarchical visual analysis.

In the remainder of this paper, we first give a brief introduction into
esophageal manometry, where we provide the necessary medical back-
ground and discuss the relevant data parameters as well as their relation
to certain diseases (see Section 2). Afterwards, in Section 3 we will
discuss work related to our approach, before deriving the diagnostic de-
cision graph from the CC3 in Section 4. Our novel visualization, which
is based on this decision graph, is proposed in Section 5. There we
also justify our design considerations with respect to the data and task
at hand. Afterwards we provide technical details about the exploited
algorithms in Section 6. To obtain indications about the diagnostic
effectiveness of the proposed visualization, we have performed two
expert evaluations, as described in Section 7. One evaluation is of a
more quantitative nature, where we have asked seven medical students
to perform a diagnosis with the original and our visualization. To get
also insights from external experts, we have further conducted a formal
interview with a medical doctor having more than 10 years of experi-
ence in HRM diagnosis. These conducted studies strongly indicate the
effectiveness of the proposed visualization, yet they have also brought
up a few limitations which we discuss in Section 8. Finally the paper
concludes in Section 9.

2 ESOPHAGEAL MANOMETRY DIAGNOSIS

During a HRM recording, a patient gets an electronic solid-state
catheter inserted into the esophageal tube, before he/she has to perform
several swallows. Whereas the CC3 states that 10 swallows shall be
recorded, in practice it is often more, in order to compensate for data
loss or other patient-related factors of influence. Figure 2 shows the
recording of such swallows as visualized by today’s HRM diagnosis
software systems. The x-axis represents time and the y-axis depicts the
depth along the esophageal tube, as illustrated in Figure 2a. The color
assigned to each pixel encodes the pressure intensity measured in mil-
limeter of mercury, measured in mmHg, at each individual time/space
coordinate. The individual quantities are color coded with respect to
the classical rainbow color scale.

As shown in Table 1, diagnosing HRM data involves the inspection
of derived and mostly aggregated data values, points of interest, and
structural patterns. The major values defining distinct motility disorders
are integrated resting pressure (IRP), intrabolus pressure (IBP), distal
contraction integral (DCI), and distal latency (DL) [13]. The diversity
of parameters enables physicians to differentiate between several motil-
ity disorders in a sensitive and specific manner. The importance of this
aspect is emphasized by the fact that different motility disorders require
different treatments. According to the severity of the symptoms there
are three groups of dysphagia disorders [13] and Figure 3: achalasia
and esophageal gastric junction (EGJ) outflow obstruction, major dis-
orders of peristalsis (clinically significant dysphagia disorders), and
minor disorders of peristalsis (clinical significance is unclear). A clear
differentiation between EGJ outflow obstruction and achalasia has
not been defined yet, but this discrimination is important because of
different strategies in treatment [24]. The major peristalsis disorders are
hypercontractile esophagus (or jackhammer esophagus), absent con-
tractility, and distal esophageal spasm (DES). The clinical significance
of the minor motility disorders, ineffective esophageal motility (IEM),
and fragmented peristalsis, still remains unclear and an according treat-
ment does not exist.

The visualizations shown in Figure 2 depict individual swallows
typical for different disorders, whereas HRM diagnoses requires the
incorporation of all swallows recorded during one session, i.e. a median
IRP value.

3 RELATED WORK

Within this section, we discuss the work related to our approach. First,
we will briefly refer to the current state of the art in manometry visual-
ization, before discussing other related visualization techniques.

3.1 Visualizing Manometry Data
The first established manometry technique was presented in 1968 [7]
and utilized up to 12 water-perfused channels with pressure transducers
attached to the end, visualized in an ECG-like fashion. Early devices
were of low-resolution and their results prone to information loss [10].
With the development of 36-channeled catheters, swallow activity could
be recorded in the entire esophageal tube at once [16].

The appearance of electronic solid-state catheters with circumfer-
ential conduction of pressure waves has finally led to high-resolution
manometry (HRM) [16]. As a result, the swallow-activity in the whole
esophagus is captured with less information loss. The high spatial and
temporal resolution also results in a more involved diagnostic process,
which already today heavily relies on visualization.

The gold standard for HRM diagnosis is defined by the CC3 [13],
which defines a workflow for an effective medical diagnosis. Besides
this gold standard also alternative approaches exist. A more linearized
version of the CC3 has been proposed by Lin et al. [18]. Today, several
software systems1,2 are available which help medical doctors to per-
form a diagnosis on HRM data. These software systems are extensively
used in the medical routine, however, they have to be critically per-
ceived from a visualization point of view due to several reasons. First,
they visualize individual swallows as main entities, while aggregates

1ViMeDat, Standard Instruments GmbH,
http://www.stdi.de/en/products-service/vimedat

2Solar GI HRM, Medical Measurement Systems GmbH,
http://www.mmsinternational.com/usa/420/
gastroenterology-hrm-products-solar-gi-hrm

http://www.stdi.de/en/products-service/vimedat
http://www.mmsinternational.com/usa/420/gastroenterology-hrm-products-solar-gi-hrm
http://www.mmsinternational.com/usa/420/gastroenterology-hrm-products-solar-gi-hrm


Parameter/condition Definition Normal values/interpretation of pathological values

1 IRP [mmHg]
(integrated relaxation pressure)

Mean value of the four seconds of maximal deglutitive
relaxation in the ten-seconds-window beginning with
the relaxation in upper esophageal sphincter.

dependent on specific manometry hardware
used (e.g. Sierra device median IRP> 15mmHg:
outflow obstruction/achalasia/impaired relaxation
of the lower esophageal sphincter)

2 DCI [mmHg*s*cm]
(distal contractile intergral)

Amplitude*duration*length of the distal esophageal
contraction exceeding 20mmHg from the transition
zone to the proximal margin of the lower
esophageal sphincter.

