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M A R C U S F Ä N D R I C H‡, T I M O R O P I N S K I† & V O L K E R S C H M I D T ∗
∗Institute of Stochastics, Ulm University, Ulm, Germany

†Visual Computing Group, Institute of Media Informatics, Ulm University, Ulm, Germany

‡Institute of Protein Biochemistry, Ulm University, Ulm, Germany

Key words. Amyloid fibril, convolutional neural network, electron
microscopy, semantic segmentation.

Summary

Detecting crossovers in cryo-electron microscopy images of
protein fibrils is an important step towards determining
the morphological composition of a sample. Currently, the
crossover locations are picked by hand, which introduces er-
rors and is a time-consuming procedure. With the rise of deep
learning in computer vision tasks, the automation of such
problems has become more and more applicable. However,
because of insufficient quality of raw data and missing labels,
neural networks alone cannot be applied successfully to target
the given problem. Thus, we propose an approach combining
conventional computer vision techniques and deep learning
to automatically detect fibril crossovers in two-dimensional
cryo-electron microscopy image data and apply it to murine
amyloid protein A fibrils, where we first use direct image pro-
cessing methods to simplify the image data such that a con-
volutional neural network can be applied to the remaining
segmentation problem.

Introduction

The ability of protein to form fibrillary structures underlies
important cellular functions but can also give rise to disease,
such as in a group of disorders, termed amyloid diseases (Chiti
& Dobson, 2017). These diseases are characterized by the for-
mation of abnormal protein filaments, termed amyloid fib-
rils, which deposit inside the tissue (Chiti & Dobson, 2017).
These fibrils, or intermediate structural states that occur in
the course of fibril formation, are detrimental to their sur-
rounding tissue and underlie the formation of disease. Exam-
ples hereof are Alzheimer’s or Parkinson’s diseases (Chiti &
Dobson, 2017) or the various forms of systemic amyloido-
sis (Nienhuis et al., 2016). Many amyloid fibrils are helically
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twisted (Annamalai et al., 2016), which leads in cases of fib-
rils with an anisotropic cross-section to periodic variations in
the apparent width of the fibril, when observing amyloid fib-
rils using microscopy techniques like cryogenic electron mi-
croscopy (cryo-EM) (Schmidt et al., 2015, 2016; Close et al.,
2018; Radamaker et al., 2019). Due to the two-dimensional
(2D) projection, parts of the fibril orthogonal to the projection
plane appear narrower than parts parallel to the plane. The
parts of small width are called crossovers.

The distance between two adjacent crossovers is an impor-
tant characteristic for the analysis of amyloid fibrils, because it
is informative about the fibril morphology and because it can
be determined from raw data by eye. A given protein can typ-
ically form different fibril morphologies. The morphology can
vary depending on the chemical and physical conditions of fib-
ril formation, but even when fibrils are formed under identical
solution conditions, different morphologies may be present in
a sample. As the crossovers allow to define fibril morphologies
in a heterogeneous sample (Annamalai et al., 2016; Liberta
et al., 2019), detecting crossovers is an important first step in
the sample analysis.

EM-reconstruction software like Relion (He & Scheres,
2017), cryoSPARC (Punjani et al., 2017) or EMAN2 (Tang
et al., 2007) allows for picking of fibrils using templates. But
these techniques are especially designed for cryo-EM struc-
ture determination of single particles and not for a statistical
analysis of an entire fibril sample. So far, the detection of fib-
rils in cryo-EM image data for statistical analysis to determine
fibril morphologies has often been performed by labelling the
crossovers locations by hand and measuring parameters such
as fibril lengths, crossover distances, widths and curvatures
manually. However, for large datasets, only a small number
of fibrils can be analysed this way (Annamalai et al., 2016),
because this is a time-consuming and error-prone task. In
the present paper, we propose an approach for the automatic
detection of crossovers in 2D image data obtained by cryo-
EM based on a combination of conventional image processing
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Preprocessing

Postprocessing

Fig. 1. Overview of the proposed methodology. The data used in our approach consist of cryo-EM images of fibrils (1A) and hand-labelled crossover locations
(1B) for some of these fibrils. The presented preprocessing method (2) transforms this data into pairs (3) of extracted, realigned fibrils and crossovers,
if available. Fibrils for which corresponding crossovers are known are used to train and validate a CNN (4). Applying the CNN to the remaining fibrils
yields probable crossover locations for each fibril (5). Postprocessing (6) ensures that artefacts are removed and only valid crossovers remain in the final
output (7).

methods with machine learning techniques. In contrast to ex-
isting tools, this method is specifically designed for the precise
localization of crossover locations for the purpose of statistical
analysis. Even for challenging data scenarios like overlapping
fibrils and artefacts, entire fibrils (i.e. their crossovers) are cor-
rectly labelled.

