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Abstract—The complexity of today’s visualization applications demands specific visualization systems tailored for the development of
these applications. Frequently, such systems utilize levels of abstraction to improve the application development process, for instance by
providing a data flow network editor. Unfortunately, these abstractions result in several issues, which need to be circumvented through an
abstraction-centered system design. Often, a high level of abstraction hides low level details, which makes it difficult to directly access the
underlying computing platform, which would be important to achieve an optimal performance. Therefore, we propose a layer structure
developed for modern and sustainable visualization systems allowing developers to interact with all contained abstraction levels. We refer
to this interaction capabilities as usage abstraction levels, since we target application developers with various levels of experience. We
formulate the requirements for such a system, derive the desired architecture, and present how the concepts have been exemplary
realized within the Inviwo visualization system. Furthermore, we address several specific challenges that arise during the realization of
such a layered architecture, such as communication between different computing platforms, performance centered encapsulation, as well
as layer-independent development by supporting cross layer documentation and debugging capabilities.

Index Terms—Visualization systems, data visualization, visual analytics, data analysis, computer graphics, image processing.
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1 INTRODUCTION

The field of visualization is maturing, and a shift can be
observed from algorithm-centric research to application-centric
research. While in previous years research has focused on novel
visualization methods and algorithms for a particular data type,
e.g., volume rendering [1], line integral convolution [2], or tensor
glyphs [3], today visualization research also puts emphasis on the
solution of specific application-oriented visualization problems in
a wide range of domains, e.g., in medical visualization [4], engi-
neering sciences [5], biological visualization [6], or astronomy [7].
Visualization researchers are confronted with new challenges, as
in most applications the interplay between different visualization
algorithms and the integration of multiple data sources must be
considered. Furthermore, data is typically large and heterogeneous.
All these aspects make it challenging to develop interactive
visualization applications that are applicable to real-world problems.
Over the years, several efforts have been made to provide systems
designed to ease the development of visualization applications.
VTK [8] was one of the foundational frameworks for this purpose,
enabling visualization application developers to load the data to be
visualized and combine several building blocks into a visualization
pipeline. Following the success of VTK, many visualization sys-
tems have been released to enable application-centric visualization
research, e.g., VisTrails [9], VolumeShop [10], MeVisLab [11],
VisIt [12], VAPOR [13], Voreen [14] and Amira [15]. While
the capabilities of these systems vary, most of them make use
of the popular separation of concerns design principle [16] by
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Sweden. E-mail: timo.ropinski@uni-ulm.de.

Manuscript received November 30, 2018; revised Mars 22, 2019.

employing different layers of abstraction. Since the visualization
pipeline can readily be modeled through data flow networks [17],
many modern visualization systems expose the highest layer
of abstraction as a data flow network editor to the application
developer, e.g., VisTrails [9], MeVisLab [11] or Voreen [14]. This
layered architecture approach has been proven successful, but it
also comes with a few downsides, which could potentially hamper
the visualization application development process.

It can first be observed that visualization application developers
have varying needs. Exposing the highest layer of abstraction is
often not enough to facilitate the development of complex visu-
alization applications, as in many scenarios it becomes necessary
to modify functionality rooted at different levels of abstraction.
For instance, besides modifying the data flow network a developer
might also want to change the C++ or computing platform specific
code for a particular building block. As data flow network editors
support rapid development, i.e., the influence of made changes can
be directly seen in the visualization, such a development paradigm
is also desired at the lower levels of abstraction. Furthermore, as a
consequence of such changes, it also becomes necessary to debug
and document at these levels. We refer to the possibility to change,
debug, test and document functionality at different abstraction
layers to cross-layer development. We regard our realization of this
concept as one of the two main contributions of this system paper.

A fundamental problem in the layer abstraction used by modern
visualization systems is related to the underlying hardware used.
While it is undisputed that modern visualization applications should
be interactive [19], the size and complexity of data often makes it
challenging to maintain interactive frame rates. To deal with this
challenge, the ever increasing capabilities of graphics processing
units (GPUs) is exploited [20], and consequently most current
visualization systems, e.g., [9], [10], [11], [13], [14] and [15], rely
on the GPU for both data processing and rendering. This is often
done by interfacing with computing platforms, such as OpenCL,
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TABLE 1
Comparison of major visualizations systems with respect to seamless combination of algorithms implemented on different computing platforms and

the support for cross-layer development.