DCI< 100: failed contraction
100 <DCI< 450: weak contraction
450 <DCI< 8000: normal contraction
DCI> 8000: hypercontractile esophagus

3 DL [s]
(distal latency)

Time-period between relaxation of the lower esophageal
sphincter and the contractile deceleration point. DL< 4.5s: premature contraction

4 CDP
(contractile deceleration point)

Inflection point on the 30mmHg isobaric line at which
propulsion velocity decreases. The CDT-position must
be within 3cm proximal the lower esophageal sphincter.

5 PEP
(panesophageal pressurization)

Panesophageal pressure > 30mmHg beginning in the
upper esophageal sphincter to the lower esophageal sphincter.

6 Fragmentation Large break (> 5cm) in the 20mmHg isobaric line with
DCI> 450mmHg*s*cm.

Table 1: Derived data values (rows 1-3), points of interest (row 4), and structural patterns (rows 5 and 6), that need to be considered during a
HRM diagnosis. The left column shows the abbreviations used throughout the paper, while the middle column provides a brief explanation. For
the derived data values. The right column shows the value ranges critical for the diagnosis.

are needed during the diagnosis. Therefore, aggregated values need to
be mentally derived. Second, the computed data characteristics are not
visualized together with the individual swallows, which hampers vali-
dation. Third, all reviewed systems employ the often criticized rainbow
color scale [4] to depict pressure in the individual swallows. Despite
these flaws, little work has been done by the scientific community in or-
der to improve HRM diagnosis. Parks has introduced a visualization for
the analysis for single swallows [22]. The described approach basically
follows the visualization of temporal ECG data, whereby differently
colored rows are used to depict the signals of the individual sensors.
More recently, Parks and Son have extended the visualization by also
taking into account the circumferential dimension [23].

The modified barium swallow (MBS), also referred to as vide-
ofluoroscopy, and the functional endoscopic evaluation of swallow-
ing (FEES) are two other imaging methods to examine the swallow
function in the oropharyngeal area. Brady and Donzelli [5] characterize
and contrast these two standard-of-care methods. Aung et al. [1] present
a spatio-temporal visualization for the bolus transit during swallowing,
generated from profile pictures captured with MBS. Their motivation
is the measurement of the time, a swallowed bolus needs to travel past
anatomical landmarks. However, these two procedures are solely used
in the diagnosis of oropharyngeal dysphagia, our work concentrates
on esophageal dysphagia. Due to low sensitivity of the radiologic and
endoscopic diagnostics, HRM represents the current gold standard to
diagnose achalasia [13].

3.2 Related Visualization Concepts
The HRM visualizations presented within this paper exploit some well
established visualization concepts to eliminate the identified down-
sides of existing approaches. First, we follow the eyes-beat-memory
paradigm [21, pg.131] to lower the burden of the medical doctors dur-
ing the diagnosis process. To do so, we exploit small multiples [3],
which visually enforce ”comparisons of changes, of the differences
among objects, of the scope of alternatives” [28]. Small multiples have
previously been applied to communicate graph data structures [6, 9],
as well as to various other application-related visualization problems,
e.g., [11, 20]. Furthermore, it could be shown that they require users
to need fewer steps when integrated as a data exploration method [29].
Thus, small multiples often produce a more effective visualization than
integrating all data into a single plot [12]. Using small multiples further
gives the visualization designer the opportunity to choose an appropri-
ate layout. In general it is beneficial to align them with respect to a
given axis, as it allows for a direct comparison of the actual data values.
However, also alternative concepts for the layout of small multiples
have been presented. Kehrer et al. have investigated the hierarchical
nature of small multiples by focusing on different attributes [15]. Thus,
they achieve layouts which support comparison based on the attributes
of interest. Our approach is similar in that we use the priority of at-
tributes derived from a decision graph to define the major axis of our
visualization space. Liu et al. have presented Correlated Multiples as
an alternative approach, where the plots are placed such that distances

Fig. 3: The official decision graph introduced as part of the Chicago
Classification v3.0 [13]. The red arrows depict the identified short-
comings: duplicated reference to IRP, ineffectiveness conflict, and
redundant decision node (from top to bottom).

in the visualization space reflect their dissimilarities [19]. While this
technique is also used to transform a graph, i.e., a proximity graph
into a 2D layout, our approach has a more hierarchical nature, as it is
based on decision graphs. There are similarities to the space-filling
visualization of treemaps [25], but the major difference is that we aim
at a more sparse representation as we implicitly use white space to en-
code information. Therefore, our approach is more inline with decision
tree visualization techniques [2, 17], which have been shown to be an
important instrument when interactively communicating data analysis
processes [27]. Furthermore, our visualization has been designed with
the goal of interactivity in mind, as it allows for the inspection of in-
dividual data sets, while at the same time presenting the aggregated
measures in an overview. This makes it comply with the overview first,
details on demand paradigm [26].

4 DIAGNOSTIC DECISION GRAPH

To convey a medical algorithm, decision graphs or trees are often
utilized and the same applies to esophageal manometry. However, to be
an efficient tool, such representations should be succinct and explicit.
Within this section we discuss the currently used hierarchical analysis
model of the CC3 and show how it can be optimized to follow a more
workflow-centered structure.