The detection of specific locations in 2D images can be
understood as an image segmentation task for which convo-
lutional neural networks (CNNs) are often used. In particular,
in recent years, encoder–decoder architectures (Ronneberger
et al., 2015; Liu et al., 2018) were established for this
kind of problems. However, CNNs, as all machine learning
techniques, heavily depend on the presence of training data
of sufficient quantity and quality. Although, in principle, it
would be possible to obtain a suitable amount of hand-labelled
image data of fibrils to perform successful training of a neural
network, cryo-EM image quality poses challenges for this
approach. Low contrast and image artefacts can make it
infeasible to label some crossovers by hand. Furthermore,
each image contains many possibly overlapping fibrils. Both

problems lead to missing labels in the present data which
make the direct training of a CNN impossible.

For further analysis of crossover locations, the quality of
the detected crossovers may be even more important than
the quantitative yield: Firstly, wrongly detected crossovers
can obviously not be used further and would need to be re-
moved labouriously. Secondly, the knowledge of crossover lo-
cations is especially useful when entire fibrils are labelled and
no crossovers are missing for the labelled fibrils. A direct train-
ing of a CNN based on incomplete data where not all crossovers
are labelled and regions with certainly no crossovers are not
known would induce problems in the segmented data pro-
cessed with this badly trained CNN.

Our approach therefore combines conventional tools of mor-
phological image analysis (Soille, 2013) with machine learn-
ing techniques. The combination of these two methodologies
has already proven valuable for different kinds of segmenta-
tion tasks (Petrich et al., 2017; Furat et al., 2019). Figure 1
shows an overview of the proposed approach which can also
serve as an outline for this paper.
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Thus, the rest of the paper is organized as follows. To be-
gin with, we describe the data consisting of cryo-EM im-
ages of fibrils and hand-labelled crossovers for some fibrils
and explain the basic problems when using this data. Then,
we present a preprocessing method which is capable of ex-
tracting the rough shapes of fibrils from the given data. As
this method does not rely on hand-labelled crossover loca-
tions, it can be applied to the whole dataset and serves to
simplify the data and remove artefacts. In the next step, we
introduce a CNN based on the U-Net architecture which is
trained using the previously enhanced data. After applying
this CNN to all of the preprocessed fibrils, we perform a final
postprocessing step to remove wrongly detected crossovers.
Finally, we present the results of applying the proposed tech-
nique to cryo-EM image data of fibrils. Furthermore, we as-
sess its performance and compare it to a direct application of
a CNN.

Data

Previously recorded cryo-EM 2D image data of murine AA
amyloid fibrils (Liberta et al., 2019) serve as the basis of our
approach to the automated detection of crossovers. To obtain
these images, fibrils were extracted from mice with systemic
amyloidosis and applied in water onto a holey carbon coated
grid, blotted and finally plunge-frozen into thin vitreous ice. A
total of 1063 images (3838 px × 3710 px, pixel size: 1.36 Å) of
the fibrils frozen in vitreous ice were collected at 300 kV in the
transmission mode with a K2 summit (Gatan) direct electron
detector. Each resulting image shows a different part of the
sample and an unknown number of possibly overlapping
fibrils of different lengths and shapes. For this sample, we
previously showed that approximately 94% of all fibrils are of
the same fibril morphology with a width at the widest point of
11.8 ± 0.5 nm and a crossover distance of 75.7 ± 1.3 nm (Lib-
erta et al., 2019). An example of the used image data is shown
in Figure 2. Note that the fibrils are not evenly distributed
over the images: Although there exist images showing
barely any fibril, others show huge clumps of overlapping
fibrils.

For a subset of 669 images, hand-labelling of crossovers has
been performed in such a way that the positions of crossovers
are entirely known for a total of 1069 fibrils. However, not
all fibrils have been included in the hand-labelling and, more
relevant, there exist no images in which all fibrils have been
labelled. This is partly due to noise and overlapping fibrils
which make it hard to hand-label some fibrils.

Thus, without further knowledge of the image structure, the
hand-labelled data can only be used to determine crossover
positions which are certain. For any nonlabelled region in
the image data, we cannot directly conclude from the hand-
labelled data if there might be a fibril or even a crossover. In the
following, we present an approach to overcome these issues
by first extracting the rough shapes of fibrils.

Fig. 2. Cryo-EM image of murine AA amyloid fibrils. Note that contrast
and noise level have already been improved for visualization; fibrils would
only be barely visible in the raw data.