Inviwo MeVisLab [11] Amira [15] ParaView [18] VisIt [12] VisTrails [9]
License BSD Commercial Commercial BSD BSD GNU GPL v2
Integrated computing platform interoperability • — — — — —

C++ • • — — — NAInteractive development Shaders • • • — — —
Visual debugging • • — — — —
Integrated documentation • — — — — •
Visualization pipeline testing • • • • • •

CUDA or OpenGL, from within the lowest level of abstraction.
While this allows for leveraging the power of modern GPUs, it
also comes with the drawback that algorithms cannot be combined
with new computing platforms, e.g., an algorithm developed for
OpenCL cannot directly be used with an algorithm developed
for OpenGL. This is especially problematic when considering the
fact that new computing platforms are released rather frequently
(2004:OpenGL 2.0, 2006:DirectX 10, 2007:CUDA, 2008:OpenGL
3.0, 2009:OpenCL/DirectX 11, 2015:DirectX 12, 2016:Vulkan). In
this paper, we propose concepts enabling algorithms implemented
for different computing platforms to be used together seamlessly.
For example, the image resulting from a rendering using OpenGL
can be piped into an image processing algorithm developed using
OpenCL. Neither of the two algorithms need to be aware of each
other and both algorithms can be programmed using their specific
computing platform, which is not possible in other visualization
frameworks. This computing platform interoperability is the second
main contribution of this system paper.

In this paper we propose design principles, and their technical
realizations, which support cross-layer development and computing
platform interoperability in modern visualization systems. The
proposed design principles have been developed and integrated into
the Inviwo visualization system, which has been used to implement
a range of visualization applications, e.g., volume data explo-
ration [21], molecular visualization [22], and material science [23].
The proposed concepts are in themselves a contribution beyond
the Inviwo system. As visualization systems with cross-layer
development and integrated computing platform interoperability
will make it possible to use the same system during the entire
visualization application development process and gracefully adapt
to the introduction of new computing platforms, we foresee that
other system developers will find our principles and realization
approaches useful.

2 RELATED WORK

Here, we provide a comprehensive comparison between visualiza-
tion systems and game engines with respect to their computing
platform interoperability capabilities and usage abstraction layers
for visualization application development.
Visualization systems. The Visualization Toolkit (VTK) by
Schroeder et al. [8] is a C++ framework for creating visualizations
and therefore requires several usage abstraction levels to be built
on top of the framework for it to be accessible to visualization
practitioners. More recently, VTK-m [24] has been developed to
better support parallel architectures. Unlike the approach taken in
this work, VTK-m provide an abstraction preventing access to the
underlying computing platforms. Since VTK and VTK-m are lower
abstraction level frameworks, they can be integrated into Inviwo
and thereby benefit from its usage abstraction levels.

Examples of systems providing usage abstraction levels are
ParaView [18], VisTrails [9], VisIt [12] and tomviz [25]. Since
VTK does not have integrated computing platform interoperability,
the systems building on this API do not have this property either.
Similar to Inviwo, ParaView and VisTrails are general platforms
that do not target a specific domain or type of data. Out of
these, ParaView uses a tree-view to represent the visualization
pipeline while Inviwo and many others, e.g., MevisLab [11],
Amira [15], VisTrails [9], and Voreen [14], uses an acyclic
graph representation. VisIt primarily targets parallel systems and
streaming of data defined on 2D and 3D meshes, while tomviz
focuses on transmission electron microscope data.