The current analysis graph for HRM as provided by the CC3 is a
hierarchical diagram shown in Figure 3. At each level from top to bot-
tom, the severity of the potential disorder reduces. Outflow obstructing
disorders are considered more critical than peristalsis related disease
patterns and have to be identified first. To investigate the conciseness



Fig. 4: Our modified decision graph eliminates the problems identified in the original Chicago Classification v3.0 decision graph [13]. Thus, we
obtain two main branches based on the IRP (framed red and green for an elevated and normal IRP respectively) and can guide the physician
sequentially, as well as sequentially and parallel, to reflect disease severity within the two main branches. Decision nodes which only differ in the
IRP criteria are highlighted in blue and orange respectively. Resulting diagnoses are accentuated in gray with a dashed outline.

of the CC3 decision graph, we have conducted a technical analysis
with visualization researchers and medical doctors, who perform HRM
diagnosis on a regular basis.
Workflow optimization. During our analysis we have identified three
branching nodes to not be intuitive in terms of following the workflow
verbally described by Kahrilas et al. [13]. First, the decision whether
the median IRP exceeds the upper limit of normal (ULN) appears in
the first and second decision and can be reduced to a single branch-
off. Second, the check for Minor disorders or peristalsis performed
in decision node 4 conflicts with the verbal description of Fragmented
peristalsis. Whereas decision node 4 requires at least 50% ineffective
swallows to proceed to the right, the box on the right in contrast expects
that at least 50% swallows are not ineffective. This conflict clearly
hampers an intuitive diagnosis process. Third, the last decision node
does not have any other alternative than the classification of a patient
as normal, or in other words healthy, and thus can be dismissed.
Modified decision graph. Based on the identified shortcomings, we
have designed the modified decision graph with respect to the im-
portance of the individual disorders and how parameters affect each
branch-off as shown in Figure 4. As defined by the CC3, the three
groups of dysphagia disorders are prioritized based on their severity.
The median IRP decides between the two major branches in our deci-
sion graph. One the left, achalasia and EGJ outflow obstruction, and
on the right, major and minor disorders of peristalsis are separated into
two levels of severity. To support readability of the decision graph, we
have bundled common paths which is indicated by the elliptical nodes
labeled with N in the right major branch.

We would like to point out that we do not prioritize within each
level in the right major branch, as no explicit ordering is given beside
the general severity. An alternative representation is given by Lin et
al. [18]. They present a flowchart with strict prioritization for automated
diagnosis. As automated diagnosis is not our goal, we would rather like
to enable the physicians to bring in their experience when assessing
the data. Therefore, we have dismissed the proposed prioritization
proposed by Lin et al.

5 DIAGNOSTIC VISUALIZATION DESIGN

As opposed to the current workflow in manometry diagnosis, which is
sequential and tends to a separate inspection of all performed swallows
individually, our proposed visualization concentrates all information
necessary for an intuitive decision-making into one single representa-
tion. Following the current CC3, we guide the attention of the user to
the relevant information and supply all important parameters for an
efficient diagnosis. To not overload the user with secondary informa-
tion, abstractions are introduced at different levels of our visualization.
Thus, medical doctors can perform a hierarchical, visual analysis which
enables them to perform their diagnosis based on aggregates. At the
same time it is possible to inspect the individual data sets in detail.

Such a coarse to fine approach alleviates the process of diagnosing and
simultaneously gives access to every piece of data available. There-
fore, our proposed visualization presents an overview of the entire
data set of a patient and at the same time allows the user to perform a
visualization-guided decision.

As the CC3 requires analyzing data aggregates, our visualization is
based on small multiples, whereby each small multiple represents a
single swallow. Thus, we have to integrate multiple swallows into one
visualization while avoiding cognitive overload. To do so, we introduce
a visual abstraction of each individual swallow, which conserves its
main features and still results in a more lightweight depiction. In this
section, we will initially discuss our design decisions with respect to
this abstraction. What follows is the transformation of the decision
graph, presented in Section 4, into a visual representation which acts
as a comprehensible tool for the evaluation of a patient, based on
the aggregated measures. Finally, for the comparison and display of
multiple studies at the same time, a visual signature is derived based on
the previously introduced visualization.

5.1 Single Swallow Abstraction
The amount of data accumulating during a HRM procedure is too
large to be inspected in detail and at the same time deriving a general
idea of the patient’s overall condition. To deal with this challenge,
we introduce an abstraction of each individual swallow visualization,
which conserves typical patterns’ characteristics and reduces the user’s
cognitive overload. While this simplifies the visualization, it still acts
as a reminder wrt. the underlying data, as it communicates the general
shape of the pressure distribution. This algorithm enables us to create
much smaller, but still recognizable versions of each swallow ready
to use as small multiples. We will justify the design decisions for
the proposed abstraction algorithm within this section. The technical
realization of this procedure is detailed in Section 6.

For each of the recorded swallows the derived parameters consid-
ered in the CC3 do matter. These are DCI, DL with CDP, PEP, and
the fragmentation. The area between the upper and lower esophagus
sphincter, starting with the beginning of the swallow, is used to obtain
these values. This area also serves as starting point for our visual ab-
straction. It is also crucial that these parameters remain perceivable, as
they may influence the diagnosis. For a detailed description on how we
have preserved these values, despite their visual abstraction, we would
like to refer to Section 6.

In general, the appearance of a single swallow is determined by
its overall shape, defined through various extracted isobaric contours,
as detailed in Table 1. This is not only reflected in the CC3, but has
also to be visually prominent through the used color scale. In contrast,
the exact pressure distribution inside this contour is only of secondary
importance. Keeping the visual impression close to familiar structures,
users are quickly able to identify common patterns for different types



(a) Healthy.

Isocontour at 20 mmHg
Isocontour at 30 mmHg

Weak contraction

Hypercontractility

Normal contraction

Panesophageal pressurization

Failed contraction

Pressure > 150 mmHg

(b) Top: color specification for all iso
and extreme pressure values. Bottom:
color coding of all DCI intervals.

(c) fragmented peristalsis. (d) jackhammer esophagus.

(e) Achalasia type I. (f) Achalasia type II.