Preprocessing

As already mentioned above, the raw data consist of 2D
greyscale images of different (potentially overlapping in 2D
projection) fibrils oriented mostly parallel to the projection
plane, see Figure 3(A). Note that the raw image data are
subject to heavy noise and low contrast. Furthermore,
many fibrils overlap each other making a visual detection of
crossovers practically impossible. Both problems lead to an
incomplete labelling of crossovers in the images designated
as training data, making a direct application of a CNN to the
given data infeasible.

To overcome these issues, we first use a method for prepro-
cessing the raw cryo-EM image data. This method splits the
images into pieces showing single fibrils which are then used
for the training of a neural network.

First steps in preprocessing include the removal of grey value
gradients, which do not carry information but instead need to
be considered as artefacts using a Gaussian high-pass filter,
and a Gaussian smoothing for noise reduction. Furthermore,
the grey value range of all images is set to a predefined scale
by adjusting the mean and standard deviation of grey values.
By this, we account for deviations in exposure and measure-
ment of different images. The scale is chosen to accommodate
99.9% of the original range in an 8-bit image. Next, the rough
shapes of the fibrils are extracted using a local thresholding
approach, see Figure 3(D). The image representing the local
threshold values is obtained by applying a Gaussian smooth-
ing (Russ, 2011) with a relatively large standard deviation
such that the shapes of fibrils persist only faintly. Additionally,
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Fig. 3. Overview of the preprocessing steps. (A) Sample image from the histogram-normalized raw data and the hand-labelled positions of crossovers (red
dots). (B) Rough fibril shapes. (C) Pointwise maximum of 60 convolutions of (B) with differently oriented line kernels. (D) Example of a detected fibril.

the local threshold values are multiplied by 0.97 and pixels
are set to white in the resulting image if their grey value in the
original image is below the corresponding threshold value, i.e.
dark elements (fibrils) remain. The multiplicative correction
of 0.97 is chosen empirically to improve the binarization. Yet,
the result does contain a significant amount of artefacts and
not yet a precise representation of the fibrils.

Thus, a method similar to the Hough transform (Duda &
Hart, 1972) is applied to precisely extract the shapes of the
fibrils.

This method is based on convolutions of the original image
with suitably chosen kernels. Considering different kernels,
convolutions can be used for various operations of image pro-
cessing like sharpening or blurring (Russ, 2011). Moreover,
convolutions can be used to detect objects of a known shape in
an image, by choosing a kernel similar to the object of interest.
This property is used in various situations of image analysis,
e.g. for edge detection by employing a kernel depicting a strong
gradient in the direction orthogonal to the desired edge. In a
more general way, convolution with a kernel depicting a given
object highlights the respective positions of all occurrences of
the given object.

Note that this method of object detection is robust with
respect to noise and minor deviations in the object’s shape and
still works when the object is partly covered by other objects.
This is important for application to our problem as fibrils can
overlap in the given image data.

We apply this method of object detection to our data using
kernels which depict straight lines with 60 different orienta-
tions equally spaced inα ∈ [0, π ]. For any fixedα, the convolu-
tion highlights fibril segments which are oriented accordingly,

see Figure 4(B). By applying a simple global thresholding to this
greyscale image, the desired fibril segments can be extracted.

However, some postprocessing still needs to be performed
to separate real fibril segments from artefacts, see Figure 4(C).
Filtering the connected components of the obtained binary
image using an area threshold, i.e. only keeping components
which are larger than a given size, and a morphological clos-
ing/opening (see Soille, 2013) with a line segment oriented
in the direction α as structuring element solves this problem
reasonably well. Finally, the direction of the principal axis β

of each region in the binary image is computed via principal
component analysis (PCA, Lee et al., 2006). While PCA and
other statistical tools are often used in the cryo-EM context
to obtain distinguishing features of a class of samples (Heel &
Frank, 1981), we employ PCA solely to detect the geometrical
orientations of single regions in the binary image. For these,
the principal axis is given by the major axis of the ellipse which
best fits the given region and corresponds to the perceived ori-
entation of the extracted elongated regions. Only regions for
which the predicted orientation α and the orientation β com-
puted by PCA coincide to some extent are considered valid
fibril segments.