There are also many general systems that are not based on
VTK. Amira and MeVisLab are commercial systems targeting life
sciences. Another commercial system is AVS Express [26], but it
does not target a specific domain. Voreen was designed for volume
rendering and has OpenGL built into its core, which prevents it
from integrating computing platform interoperability. Forbes et
al. [27] introduced a Java-based framework designed for dynamic
data by explicitly separating processing into three interconnected
graphs. Their graphs involve scene graph logics, data processing
and timing operations for interaction and animation. The work
by Forbes et al. [27] can be seen as orthogonal to the concepts
presented here since they could be used together as an additional
usage abstraction level with respect to scene graph logics and
timing operations. A range of systems are more specialized, such as
FAnToM [28], focusing on topological analysis, VAPOR, focusing
on data from earth and space sciences and VolumeShop [10],
focusing on illustrative visualization of volume data. While most of
these systems support multiple computing platforms, none of them
allow algorithms implemented for different computing platforms
to be seamlessly combined.

Visualization systems comparison. In the following, we will
compare several major visualization systems with respect to
their computing platform interoperability support and cross-layer
development capabilities. The ones selected for comparison, seen in
Table 1, are actively developed and support the whole visualization
design process. Four concepts were considered when it comes to
cross-layer development, being able to develop multiple layers of
abstraction at runtime, visual debugging of the data flow network,
co-locating code and documentation for higher abstraction layers
and testing at functional and visualization pipeline levels, i.e., unit
and visualization integration and regression testing.

As seen in Table 1, many systems have support for multiple
computing platforms but only Inviwo has a concept for seamlessly
combining algorithms written for different computing platforms.
Multiple systems have support for interactive shader editing (Amira,
Inviwo, MeVisLab), i.e., changing them at runtime, while only a
few provide means for interactively developing algorithms (Inviwo,
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MeVisLab).
In the software development process, debugging involves

locating, identifying, and correcting a defect [29]. Debugging
therefore involves everything from printing variables to the console
to stepping through code to see where logical errors are made. In the
field of information visualization, Hoffswell et al. [30] presented
techniques for debugging reactive data visualizations. Hoffswell
et al. focus on showing the state and interaction logic over time
as the user interacts with a visualization. Their techniques can be
seen as orthogonal to the ones presented in this work, where the
focus is on the debugging process of algorithms and not the the
interaction logic. Debugging of visualization pipelines is supported
by Inviwo and MeVisLab. However, the approach in MeVisLab
is slightly different. While Inviwo uses visualization pipelines to
provide information co-located with the port location, MeVisLab
displays the information in a separate pane.

When it comes to documentation of higher abstraction level
components, i.e., processors and modules, it is most common to
provide it in separate files. For example, MeVisLab requires a
.mhelp file for describing fields in their modules. Here, Inviwo
and VisTrails stand out. VisTrails allows developers to specify
documentation in code for their modules (their equivalent to
processor) and ports separately, while Inviwo co-locates this
documentation for multiple usage abstraction levels. All of the
systems in the comparison provide testing capabilities for both
individual functions as well as on visualization pipeline level.
The main difference is on how easy it is to add the tests. Here,
we believe that the minimal requirement in Inviwo for adding
regression tests, e.g., a workspace with its resulting image(s), can
lower the threshold for providing such tests. A final note is that all
visualization systems included in the comparison supports use of
scripting languages, such as Python or Tcl.

Game engines, such as Unity [31] and Unreal Engine [32],
have lately become viable options for building visualization sys-
tems. They provide support for multiple computing platforms but
do not allow developers to access them. Sicat et al. [33] presented
a toolkit based on Unity for creating immersive visualizations.
However, compared to Inviwo their toolkit do not provide usage
abstraction levels for editing visualization pipelines. In general,
the visual debugging support of game engines is more focused on
the needs of game developers and not on visualization pipelines.
Furthermore, the game engines’ focus on game developers can
limit their use for practical visualization problems. For example,
Unity pre-processes meshes to optimize them for rendering, which
might not be desirable for scientific visualization purposes.

3 SYSTEM REQUIREMENTS

Visualization systems commonly use multiple layers of abstraction
to realize an abstraction-centered design. As illustrated in Fig. 1,
the top abstraction layer is the visualization pipeline, which act
as a layer of abstraction for processor composites, i.e., a group
of functional units processing data flowing in the visualization
pipeline. Each processor is in turn acting as an abstraction layer
for C++ code. The lowest abstraction layer provides computing
platform level access. Having multiple layers of abstraction poses
several challenges that we address in this paper. Foremost, how can
a cross-layer development process be provided, where the developer
can use concepts from low abstraction layers, i.e., debugging and
testing, on the higher abstraction layers. Also, which parts of the
lower abstraction layers should be exposed on higher levels. Critical

aspects that we consider here are performance and development
speed, it must be ensured that the access across abstraction layers
does not hamper performance and that it helps in creating tailored
visualization applications. Another challenge is communication
within the computing platform layer, for example how to deal with
the number computing platform combinations possible.