Fig. 5: Illustrated versions of the in Figure 2 presented HRM images.
The coordinate system is oriented the same way as given in Figure 2a.
A key for the colors of all isovalues and DCI intervals is given in (b).

of disorders, even in a more abstracted representation. To create a high
contrast with the light background colors used for the DCI, as explained
in the next paragraph, we exploit black and red as line colors respec-
tively. Additionally, the area enclosing all values above 150 mmHg
is rendered as a shaded version of the base color without an explicit
edge surrounding it, as this area is frequently observable in cases of
hypercontractility (Figure 5d). The line and color coding used for all
isovalues is illustrated in Figure 5a. Examples of four typical swallows
for different diseases and one healthy swallow can be seen in Figure 5.

As DCI and DL are most relevant, we communicate this through
prominent visual variables. Thus, the DCI defines the color we assign
to the entire area inside all isobaric contours. Here, we intentionally
avoid using the rainbow color map widely applied in manometry images
due to the known shortcomings [4]. In this specific case, especially
the introduction of artificial contrasts and features are problematic,
as these usually do not align with the relevant isobaric contours, as
shown in Figure 2b. Therefore, the rainbow color scheme of the map
is not adjusted to match the relevant isovalues used in the manometry
diagnosis, i.e., no relevant threshold lies directly between two different
hues in the map to distinguish these particular borders.

In contrast, we restrict the color for each individual swallow to a sin-
gle hue. Thus, the individual DCI values are immediately perceivable,
see Figure 5 for examples and a key for what colors mean. Our visual-
ization uses the following colors, all desaturated, to communicate this
parameter. To mimic the mostly blue appearance in manometry images
in the case of none or low contractility, we use blue as well. An orange
tint is utilized in the case of weak contractions as a slight warning color
that the overall pressure is too low but at least some motility is present.
For normal contractility, we use green as a typical indication that the
DCI is in the desired interval. In cases of hypercontractility, red signals
a value over the upper boundary of a normal pressurization which is
also again similar to the regular manometry image. In cases of PEP,
when no DCI should be calculated, we use gray as a neutral alternative
to all other colors.

The DL, which serves as the second most important data derived
value, is included using two vertical lines. As DL encodes the time
from the start of the swallow towards the characteristic CDP point,

it is naturally associated with the temporal axis of the plot. As the
y-coordinate of this point is not relevant, we have decided to exploit
vertical lines. This result in a better visibility and comparison when
aligning multiple swallows vertically. Therefore, again for contrast
reasons, we use one dashed, black line at the reference value from the
beginning of the swallow and a continuous, dark gray line at the actual
DL value. The clear depiction of the DL gives the opportunity to judge
if the DL is borderline or clearly below or above the given threshold,
as exemplified in Figure 5.

The third most important data derived attribute associated with each
individual swallow is the fragmentation (see reference Table 1). To
communicate this value prominently without interfering with DCI and
DL, we introduce vertical gray bars. We have chosen a light gray, as
it is well visible, but not too prominent, and thus nicely reflects the
relevance of fragmentation with respect to the CC3. In the original
manometry images, not involving the display of the vertical gap, the
horizontal offset between two pressure zones is also visually perceived,
however, fragmentation is only evaluated along the spatial dimension.

We currently do not include the IRP of each individual swallow in
our abstracted representation because it does influence the appearance
of the visualization used to communicate the aggregated data values, as
explained in the following subsection.

5.2 Small Multiple Embedding

Having an abstracted plot for each individual swallow enables us to
integrate multiple swallows into a single visualization, while at the same
time still leaving some visual variables to communicate the aggregated
values. Thus, the diagnosing physician can focus instead of on the data
point inspection on a more complex task to solve, i.e., the diagnosis
based on the aggregates as defined in the CC3. We achieve this through
an enriched visualization of our diagnostic decision graph proposed
in Section 4, whereby we follow the eyes-beat-memory principle. The
main idea is to embed our abstracted swallow representations into
the visualization space, such, that the required aggregate values are
visually prominent. Thus, in contrast to conventional small multiples,
our visualization exploits the layout and also the white space as main
visual communication pillars. We will justify our design decisions
with respect to this aggregate visualization within this section, whereby
we first detail the layout and its visual parameters before we discuss
real-world use cases. The final result is shown in Figure 7.

(a) Patient overview with an elevated median IRP, noticeable through the overall
red background color. Overlapping decision areas create a stronger intensity in
these regions to remain distinguishable

(b) Comparison of the green and blue color selection for users with red-green
blindness. On the left, no overlapping decision areas, while on the right the
incremental color intensity is noticable and communicates that two separate
decision areas are positively evaluated.

Fig. 6: Different overlapping decision areas with recognizable nuances
in color intensity to visually separate all involved regions.



(a) Example case of an achalasia type II patient. The PEP decision area
indicates that at least 20% of all performed swallows fulfill this criteria together
with the red background, signalizing an elevated median IRP.

(b) Example case of a hypercontractile esophagus patient. The median IRP is
normal which is communicated through the overall green decision areas. Three
out of ten swallows fulfill the necessary criteria for a jackhammer esophagus
and therefore, the intensity of the corresponding decision is higher compared
to all others.

Fig. 7: Decision graph visualizations of the Chicago Classification v3.0. [13] for two different esophageal motility disorders – achalasia type
II in (a) and jackhammer esophagus in (b). The positively evaluated decision areas in the background are clearly recognizable. The hue of
the decision areas is accordingly set, as highlighted in Figure 4. Small, abstracted versions of each individual swallow provide more detailed
information about the patient’s condition and severity of the case. Labels are provided to communicate all relevant parameter ranges.