Because the procedure described above may split fibrils into
multiple fragments, the next step merges regions belonging
to the same fibril, see Figure 5. Therefore, the previously de-
scribed convolution-based extraction of fibril segments is per-
formed for a certain (finite) number of directions equally spaced
in the interval [0, π ]. For each extracted fibril segment Fi , the
calculated orientation βi obtained from PCA is stored. Now,
for each pair of fibril segments Fi , F j , the angular deviation
in orientation �i, j = min(|βi − β j |, |βi − β j − 2π |) and the
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(A) (B) (C)

Fig. 4. Sample image visualizing the result (C) of the convolution of a binary image (A) with the shown kernel (B, not to scale). Fibril segments of any
length which are oriented similar to the kernel are clearly visible in the result of the convolution (see the highlighted area) and can easily be separated
from the background using a global threshold. Note that for curved fibrils, this does only extract segments of the fibril for each given orientation. These
parts are then combined in a later step.

(B) (C)(A)

Fig. 5. (A) Fibril segments detected using kernels with different orientations. Each colour corresponds to a specific orientation. (B) Combination of many
detected (overlapping) segments results in accurate detection, compare the original image (C). Note the curved red fibril in the lower left part of panel (B)
which was combined from segments with considerably different orientations.

relative overlap ∩i, j = λ(Fi ∩ F j )/ min(λ(Fi ), λ(F j )) are de-
termined, where λ(F ) denotes the area of a fibril segment F .
Then, fibril segments with relative overlap ∩i, j > 0.4 and de-
viation in orientation �i, j < 10◦ are considered to belong to
the same fibril. These numbers are based on the angular step
size of 3◦ used for detection of fibril segments. As the measured
orientations of the regions can be hugely affected by noise and
inaccuracies, we allow for a fairly large deviation. Further-
more, based on visual inspection, 10◦ are sufficient to capture
all nonbroken, curved fibrils encountered in the data.

Assessing the thereby detected regions by size and shape
gives a reasonably good procedure for the final elimination of
wrongly detected fibrils, as detailed in section ‘Validation’. This
leaves us with a set of fibrils for each input image. To simplify
the process of further analysis, the cut-outs representing each
extracted fibril (and hand-labelled crossovers) are rotated such
that the fibrils are horizontally oriented, see Figure 3(D).

A subset of all fibrils for which hand-labelled crossover lo-
cations are known is then used to train a neural network as
described in the next section.

CNN-empowered crossover detection

Roughly speaking, we now try to predict unknown crossover
locations in 2D image data of fibrils employing the information
we obtained from the hand-labelled data described in the pre-
vious section. A direct processing of the fibril shapes extracted
in the previous steps using traditional morphological methods
did not prove successful due to inaccuracies in the detected
shapes, see Figure 5(B). However, the methods of statistical
learning, in particular CNNs, provide a promising technique
with regard to automated image analysis. If enough training
data are available, they have shown to be successful in many
domains, including microscopy (Dong et al., 2015; Kraus et al.,
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Fig. 6. The neural network architecture we use for segmenting fibril images. It transforms the input image into a 128-dimensional feature vector, for
which the spatial resolution is reduced by a factor of eight. In the following, this vector is utilized to produce the two-dimensional segmentation map used
as the crossover prediction. Due to its fully convolutional nature, the input and output sizes of the network are arbitrary.

2016; Petrich et al., 2017; Rivenson et al., 2017; Furat et al.,
2019). Integrating these techniques into the analysis process
of fibril images is a promising approach that could drastically
reduce the efforts needed to process these images using com-
pletely interactive approaches alone.

Description of the CNN architecture

The task of automatically detecting crossovers in image data
of fibrils can be seen as a classical image segmentation prob-
lem. For this type of problem, fully CNNs are well established,
especially when dealing with complex data as given by the
varying appearance of crossovers in microscopic image data.
Fully CNNs use repeated layers of convolution of the input im-
age with trainable kernels. To automatically detect crossovers
in microscopy images of fibrils, we employ an encoder–decoder
CNN. These types of networks, which have proven to be
successful in related problem contexts (Ronneberger et al.,
2015; Liu et al., 2018), transform the input image into a
latent space, where, in our case, abstract representations of
the fibril images are obtained at lower resolution, before re-
projecting them onto the original resolution of the image.
This kind of procedure is desirable as the aim is to predict
pointwise probabilities for each pixel to be a crossover. The
network we use divides fibril images into crossover and non-
crossover pixels. The basic idea of our architecture is shown in
Figure 6.

Training of the CNN

Fully convolutional networks like the architecture considered
in the present paper are not designed for the detection of sin-
gle points but instead for the segmentation of larger regions.
This is partly due to the pooling and upsampling layers which
cause high correlation between values of neighbouring pixels
in the resulting image. Moreover, when individual pixels are
labelled as crossover points, while the entire rest of the im-
age is labelled as noncrossover, high accuracy can be reached
by simply labelling the whole image as noncrossover. Thus,

the network would optimize to classifying any input image
entirely as noncrossover.