Application oriented research requires a new level of engi-
neering and our aim is to supply a sustainable system that aids
researchers in all stages of the visualization application design
process. We first describe the requirements for the usage abstraction
levels and then the computing platform interoperability.

A requirement for visualization systems with usage abstraction
levels is that they support rapid development at all levels ranging
from application tailoring to computing platform coding. From a
developer’s perspective, this process involves coding, debugging,
documenting and testing. Thus, the system should support inter-
active C++ coding, shader editing and debugging of data flow
networks. Documentation of algorithms is read by other developers
and visualization composers, meaning that both groups must have
access to it on the level they are using the system. Testing must be
supported on both algorithm and visualization pipeline levels. From
a visualization composer’s perspective, the system must support
visual creation and editing of visualization pipelines as well as the
possibility to create a tailored visualization application.

Interaction is key in visualization systems. A computing
platform interoperable visualization system must therefore provide
access to native computing platform capabilities to allow processing
of large and complex data at interactive frame rates. In addition,
research is commonly at the forefront of technology usage, which
means that a visualization system used for research cannot abstract
away access to computing platforms. Thus, such a system must
instead provide access to the lowest technical layer. For algorithms
to remain portable across computing platforms, the system must
provide ways of seamlessly converting data between computing
platforms, i.e., transfer data between memory locations. While it is
possible to manually convert data from one computing platform to
another one, it requires knowledge about both computing platforms,
and thus does not scale when later introducing new computing
platforms. Furthermore, since this is a traveling salesman problem
where the highest performance path from one computing platform
to another one must be found, it is not feasible to solve this
combinatorial problem manually even for a small number of
computing platforms. To make things more complicated, different
computing platforms also have support for different types of
specialized data, such as buffers or textures. Mapping between
different types of data occurring in different computing platforms
is therefore an additional challenge that needs to be considered.

Concepts addressing the requirements above are presented in
the following two sections.

4 USAGE ABSTRACTION LEVELS

Supporting interactive coding, shader editing and debugging
requires a system allowing development to be performed across
layers of abstraction. This section will define key concepts for
such a system meeting the previously presented requirements. First,
we describe ways of achieving interactive development. This is
followed by three concepts enabling cross-layer development in
terms of debugging, documenting and testing.
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Fig. 1. Illustration of the layers of abstraction in our visualization system.
The different layers of abstraction allow access to functionality for different
usage levels and parts of the visualization application design process.
As an example, our Python integration allows interactive development
across layers through editing of the visualization pipeline or definition of
new processors.

4.1 Interactive Development

High level development means using a visual representation for
creating and changing visualization pipelines. In order to allow
simultaneous high level editing and low-level C++ coding, the sys-
tem must recompile and reload the changed parts while the visual
editor is running. This concept must be realized through a modular
system design, i.e., a plug-in system where dynamic libraries can
be unloaded and loaded again to reflect the changes made. Medium
usage abstraction level editing, i.e., modifying shaders used by
computing platforms, or scripting, can be performed at runtime
without unloading or loading dynamic libraries. Thus, interactive
development at this level can be realized through either providing
a user interface for recompiling the source code or observing
the sources of origin, e.g., text files, and automatically recompile
the source code when it changes. While the presented interactive
development concept is seemingly simple, it allows the user to
access multiple layers of abstraction at the same time and thus
address the rapid development requirements of the system.

4.2 Visual Data Flow Debugging

Debugging parallel operations is difficult since there are many
outputs occurring at the same time. Readily available debugging
tools can help developers by allowing the execution of a given
thread to be inspected. Inspecting one thread at a time can be
tedious and is most effective when the error has been narrowed
down to a specific part in the code. Visually inspecting output of
parallel operations can help the developer to quickly obtain an
overview and thereby identify the source of an error. This can be
seen as debugging on a higher level of abstraction, giving quick
access to information at lower abstraction layers.