5.2.1 Layout Overview

Again, our spatial layout is mainly based around the two parameters
DCI and DL which appear most frequently within the decision nodes of
our decision graph. To effectively communicate these parameters, we
have chosen an embedding which uses DCI and DL as the two axis of
the visualization space. Within this space, we position each abstracted
swallow illustration to represent its particular parameter set (DCI, DL).
Furthermore, we add a spatial region to represent the PEP swallows,
for which DCI and DL is undefined. Thus, we obtain a subdivision
of the visualization space, which we detail below. The final spatial
arrangement with all grid lines and annotations is shown in Figure 6.
Spatial arrangement. Along the horizontal axis, we arrange the vary-
ing DCI intervals as given in Table 1, from left to right with ascending
values. We have chosen the horizontal axis, as we have more relevant
intervals for DCI and thus better fit with common screen aspect ratios.
As swallows with PEP should have no assigned DCI value to them,
they don’t fit directly into one of both axis, either DCI or DL. However,
because PEP and DCI are both related to pressure data, we assign the
region beyond the largest interval of DCI to the PEP cases. Swallows
with no or weak contractility are combined at the most left end of the
DCI axis.

Vertically, our visualization space is divided in half, based on the
threshold criteria of the DL. The axis proceeds from bottom to top with
ascending DL. In cases with no contractility and PEP, the determination
of the DL is also not possible as the relevant CDP can not be extracted.
Therefore, these cases do not belong to any distinct position along the
vertical direction in our arrangement and the horizontal separation line
is not shown in these areas, forming one larger, combined cell.

To have a clear separation in our visualization, we introduce grid
lines with according annotations to delimit the relevant parameter
ranges in certain areas. We clarify that cases of no contractility and
PEP do not include information about DL by drawing no horizontal
grid lines in these two areas. To further separate them from the grid
cells in which the DCI is measurable, vertical lines are drawn further
up compared to the center area.
Decision graph encoding. Our proposed decision graph in Section 4
can now be integrated into this established grid layout. Dependent on
the criteria a decision node holds, a connected combination of adjacent
grid cells is defined, to which we refer as decision areas. These decision
areas are represented in the background of our visualization under each
corresponding set of grid cells. Different types of disorders can also
share such an decision area, as highlighted in Figure 4 using orange

and blue inside the respective decision nodes. We have decided to
not extend these decision areas over the whole vertical space in our
visualization to maintain all necessary information in the field of view
of the user. All decision areas displayed under the separating grid
lines and annotations are shown in Figure 6. To depict, whether a
decision criteria is fulfilled or to which disorder it corresponds, we
utilize explicit color coding, as explained in the following paragraph.
Color coding. To communicate the important median IRP in our
visualization, we globally color each of the decision areas either red or
green as typical severity indicators for an elevated or normal median
IRP respectively. We use the median IRP as global color variable since
it affects only the first decision between the left and right main branch
in our modified decision graph and implicitly illustrates the severity of
possible disorders. Figure 4 reflects this color usage as well.

We are aware of the relatively high possibility for red-green color
blindness within our users and that the determination of the median IRP
would in such a case be hampered. To address this issue, we considered
exchanging green with blue (see Figure 6b), but opted for the more
self-explanatory and common color pallet of red and green, as it nicely
encodes the semantics of normal and too high. This option can of
course be easily changed and set specifically for each user individually.

The intensities of these global IRP hues are determined as follows.
If a decision node in our graph evaluates positively, the corresponding
decision area gets the global hue combined with a saturation of 75%,
whereas in case of a negative evaluation, the saturation is reduced to
25%. This lower limit of 25% of saturation is necessary in the situation
when no decision node evaluates to a positive result, the median IRP
then communicates either EGJ outflow obstruction or a healthy patient,
which has to be signaled to the user. Otherwise all decision areas
would be white and thus, the visualization inconclusive. We use 75%
as upper limit to blend overlapping areas together with the result of
darker shades in the shared region. The result of such blending can
be seen in Figure 6. This is especially necessary when one region is
a subset of another as illustrated in Figure 6a and 6b. The user needs
to distinguish if either the superordinate area is exclusively filled, or
additionally to it the embedded subset.

As shown in our decision graph in Figure 4, multiple disorders
can also have the same criteria, solely distinguished by the median
IRP (achalasia type I and absent contractility, or EGJ Outflow Ob-
struction and DES). While this results in the same decision area of
our aggregated visualization, the overall hue of red or green helps to
distinguish the respective diseases.



As positively evaluated decision nodes indicate potential disorders,
the stronger saturation in these regions also acts as a focus of attention.
When a user has adapted to our layout and can determine the decision
node from the corresponding decision area, the evaluation of a patient
can be accelerated as only these interesting nodes need to be taken into
account to obtain a diagnosis. The same applies to the case in which
no decision node is saturated, then the particular background color of
our visualization guides the user to the corresponding diagnosis, either
EGJ outflow obstruction or a healthy patient.

5.2.2 Swallow Data Arrangement
We now have detailed how the global layout of our aggregated visual-
ization is computed and how our decision graph can be encoded using
spatial and color coding features. One could solely rely on this stage
of abstraction and form a diagnosis based on the provided information.
However, we also aim at giving the medical doctor direct access to
the underlying data, such that he/she sees the whole picture and thus
arrives at a more certain diagnosis.

Thus, to enrich this overview of a single patient for the medical
doctor, we incorporate the individual swallow illustrations introduced
in Subsection 5.1 into this layout. Each swallow of a patient is sorted
into the grid cell of which it belongs to, defined by decision areas for
the individual values of DCI and DL. If multiple swallows aggregate
in one cell, they are stacked on top of each other, sorted by their DL.
In the case of a swallow exhibiting no contractility or in cases of PEP,
the corresponding illustration is placed around the vertical center in the
respective cells without any particular ordering. To not waste too much
screen real estate, we have the option of collapsing stacked swallows
into each other to compress the vertical extent of our visualization, as
shown in Figure 8.

As the eyes-beat-memory principle describes, our visualization al-
lows for having all information available at once and thus reduces the
cognitive load of the user. In particular, no previously inspected swal-
low images have to be remembered for a final diagnosis when all of
them are available in a compact, single view.