To circumvent these limitations of the learning process,
we carefully choose the data used for training the neural
network. As shown in Figure 7, we take small cut-outs of
each image containing a horizontally aligned fibril. These
cut-outs can either contain exactly one crossover or no
crossover. Finding regions containing exactly one crossover
is straightforward and is done by taking square regions of
a given size around all hand-labelled crossovers. Note that
the regions are chosen at random while still containing
the crossover, resulting in patches featuring crossovers at
different locations. This prevents the neural network from
learning to predict crossovers simply based on their location.

Even though the hand-labelled data may be incomplete (as
illustrated in Figure 7), by adjusting the size, we can guarantee
that only one crossover is present in each cut-out if no other
fibrils cross the present fibril in the given cut-out. Selecting
regions which do not contain any crossovers requires some
extra effort due to potentially missing labels. However, hand-
labelling was performed such that no additional nonlabelled
crossover lies between two hand-labelled crossovers. Thus,
as shown in Figure 7, we can use any cut-out of the fibril
which lies entirely between two labelled crossovers as further
training data.

By this, we get two sets of square cut-outs of fibril images. The
first set (‘positive samples’) consists of regions which contain
exactly one crossover whose position is known from hand-
labelled data. The second set (‘negative samples’) consists of
regions which contain no crossover at all. Together, the two
sets make up the input data for the training of the neural net-
work. Furthermore, we require appropriate ground truth data
for all cut-outs contained in the input data. For the ‘negative
samples’, the ground truth is simply a black image of appro-
priate size representing the absence of crossovers. For the ‘pos-
itive samples’, we take a black image of appropriate size and
place a white ellipse at the known position of the correspond-
ing crossover. The ellipse’s major axis is chosen parallel to
the fibril whose orientation is known from preprocessing. By
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Fig. 7. Splitting up the available data into patches for training the neural network. The top row shows parts of a hand-labelled fibril after preprocessing.
Red circles mark hand-labelled crossovers which can be used to cut out (square) patches for training. Between two hand-labelled crossovers, we can be
sure that no further crossovers exists, so these regions can be used as negative samples. The black–yellow circle highlights a crossover which was not
hand-labelled. The bottom row shows two pairs (input/ground truth) of training data for the neural network extracted from this fibril.

adjusting the size of the cut-outs and the size of the ellipses, we
can account for class imbalance.

We use the data of input and ground truth images given
by the method described above to train the neural network
described in the previous section. For assessing the quality of a
predicted output compared to the ground truth data, we need
to define a so-called loss function which assigns a loss (i.e. a
value specifying how ‘good’ the prediction is) to a pair of data
(i.e. the CNN’s output and the ground truth). We chose the
mean cross-entropy loss (Goodfellow et al., 2016) which op-
erates on the output image IO : {1, . . . , nx} × {1, . . . , ny} ×
{1, 2} → [0, 1] of the neural network prior to thresholding.
Recall that this image represents the probabilities of each
pixel belonging to a crossover or not. The corresponding
ground truth data IT : {1, . . . , nx} × {1, . . . , ny} × {1, 2} →
{0, 1} take values 1 (the pixel belongs to a crossover) or 0
(the pixel does not belong to a crossover). The cross-entropy
function is then defined for each pixel (x, y) and channel c by

L C E (x, y, c) = −IT (x, y, c) log(IO (x, y, c)) .

The total loss of an output image is just the mean
1/(nxny)

∑nx
x=1

∑ny

y=1(L C E (x, y, 1) + L C E (x, y, 2)) which eq-
uals 0 if IO = IT . The training of the neural network is
performed using this loss function and the Adam opti-
miser (Kingma & Ba, 2015).

Due to the fully convolutional architecture, the (trained)
network can operate on arbitrarily-sized patches to perform
inference on unseen data. While training is performed on small
image patches for computational reasons, the trained network
can be used to detect crossovers on entire fibrils.

Application of the trained network

For the automatic detection of crossover locations, we apply
the trained neural network to single fibrils which have been ex-
tracted from the original data using the preprocessing method
described above, see also Figure 3(D).

While crossovers on most fibrils are correctly identified, the
preprocessing method described above does propose some ar-
eas of the images as fibrils which are not suitable as input
for the neural network, see Figure 8. On the one hand, some
areas of the images are proposed as fibrils which, at visual
inspection, are clearly noise and do not contain fibrils. On the
other hand, fibrils which are crossed by many other fibrils are
(correctly) detected by the preprocessing steps. While these
do indeed contain crossovers, it is almost impossible to distin-
guish between crossovers and artefacts introduced by crossing
fibrils. In both cases, the neural network cannot be expected
to produce valid results.