This cross-layer debugging is provided by a concept we refer
to as port inspection. A port inspector allows the contents of a
processor’s port to be viewed. By applying this concept in the
visualization pipeline editor, it allows for step-by-step debugging
of the data-flow network. For example, hovering or clicking on
ports, or their connections, shows debug information about data
originating from their associated outport. We can not only inspect

data on a higher abstraction level, we can also create the debugging
information on a high level. For this purpose, we use a visualization
pipeline to provide the debugging information for a particular port
type. For example, a volume data port, containing a stack of
images, can use a predefined visualization pipeline for slice-based
inspection. Thus, the presented concept enables cross-layer visual
debugging of data flow networks.

4.3 Documentation
API documentation is more or less standardized nowadays using
for example the Doxygen system. However, this documentation is
intended for developers and is not readily available for visualization
pipeline editors. Providing documentation at the visualization
pipeline editor level can be done in a wide variety of ways. For
example, by presenting documentation written in separate files,
such as xml, or html. While this makes it possible to use tools
suited for text and layout, it also makes it harder to maintain and
follow from a developer’s perspective. For systems where low
maintenance overhead and ease of use is important, we suggest to
integrate this documentation procedure into the API documentation.
This allows developers to write documentation once but show it in
both API-documentation and to visualization pipeline editor users.

While developers are used to textual documentation, pipeline
editors often desire richer information. Thus, the documentation
must be presented appropriately at the different usage abstraction
levels. In practice, our concept involves extracting the documen-
tation of processors from the source code and augmenting it with
the visual representation used in the higher abstraction layer. The
augmented visual representation of the processor contextualizes
the documentation and can be generated automatically since they
are already used in the higher abstraction layer.

The documentation concept described above not only makes it
easy to maintain, due to its co-location with the actual code, but also
provides information on how to use a processor at multiple usage
abstraction levels and thereby address the system requirements.

4.4 Testing
Unit testing is commonly used for testing low abstraction level code,
but can also be used for testing an entire visualization pipeline.
However, unit testing requires programming skills and therefore
cannot be created in the higher usage level abstraction.

Our testing concept allows tests of visualization pipelines to
be created on a high usage abstraction level, i.e., through the
visualization pipeline GUI editor. Once the visualization pipeline
to be tested has been defined its results before and after a change
can be compared. However, comparing results of a visualization
pipeline presents challenges that our concept takes into account.
Here, one approach is to generate reference results on demand, i.e.,
never store them, and compare the new results with the generated
references each time a test is run. We have found this approach to be
problematic due to two reasons. First, the results can vary between
different hardware, but this, possibly incorrect behavior, will
never be detected since the same hardware is used for generating
reference and comparison images. Second, it can be resource
demanding since it requires having, or building, multiple versions
for generating the reference data. Thus, reference results should
instead be generated once when the test is defined. To deal with the
differences in results across hardwares we allow specification of an
error threshold such that, in cases an investigation has found that
this indeed is the cause of the error, the test can be allowed to pass.
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Fig. 2. Illustration of the computing platform communication in the C++
usage abstraction level for a volume data object. The Developer requests
representations of the object but data transfer is performed on a layer of
abstraction underneath data objects, thus never visible to the developer.
Representations are mapped to types supported by hardware, i.e., buffers
and textures, for performance reasons.

The presented testing concept has addressed the challenge of
exposing testing at a high usage abstraction level, and thus enables
the system to support testing across layers of abstraction.

5 COMPUTING PLATFORM INTEROPERABILITY

The lowest abstraction layer in our system is data abstraction. This
layer provides an interface for accessing data on a per comput-
ing platform basis without knowing about the other computing
platforms, thus enabling developers to utilize platform specific
features but still combine algorithms written for different computing
platforms.