Through the display of all swallows in our overview, the percent-
age threshold of decision nodes can immediately be identified when
following the CC3 evaluation scheme of ten performed swallows per
patient. Either 20%, 50%, or 100% thresholds occur in the decision
graph. If two, five, or all swallow illustrations reside in one of the grid
cells of our visualization is easy to identify. As usually not exactly ten
swallows are performed due to complications or an accustomization
phase of the patient, usually a mental translation would need to be per-
formed. However, in our visualization the additional color accentuation
of each decision area supports, especially in larger or odd numbers of
swallows, the diagnosing process by indicating if a decision node has
been positively evaluated.

5.3 Visual Signature Design
Nowadays, the HRM diagnosis is possible for single patients, but it is
not possible to compare several patients at once. Within this section, we
will show how our proposed aggregate visualization can be modified to
support such a comparison.

We already communicate the outcome at each decision node in the
CC3 graph as graphical backdrop in our proposed visualization, using

Fig. 8: Side by side illustration of the same data set from a healthy per-
son. On the left side with regular spacing between individual swallows
and on the right side with 40% overlap to save screen real estate.

(a) Normal. (b) Jackhammer. (c) Ach. Type I.

(d) Absent contractil-
ity.

(e) IEM and DES. (f) Ach. type II.

(g) Fragmented peri-
stalsis.

(h) EGJ outflow ob-
struction.

(i) Ach. type III.

Fig. 9: Small multiple arrangement of our visual signatures. All possi-
ble disorders are demonstrated, together with a combination in (e).

hue and saturation, depending on each decision. Separating the visual
representation of the CC3 decision graph from the additional infor-
mation of the individual swallows, compact visual signatures can be
generated to describe a patient in a very compact, icon-like manner, as
shown in Figure 9. To embed all necessary information for a diagnosis
into such a small picture, we use the same layout and color scheme of
the decision areas as in our aggregate visualization. We do so in the
hope that a frequent usage of our visualization helps medical doctors to
learn the patterns and thus enables them to perform a diagnosis solely
based on the simplified visual signatures. Thus, it would be possible to
match distinct visual pattern to a set of potential disorders. This allows
users to learn the general diagnosis algorithm using our visualization
and simultaneously being able to understand these even more abstract
illustrations.

These visual signatures are self-contained and can be used to quickly
communicate a patient’s condition or to generate an aggregated view
over many individuals, again in a small multiple arrangement, as demon-
strated in Figure 9. If further information is requested, more detailed
views on the patient’s data can always be supplied in form of our aggre-
gated visualization discussed in Section 5, or even the actual underlying
data with full manometry images. Thus, we enable for the first time a
hierarchical visual analysis of HRM data.

This level-of-detail approach is very flexible, depending on the situ-
ation and availability of electronic devices in the workplace. Mobile
versions with step-wise zoom functions between abstractions are imag-
inable to support doctors. These visual signatures can also be arranged
in space and sorted based on other attributes of patients, e.g. age or
gender, which could reveal some sort of correlations when clusters of
the same type of signature emerge.

6 IMPLEMENTATION

In this section we will provide details for the proposed abstraction
algorithm applied to individual swallows. During this abstraction, the
processing of each individual swallow consists of three steps, described
in the following subsections. The whole pipeline, including the final
swallow illustration, is shown in Figure 10.

6.1 Isobaric contour extraction
As isobaric contours play an important role in the classification process,
our goal was to preserve the most important contours in each swallow.
Different levels of isobaric contours are relevant for the determination of
all diagnosis parameters as discussed in Section 2. We have realized the
extraction of these by executing marching squares with the respective
isovalues, as shown in Figure 10b.

6.2 Area-based contour filtering
Artifacts in manometry images are, amongst others, mainly produced
by cardiac activity or respiration. As these usually small patches of
pressure fields are not part of the actual peristalsis, we exclude all
isobaric contours with a low total pressure from further processing.
The threshold value tarea = 50 in the swallow’s spatio-temporal domain



has proven to be suitable to sort out these small patches. What has to
be considered is that this threshold should not exceed the area of the
upper, major pressure zone, otherwise this distinctive feature would
also vanish. However, when external forces exert too much pressure,
artifacts are preserved. The result after this processing step is illustrated
in Figure 10c.

6.3 Feature-aware contour simplification
In order to maintain the general shape and key landmarks of a swallow,
we exclude some feature points along each contour from the simplifica-
tion process, which otherwise would change the later visual appearance
of parameters. Therefore, all extrema along the spatial and temporal
axis are fixed together with the CDP which defines the DL. This fixation
along the vertical axis ensures that gaps between the two major pressure
zones, defining fragmented peristalsis, remain unchanged. Usually, the
CDP lies along a visually recognizable bend in the peristaltic wave
which we also conserve. Overall, the extrema are most of the time
located at the upper-left and lower-right of a swallow in addition to
the CDP. In conjunction, these key landmarks naturally preserve the
general form of the peristalsis, excluding all PEP cases with a pillar-like
appearance and often no distinct temporal minimum and maximum in
all contour levels. An example of extracted fixation points can be seen
in Figures 10c, 10d, and 10e.
Line simplification. To get rid of high-frequency features along each
contour which are not part of the general shape, the Douglas-Peucker
line simplification algorithm [8] is applied, as shown in Figure 10d.
Uniform sampling. Having the reduced set of points after the line
simplification available, we sample this polyline in a uniform fashion
which serves as the initial state for the following smoothing step. The
uniform distribution of points is beneficial because the subsequent
smoothing algorithm works on direct neighbors along the contour and
even distances between points prevent point-wise biasing when filtering
discrete neighbors.
Active contour energy minimization. The simplified version of each

(a) Input data set of a typical swallow
for the jackhammer esophagus disease
pattern.