Thus, we try to eliminate wrongly labelled crossovers in a
final postprocessing step, see below.

Postprocessing

Recall that our aim is to obtain a set of fibrils whose crossovers
are entirely labelled. For postprocessing, we thus consider the
entire fibrils which have been extracted from the original im-
age data using the preprocessing methods described above.
A fibril should be classified as correctly labelled if all of its
crossovers are correctly labelled and no additional points are
labelled as crossovers. Missing or wrongly placed labels would
lead to inaccurate further analyses. Thus, we develop a method
to correct minor errors and detect wrongly labelled fibrils. This
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Fig. 8. Top: A correctly extracted fibril with precisely detected crossovers. Bottom: A fibril which is not clearly visible, resulting in a bad performance of
the neural network.

includes the cases where the region proposed by the prepro-
cessing method does not contain any (clearly visible) fibril as
well as the cases where the neural network does not perform
correctly. A sample of correctly and wrongly labelled fibrils is
shown in Figure 8.

First, the detected crossovers are assessed by size of the
detected region. Based on visual inspection of a small frac-
tion of detected regions, it seems reasonable to assume that
larger regions are associated with a more reliable detection.
Thus, we apply a morphological closing (Russ, 2011) to elim-
inate minor noise and then remove small regions using an-
other morphological opening. Due to the helical shape of a
fibril, crossovers on a single fibril should form an approx-
imately periodical pattern. The following method uses this
information to classify correctly labelled fibrils. Using the
known orientation of the fibrils—which, after preprocessing,
is horizontal—we interpret the detected crossover locations
as points X = (x1, . . . , xn), xi < xi+1 on a straight line. If the
crossovers are detected correctly, they should form a semiperi-
odic pattern, i.e. xi+1 − xi ≈ d for some constant crossover
distance d . To find the value of d , we define the functions

fc (t) =
n∑

i=1

ϕ(xi , σ
2; t)

and

f p (d0, d ; t) =
n−1∑
i=0

ϕ(d0 + i d , σ 2; t),

where ϕ(μ, σ 2; ·) is the probability density function of a Gaus-
sian random variable with mean μ and variance σ 2. The func-
tion f p corresponds to a proposed crossover distance d and
offset d0. For some assumed crossover pattern X and a pro-
posed crossover distance d and offset d0, these functions are
visualized in Figure 9. By minimizing the difference � given
by

� =
∞∫

−∞

∣∣ fc (t) − f p (d0, d ; t)
∣∣dt,

employing a grid search, we obtain a prediction for the real
crossover distance and offset. This prediction is robust to

Fig. 9. Visualization of the superimposed Gaussian kernels used for esti-
mating the crossover distance d and offset d0 from the x-positions of the
detected crossovers x1, . . . , xn .

wrongly detected crossover locations which do not fit into
the regular pattern: If three or more correctly detected consec-
utive crossovers are present, the integral will still be minimal
for the correct distance and offset, even if another wrongly
placed crossover is introduced.

Using the predicted offset d0 and distance d , we can compute
all possible locations of crossovers d0 + j d . We generate a new
set of crossovers by taking all detected crossovers xi whose
distance min j∈N |xi − d0 + j d | to the set of possible locations is
below some heuristically chosen threshold between 10 nm and
25 nm. The precise value of this threshold proved irrelevant
for the performance of our method. The new set of crossovers
shows an approximately periodic pattern and can be used for
further analysis.

Validation

For a validation, we applied the proposed approach to the data
described in the previous sections. Before assessing the per-
formance, let us recall the major goal of the approach, which
is the extraction of fibrils and the detection of corresponding
crossover locations from the image data. More precisely,
each image patch returned by the postprocessing should
show a horizontally aligned fibril and the corresponding
predicted crossover locations which pass postprocessing
should be correct. Furthermore, no crossovers should be
missing. For simplicity, we will call image patches satisfying
all three requirements entirely labelled fibrils. We will call
image patches and the corresponding predicted crossover
locations which are returned by the postprocessing steps
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Table 1. Overview of the number of hand-labelled and not hand-labelled
fibrils included in each processing step.