Designing a computing platform layer of abstraction requires
considering both performance and sustainability. For example,
the OpenGL computing platform has specialized data types for
textures which must be taken into account to not loose performance.
Therefore, we focus on creating a layer of abstraction for the
data, not for all computing platforms. In other words, our concept
allows developers to fully utilize the computing platforms on the
premise that they request data for the computing platform they
are utilizing. While this might seem like a too narrow abstraction,
it is fitting to visualization pipelines since they operate on data
flows and each processor is in this way isolated from the other
ones. This abstraction layer must provide a common interface
for data objects flowing in the visualization pipeline. One way
of providing such an abstraction is to disallow direct usage of
the underlying computing platform memory location and instead
provide a wrapper exposing common functionality, similar to how
for example the Java programming language operates. Clearly,
this prevents developers from using computing platform specific
features. Another alternative is to provide an interface for requesting
the data for the desired computing platform. Given that data can
be transferred to the requested computing platform, it means that
the developer only needs to know about the computing platform
for which data is requested for. The downsides of this approach
are a more complicated data interface for developers, due to the
abstraction, and that data might need to be transferred when used
by different algorithms.

Our design consists of a general data interface exposing
functions for requesting data for arbitrary computing platforms. Ex-
amples of data types utilizing this interface are buffers, images and
volumes. Succinctly, the computing platform data representation
is simply referred to as representation. The three most important
objects of importance in our design are illustrated in Fig. 2 for

volume data. In this figure the data interface provides an abstraction
for data access, the representation manages the data, and the
converter transfers data between different computing platforms.
A representation is created lazily upon request. However, once
requested it is cached in order to reduce the number of data
transfers necessary. As the representations are typically not on the
same device, i.e., RAM and video memory, caching is in general
a good trade-off. A list of used representations by the data object
must be stored. It is necessary to know which representations in
the list that are up to date. For this purpose, a representation must
be requested with either read or write access. Write access means
that other representations must be updated from this representation
when requested. The observant reader has identified two types of
representation operations, one for creation and one for updating.
It is desirable to separate these two operations since creation is
generally slower than updating. Therefore, the only two tasks of a
converter is to create or update a representation from another one.

In practice, computing platforms such as OpenGL and OpenCL
have special data object types for which hardware accelerated
operations are supported. These need to be considered to obtain
interactive frame rates. Based on currently existing hardware we
have identified three types of fundamental data objects. Buffers,
which can store arbitrary data, 2D textures storing image data
and 3D textures storing volume data. This separation ensures
that hardware accelerated filtering operations can be utilized
on GPU computing platforms. Moreover, while the computing
platforms have evolved, these underlying types have remained
the same and due to their ubiquitous usage it is not likely that
they will be removed in the near future when new hardware is
developed. Each of these fundamental types requires one converter
per combination of computing platform. In order to form an
optimal conversion path when requesting data, all combinations
between the existing computing platforms must be considered.
Thus, it quickly becomes unfeasible to manually implement all
possible converter combinations. This challenge is addressed by
algorithmically creating converter packages from the individual
converters provided by the developers. One such package contains
a path to transfer data from one representation to another. These
packages can be sorted in order of performance and be selected at
runtime. In practice, this algorithmic converter path creation means
that a developer only has to implement one converter between the
new and an existing representation for it to function. Specifying
more data transfer combinations can increase performance, such as
in the case of shared data.

More complex data structures, such as meshes containing
buffers of vertices and other attributes, can utilize the fundamental
types provided as building blocks and thereby gain the same
properties. The presented concept improves the sustainability
of a visualization system while still allowing access to native
computing platform capabilities. The presented usage abstraction
levels and computing platform interoperability concepts have been
implemented in Inviwo. Details of these implementations are
provided in the following section.

6 REALIZATION IN THE INVIWO FRAMEWORK

The previously described concepts have been implemented in the
Inviwo system. We will first provide an overview of Inviwo and
describe how its different parts relate to these concepts. Then,
we will discuss how the usage level abstractions and computing
platform interoperability are realized in Inviwo.
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Fig. 3. The Inviwo architecture is divided into three main components.
The core provides, for example, processor network functionality, sav-
ing/loading mechanisms, and interfaces for extending the framework.
Modules bring in new functionality using the interfaces and factories
provided in core, or by exposing external libraries. Applications expose
the processor network in various ways, for example using graphical
interfaces for editing the network or tailored design for brain activity
visualization.