(b) Extracted contour lines,
20 mmHg (black, continuous),
30 mmHg (red, continuous),
150 mmHg (black, dashed).

(c) Filtered contours and initial fixa-
tion points (red and black dots) to pre-
serve the general shape of the swallow.

(d) Contours after Douglas-Peucker
line simplification.

(e) Smoothed contours after active con-
tour energy minimization.

(f) Final illustration, including DL ref-
erence lines and DCI dependent col-
orization.

Fig. 10: Abstraction pipeline starting witch a HRM data set (a) which
simplifies its relevant contours while preserving selected feature points.
The final abstracted swallow is shown in (f).

contour u consists of an arbitrarily formed shape at this stage without
any constraints applied to it. We utilize an active contour model, al-
ternatively called snake, using the physical membrane and thin plate
energy terms, Emembrane(u) = α

∂ 2u
∂ l2 and Eplate(u) =−β

∂ 4u
∂ l4 , to ensure

that our contour continuously anneals to the actual data and simulta-
neously adopts an overall smooth curvature. To optimize the contour,
we apply gradient-descend energy minimization [14]. We include no
balloon forces to this optimization as the contour could expand over
the previously fixed extrema which would modify the vertical distance
between two independent pressure zones, important to determine the
severity of fragmentation.

The initial contour u0 is used as optimization target. We iterate

ut+1 = ut +κl ·∆t ·
(
(u0 −ut)+α

∂ 2u
∂ l2 −β

∂ 4u
∂ l4

)
(1)

until the maximum root-mean-square error between the current and
previous step, ut+1 and ut , is below the threshold ε = 10−8 to ensure no
further changes are happening. For landmarks along the contour which
should be fixed in place, we set κl = 0, otherwise κl = 1, to prevent dis-
placement of these features. All points with fixed key landmarks in their
neighborhood still take them into account during each optimization step.
The time step ∆t = 0.1 denotes the amount of progress between two
iterations. The constants α and β are used to weight the influence of
the membrane and thin plate energy respectively. Figure 10e illustrates
smoothed contours with kept fixation points.
Region clipping. In cases when contours of different isoline levels
are too close to each other, the results of the adaptive smoothing of
these polylines can overlap. To fix this issue, we clip the contour of the
upper isoline against the one directly below. This ensures that regions
of lower pressure always surround higher ones.

7 EXPERT EVALUATION

In order to evaluate our visualization design, a group of advanced med-
ical students and an independent and experienced expert for manom-
etry diagnosis were consulted. We performed a comparative study to
evaluate the capabilities of our visualization and collected qualitative
feedback.

7.1 Diagnostic Effectiveness Analysis
To investigate the diagnostic effectiveness of the presented aggregate
visualization, we have conducted a quantitative study. We compared
our visualization design with the current diagnosis based on the indi-
vidual swallows, as well as a table showing the derived values for all
swallows. The study was designed as within-subject and the task order
was balanced using Latin square. Half of the participants started the
evaluation using the current diagnosis system, the other half had to use
our proposed visualization. We had 7 medical students (of which were
4 male and 3 female) conducting our study, aged 22-32 with an average
of 26.2, and from semester 8-13 with an average of 9.8. Due to the
fact that they are close to the end of their studies and have acquired
all necessary skills, they are going to be introduced to such diagnosis
systems more frequently and are therefore well suited as our target
group. As the number of participants is below a quantity to be able
to perform statistically significant tests, we omit these and informally
report the made findings.

All participants got an introduction into both visualizations – despite
some of them already knew about the traditional visualization but have
not actively learned the diagnostic process itself, it was just mentioned
in their studies that manometry diagnosis is performed to record the
activity of the esophagus. The introduction for the traditional method
was given by a manometry expert, whereupon we introduced our new
visualization scheme. Cases of all types of swallows and all final
diagnostic decisions were exemplified using both, the old and new
decision graphs. During the introduction, questions could be asked at
any time by the participants.

We have chosen cases were at least one swallow had a parameter
set close to the defined thresholds, given by the CC3, to test if the
participants actually pay close attention to each single value. Patients
with a number of swallow events different from the officially specified
ten were the majority of the cases to examine. As these are not CC3



conform numbers which, nonetheless often occur in real world diagnos-
tic situations, they were used to test the capability of the decision areas
as supportive, visual features were decisions based on percentages are
needed.

The participants have been confronted with 10 cases to be diagnosed
with these techniques, whereby they had to diagnose 5 cases with each
technique (achalasia type I and II, jackhammer esophagus, absent
contractility, and healthy). Based on the obtained diagnosis results, we
had to discard the results of one participant, as he has misdiagnosed
the majority of all cases for both visualizations. Among the remaining
participants, we have analyzed the number of correct diagnosis as well
as the timings. Among all participants only one has correctly diagnosed
all cases using the traditional visualization. In contrast when using
our proposed visualization, three out of six have diagnosed all cases
correctly. The one having all correct in the traditional case had also
everything correct in our case. Thus, two people, who were correct
in our case, made a wrong diagnosis using the traditional approach.
When comparing the timings, using our visualization unfortunately
takes longer, whereby each case required 46.2 s on average with the
traditional and 73.3 s on average with our visualization. Especially,
when considering the fact that 3 out of the 6 already knew the traditional
method, and that with our visualization we had fewer wrong diagnoses,
we believe that this is neglectable. Also considering that 4 out of 6
participants have commented that they believe that the cognitive load
when using our visualization for some time would further reduce, we
see potential for the presented visualization. Therefore, in general, we
believe that the obtained results indicate that our presented visualization
has some diagnostic power and that it is helpful for HRM diagnosis.