Hand-labelled
Not

hand-labelled Total

Hand-labelled data
(total)

1069 – –

Proposed by
preprocessing

743 1010 1753

Of which are actual
fibrils

743 ca. 850 ca. 1592

Used for training 670 0 670
Used for validation 73 0 73

Accepted by
postprocessing

393 179 572

Used for training 353 0 353
Postprocessed & not
Used for training 40 179 219

Entirely labelled 39 ca. 140 ca. 179

Note: The total number of fibrils present in the data is unknown. Among
the 1069 hand-labelled fibrils, 326 fibrils were not identified by the pre-
processing. The number of included fibrils decreases with each processing
step as possibly flawed data are removed from the set of considered fib-
rils. For not-hand-labelled fibrils, the approximate numbers are obtained
extrapolating data from a visual inspection of a subset of fibrils.

postprocessed fibrils. Note that our main goal is met if all
(or most) postprocessed fibrils are indeed entirely labelled
fibrils, similar to avoiding false positives in a classification
setting.

However, comparing these two sets does not yet measure
the total yield of our approach. To assess this, we take into
account the (total number of) hand-labelled fibrils, similar to the
quantification of false negatives, as well as the image patches
proposed by the preprocessing method which were used to
train and apply the CNN. We will call these image patches
proposed fibrils.

Note that hand-labelled crossovers corresponding to some
of the entirely labelled fibrils, or postprocessed fibrils, respec-
tively, were used to train the neural network. Thus, crossover
data on these fibrils (image patches) cannot be used to assess
the performance of our approach. Table 1 gives an overview
of the data used for validation. We will discuss the detailed
numbers of correctly detected fibrils and crossovers in the
following, using different characteristics to assess the per-
formance of the proposed approach, based on hand-labelled
data.

From these considerations, the most important accuracy
measure is the precision of the method consisting of, first, de-
tection of fibrils; second, crossover detection on actual fibrils;
and third, detection of entirely labelled fibrils. That is, which
fraction of detected objects are correctly classified. Increasing
the precision corresponds to decreasing the rate of false posi-
tives.

Performance of fibril detection

We applied the proposed methods to data from 1063 cryo-EM
images. In 669 of these images, crossovers on a total of 1069
fibrils were labelled by hand. Based on Table 1, the preprocess-
ing detected 743 out of 1069 hand-labelled fibrils (69.5%).
However, we find additional fibrils, which have not been in-
cluded in hand-labelling. Visual inspection of the proposed
fibrils which were not contained in the hand-labelled data
shows that approximately 850 out of 1010 (84.2%) addition-
ally proposed image patches actually are fibrils. Thus, the total
precision of fibril detection is approximately 90.9%. As missing
hand-labels are mostly due to difficulties in visually assessing
the structure of a fibril, this means that our approach is capable
of processing poor-quality data. However, this does not imply
that detection of crossovers is achievable for the majority of
detected not hand-labelled fibrils. For many of the proposed
fibrils which have not been hand-labelled, it can be hard to
locate crossovers due to artefacts or overlapping fibrils. This is
reflected in postprocessing accepting only 179 out of 1010 of
these fibrils and corresponding detected crossovers (17.7%).

Performance of crossover detection

To validate the performance of the crossover detection per-
formed by the considered CNN and subsequent postprocess-
ing steps, we take into account the number of proposed fibrils
and fibrils (and corresponding detected crossovers) which pass
postprocessing. To validate the method in its entirety, we have
to exclude fibrils which have been used for the training of the
CNN. This leaves as set of postprocessed fibrils which have not
been used for training. On 39 of these 40 fibrils, crossovers
have been entirely labelled if we allow a deviation of 20 nm
(compare to the crossover distance 75.7 ± 1.3 nm) between
detected and hand-labelled crossovers, see Figure 10. For a
deviation of 10 nm, we get 67.5% entirely labelled fibrils. This
is related to the total number of correctly labelled crossovers
on these 40 fibrils which is also shown in Figure 10. Thus, the
labelling of fibrils with complete sets of crossovers has a preci-
sion of 97.5%. Without postprocessing, this number decreases
slightly to around 66 of 73 fibrils or 90.4%.

However, these numbers are only true under the assump-
tion that the objects detected by preprocessing actually are
fibrils. Relaxing this assumption, we take into account objects
proposed by preprocessing which are not hand-labelled fibrils,
see Table 1. Note that not all fibrils are included in the hand-
labelled data. This is the reason why some detected objects,
despite not being hand-labelled, might actually be fibrils.
Thus, we performed a visual inspection of the detected fibrils
and crossovers to obtain the approximate numbers given in
lines 3 and 10 of Table 1. On these data, approximately 84.2%
of detected fibrils actually were fibrils. However, without
postprocessing, only ca. 11% of actual fibrils (i.e. 13% of
detected objects) were entirely labelled. Here, postprocessing
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Fig. 10. The fraction of correctly located crossovers on the validation data (left) as well as the fraction of entirely labelled fibrils (right) depend on the
permitted deviation from the hand-labelled data. In total, 158 hand-labelled crossovers exist on the given fibrils. Note that both fractions stay below
100% due to missing and additional, wrongly detected crossovers.

provides a huge advantage by increasing the precision to
approximately 78%.