Inviwo can be divided into three main components illustrated
in Fig. 3. First is the core, containing functionality for evaluating
a data-flow network, fundamental data structures, such as images,
volumes and meshes, as well as interfaces and factories for adding
additional functionality. The core has no dependencies on any
GPU platform but provides the foundation for computing platform
communication. Second is the module system, which is used to
extend the core with new functionality at runtime in a plug-in
based manner. A new module can, for example, add support for
data readers, computing platforms or new visualization algorithms.
Third is the visual editor in which visualization pipelines can be
created, parameters can be tuned and scripting can be edited. The
visual editor provides access across the layers of abstraction and
supports interactive C++ coding, scripting and shader editing. It
has two modes, developer and application modes. The developer
mode allows data flow creation as well as parameter editing, while
the application mode hides the data flow network and only shows a
subset of parameters determined in the developer mode. Thus, a
tailored visualization application can quickly be created.

The following sub sections will first provide a brief overview
of Inviwo, then describe how the usage abstraction levels are imple-
mented followed by the details on how algorithm interoperability
is achieved.

Inviwo Overview
Inviwo is built around a central concept of a data flow graph
where each node in the graph represents a functional unit. The
edges in the graph represent data flowing into and out of the
functional units. A functional unit, its input and output data and
its parameters are encapsulated by a processor. A processor has
inports, encapsulating the input data, outports, encapsulating the
output data, and properties, encapsulating parameters. Guidelines
for how to best encapsulate a functional unit into a processor are
provided in the appendix of this paper. A group of processors can
be combined in the form of a processor composite and thus provide

VolumeRaycaster
Volume Raycaster GL

Status Light

Property Link

Link Connector

Inports

Outport

Type

Name

Port Connection

Optional Inport

Fig. 4. Visual representation of a processor, the encapsulation of an
algorithm in Inviwo. Data is flowing from the top into the inports of
the processor. The resulting output data continuous its flow through
the outport. Synchronization of properties between processors are
represented through property links.

an abstraction for a more complex task. The graph of connected
processors and processor composites is referred as the processor
network, which is equivalent to a visualization pipeline.

Data can be raw data in memory, geometries, volumes, images,
data frames or any other arbitrary data structure. Note that while the
types provided by Inviwo generally use the data interface presented
in Section 5, there is no such requirement on the port data. This
means that data types in external libraries can easily be integrated
and benefit from the usage abstraction levels, even though they
will not gain the computing platform interoperability of the data
types provided by Inviwo. Figure 4 shows the visual representation
used for a processor and its components. The processor itself is
represented by a box, where input data is flowing from the top into
the inports and the output data is exiting in the bottom through the
outport. A processor is evaluated when all its inports, and at least
one outport, are connected. The low abstraction layer concept of
function overloading in programming is captured using optional
inports, which do not need to be connected for the processor to
evaluate.

6.1 Usage Abstractions For Interactive Development

The implementations of interactive development in Inviwo can be
categorized into three usage abstraction level categories. The high
usage abstraction level is based on graphical interfaces, the medium
usage abstraction level contains scripting and shader editing while
the lowest usage abstraction level is based on C++ coding. Next,
we describe how the developer can move between these categories
and achieve interactive development in Inviwo.

6.1.1 High Usage Abstraction Level Editing
Visualization pipeline abstraction level editing is performed in
the processor network editor (network editor), seen in Figure 5.
The network editor is an application for visually building, editing,
debugging and running processor networks. It is a key component
as it provides means for cross-layer development by allowing
the developer to seamlessly move between visually editing the
visualization pipeline, scripting in Python and coding in C++.

The network editor uses the drag-and-drop metaphor to include
processors in the network. Processors added by modules can
be selected from a list and dropped into the processor network,
whereby a graphical element, exemplified in Figure 4, is created
to represent the selected processor in the network. Its inports and
outports are displayed as colored squares laid out in rows at the top
and the bottom of the element, respectively. The color of the ports
reflect the type of data they manage. Images are blue, volumes are
red and meshes are yellow.
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Processor list

Processor network

Console debug

Property list

Fig. 5. Screenshot of the Inviwo network editor for rapid visualization
pipeline creation. The processor network in the center loads and
visualizes the charge density of the chemical boron element. New
processors can be dragged from the processor list and dropped into
the processor network, where a visual representation of the processor
and its components will be shown. Pipelines are created by connecting
processor ports in the network. Properties exposed by the selected
processor are automatically shown in the property list to the right.