7.2 Qualitative Evaluation

We consulted an independent expert for manometry diagnosis to gather
further information about how our visualization design is perceived.
Our goal was to identify which aspects are useful and what has to be
adjusted to potentially find its way into everyday clinical practice. In the
matter of experience, he conducted at least 330 esophageal manometry
procedures in the last decade of which not all have been with the HRM
catheter.
Study setup. First, we have generally introduced the expert to our
visualization and demonstrated via example cases how to apply it to
actual patient data for diagnosing. In a dialog scenario, while con-
ducting additional test cases, we discussed the major topics about: the
general layout, the representation of the CC3, the level of abstraction,
the look-and-feel, and possible improvements.
Study feedback. Regarding the general layout, we received mixed
feedback. Positively commented on was the option to collapse all
stacked swallow illustrations, ”no scanning of a large area is necessary
to get an overview, everything can be overlooked at a glance”, but
contrary to this statement we were told, that ”the plot is far away from
the actual anatomy”.

When we discussed about the transformation from the CC3 to our
visualization, it was stated that ”the CC3 is sufficiently represented”,
and ”there is no need to go back to the underlying data”. After having
seen how to interpret the different decision areas, he mentioned that
”it is very obvious how to read the visualization after a couple of
introductory cases if someone is familiar with the CC3 itself”.

In terms of having an abstract view onto the data, it was said that ”an
initial hint to a certain diagnosis is helpful, but should not be blindly
trusted”. Especially in swallow cases which are ambiguous, ”he likes
it to have to opportunity to revise single swallows on demand and that
borderline cases are detectable”.

General comments on our visualization were all centered around the
point that medical algorithms do not take the ailments of a patient into
account. It was said that ”additional information beyond the criteria
of the CC3, such as an accustoming to the manometry probe or the
symptomatology, would be nice to have as an optional overlay”.

Towards the end of our evaluation, the expert made statements like
”the longer I look at it, the better it gets” and ”it seems better than the
current raw images, it’s very compact”. He also pointed out that ”he
would like to use our novel visualization in his next diagnosis sessions,
only when actively using it for an actual diagnosis, the advantages and
disadvantages will be truly exposed.”

8 LIMITATIONS AND DISCUSSION

Our conducted evaluations have indicated that our visualizations are
favorable as compared to the state-of-the-art, but we have identified
limitations which we would like to discuss in this section.

As mentioned before in Subsection 5.2, users with red-green color
blindness may experience problems when determining the IRP value
in our graph as we employ red and green as common colors to code
severity. Currently, we prioritize the merits of expressiveness over
the merits of perception. However, alternatively for users which such
a condition, green can be switched to blue to counteract this effect.
Obviously, this would require awareness about this deficiency, which is
not always there.

The screen real estate is in cases when all swallows fall in the same
category not optimally used, as large areas of empty space appear.
During our qualitative evaluation, experts did not see any problems
with this fact. The collapsed version of a column of swallows was
perceived as comfortable and it is at the same time a strong indication
for one type of disorder. We believe that this unoptimized screen real
estate usage is the price we pay for the expressiveness of the proposed
visualizations, as clusters of the small multiples directly communicate
certain diseases.

Based on the discussion we had with the expert, one issue got ex-
posed rather quickly. Following a given algorithm too closely, a pa-
tients’s symptomatology is left out of the diagnostic process. Also
following the CC3, measurements are only valid if the execution of the
study is perfectly controlled (no double swallow, fully lying patient,
no external interference), which is not always possible. We currently
do not include individual, patient-related information, which might be
relevant. Some people just don’t get used to the manometry probe and
have trouble to swallow only once per measurement. In cases of painful
swallow activity, patients sometimes grab themselves at the chest which
creates additional pressure not originating from the swallow, which
results in artifacts. Such cases could be marked in our visualization to
accentuate such data sets. Currently, we do not support such annota-
tions, but do not see why it cannot be done in the future. In general,
per swallow annotations would enrich the overall picture as diagnosis
should always be a patient-centered process.

Similar to a patient’s immediate feedback, the time sequence of all
swallows can be of importance. Sometimes, patients have to accustom
to the manometry probe and early measurements might show features
which typically would not appear in everyday life. Drawing conclusions
out of these cases can lead to a wrong diagnosis. Thus, an indication of
the order of swallows would be helpful.

9 CONCLUSION AND FUTURE WORK

In this paper we have introduced a novel visualization approach for
HRM data. The presented visualization is based on the CC3 decision
process, which is the gold standard for HRM diagnosis. After clari-
fying the CC3 decision graph, we were able to generate an aggregate
visualization, which directly represents this graph. Thus, in contrast to
current diagnostic HRM visualizations, we are for the first time able
to communicate the aggregate values relevant in the CC3. Through
the introduction of a novel data abstraction technique, we were further
capable to integrate the actual data instances into this aggregated visu-
alization. This gives the medical doctor access to individual swallows
without obscuring the visualization. Finally, we could show how this
aggregated visualization could be transformed into a visual signature
which communicates the HRM data for individual patients in a compact
manner. Thus, for the first time, it becomes possible to compare the
HRM data of multiple patients. Throughout the paper we have justified
our design decision, which went into the proposed visualizations, and
have demonstrated the applicability based on real-world data sets. Ad-
ditionally, to analyze the effectiveness of the presented visualizations,
we have conducted two expert evaluations.

In the future we would like to further extend the proposed visual-
izations by incorporating changes reflecting the identified limitations.
Foremost, we plan to integrate the described annotation mechanism
and thus enable medical doctors to enrich the individual swallows with
patient-related data. Additionally, we intend to apply the proposed
visual signature to a pool of HRM data available from the last ten years.
We will investigate how this large scale visualization can help to spot
correlations of the individual data sets to layout the visual signatures.



Finally, we plan to conduct a much larger expert evaluation, in which
we also investigate learning effects when using our visualization.
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