Combining both cases, we would expect an overall precision
of approximately 91.5% with postprocessing and an overall
precision of approximately 45.8% without postprocessing.

Comparison to direct application of a CNN

While the values presented above indicate an acceptable per-
formance of the proposed approach, a comparison to the per-
formance of directly applying an encoder–decoder shows a
clear advantage. For this purpose, we performed no prepro-
cessing on the original cryo-EM image data and trained a net-
work of the same architecture as presented above using the
given hand-labelled crossovers. We then applied the trained
neural network to 50 raw images and postprocessed the ex-
tracted crossover locations by simply applying a morpholog-
ical closing and a size threshold. This should remove some
noise introduced by the neural network and keep only ‘cer-
tain’ crossovers. While the missing training data would sug-
gest that not all crossovers are detected, we still expect that
proposed crossovers reliably correspond to actual crossovers.
However, even when considering only crossovers on actual fib-
rils for which hand-labelled crossovers exist, the precision of the
crossover detection using solely a neural network comparable
to the network considered in our method is only about 20%.

Moreover, our method does not only provide single
crossover locations, but entirely labelled fibrils. Even when
restricting the crossovers detected by the basic U-Net to
crossovers lying on fibrils (for which hand-labelled crossovers
exist), only 8 of 42 fibrils not used for the training of the
network were entirely labelled, corresponding to a precision
of 19%. Comparing this to 91.5% precision obtained by our
method on all detected objects, this shows a clear benefit of the
approach proposed in the present paper. A further advantage

when applying the proposed technique is the additional
information of approximate shape and location of fibrils at no
further cost.

Conclusion

We proposed an approach for the automated detection of
crossovers on 2D cryo-EM image data of AA amyloid fibrils.
It was built around a CNN similar to the U-Net which was
trained using hand-labelled data. A major improvement com-
pared to the direct application of the CNN was achieved by a
multistep preprocessing of the raw image data, using methods
from classical image analysis, which extracted patches of hor-
izontally aligned fibrils from the images. The neural network
was trained on and applied to the thereby enhanced data.
A final postprocessing using appropriately chosen parame-
ters ensured that the results meet the required quality. This
means, we were able to reduce wrongly detected crossovers to
less than 5% of all crossovers, which is important for further
analysis of the crossovers. While hand-labelling gives better
results on most fibrils, the proposed approach was able to
detect fibrils for which hand-labelling would have been too te-
dious and outperformed hand-labelling on many other fibrils.
In comparison to a direct application of a CNN to the raw im-
age data, the proposed approach shows outstanding accuracy
with respect to false positives. Even though the total number of
detected crossovers is affected by the focus on avoiding wrong
detections, the overall performance of the proposed approach
is satisfying.

While the results obtained for the specific type of fibrils con-
sidered in this paper are promising, further work may include
incorporation of a more sophisticated type of postprocessing
to obtain a higher yield in the total number of labelled fib-
rils. Moreover, as the presented method does not make any
assumptions about the specific type of fibrils aside from minor
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geometrical constraints, it may be used in further work to pro-
cess and analyse different types of fibrils. The method described
in this paper could thus be the basis for future applications, in
which the morphological composition of a fibril sample is au-
tomatically assessed. The ability to analyse the morphological
constitution of a sample is of general importance as it allows
a more objective analysis of the fibril spectrum present in fib-
ril extracts from patient tissue, and thus, of the pathogenic
agents underlying amyloid diseases and their inherent clini-
cal variability. In addition, quantification of the morphological
composition of a fibril sample is an obvious first and indispens-
able step to control the fabrication of reliable and standardized
amyloid fibril compositions in any form of biotechnological
application of these fibrils.
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Fändrich, M. & Grigorieff, N. (2015) Peptide dimer structure in an
Aβ(1–42) fibril visualized with cryo-EM. Proc. Natl. Acad. Sci 112(38),
11858–11863.

Soille, P. (2013) Morphological Image Analysis: Principles and Applications.
Springer, Berlin.

Tang, G., Peng, L., Baldwin, P.R., Mann, D.S., Jiang, W., Rees, I. & Ludtke,
S.J. (2007) EMAN2: an extensible image processing suite for electron
microscopy. J. Struct. Biol 157(1), 38–46.

C© 2019 The Authors. Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society, 00, 1–11