The network is automatically evaluated while building the
pipeline and the results can be inspected either in a canvas or
through visual debugging (see Section 6.2). Selecting a processor
in the network shows graphical user interfaces (GUIs) for editing
all of its properties, see the Property List in Figure 5. The same
property type can have different visual representations, which we
refer to as property semantics. For example, four floating point
values can be represented by four sliders or as a color. The property
semantics can be set at different usage abstraction levels, i.e.,
in code or visually using the property’s context menu. Multiple
processors can be aggregated into one processor, which thereby
enable high usage abstraction level access to the third layer of
abstraction, processor composites.

Properties in the network can be linked (synchronized) between
processors in a similar, but orthogonal, way to connections between
ports. A dotted line between link connectors of two processors
indicate that one or more of their properties are linked.

This high usage abstraction level editing enables interactive
development of a visualization pipeline. However, the network
editor also integrates with the medium and low usage level
abstractions as described next.

6.1.2 Medium Usage Abstraction Level Editing

Inviwo has integrated support for the widely used Python scripting
language. The Python integration in Inviwo can be used in several
ways. Firstly, it is possible to perform batch processing using
an integrated Python editor in the processor network editor. As
an example, camera parameters can be scripted for performance
benchmarking. The integrated Python editor thereby enables the
developer to seamlessly move between the high and medium
usage abstraction levels. Secondly, data can be transfered back
and forth to Python for computations within a processor. This is
particularly valuable due to the rich data processing capabilities
in Python, but also means that algorithms available in Inviwo
can be used in Python. The Python data transfer is typically used
within a processor, but the script can be exposed through a property
which thus enables high usage abstraction level editing. Third, a
processor and its processing can be defined entirely in Python. This
is advantageous for developers more comfortable with Python, and

of course inherits the benefits of working with a scripting language
while still taking advantage of the usage abstraction level concepts
in Inviwo. Finally, we point out that Python is still integrated
through a module, i.e., it is not included in Inviwo core, which
demonstrates the modularity of Inviwo.

Interactive shader editing in the network editor is also supported
by observing all shader files. Saving a shader file will notify
the network editor, which will invalidate the processor network,
causing it to update the output. Similiar to Python scripting, some
processors also expose shaders through properties. Changing a
shader in this case invalidates the property, which also causes the
processor network to update.

6.1.3 Low Usage Abstraction Level Editing
The Inviwo system is based on a modular structure, which is the
foundation for achieving interactive development. All modules
depend on the core and, in addition, they can depend on other
modules or external libraries, see Fig. 3. Dependencies on external
libraries occur when integrating their functionality into Inviwo.
The module system allows new functionality to be included
without introducing any dependencies into the core system. For
example, the OpenGL module adds OpenGL computing platform
support to the Inviwo system. Other modules can depend on the
OpenGL module to build on those capabilities. Inviwo takes care
of managing the dependencies between the different modules.
When possible, external library source code should be brought
into the build system to ensure version compatibility in deployed
applications.

Interactive coding is enabled by allowing modules to be loaded
at runtime when they change, also known as hot reloading. The
network editor observes all module shared library files for change,
meaning that the developer can recompile the module while the
application is running and immediately see the effects of the
change. The processor network is serialized, modules are reloaded,
and the network is deserialized again. It should be noted that
the developer has the responsibility to ensure that a module can
be unloaded and loaded repeatedly, for example by not making
breaking API changes, as the system cannot regulate this. A module

Fig. 6. Example of visual debugging of a visualization pipeline. In this
instance, a port inspector shows the rendered color layer, the picking
buffer, and the contents of the depth buffer. Details, such as data format
and dimension are, displayed below the images.
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Fig. 7. Inviwo processor documentation, based on Markdown and doxygen, serves as both API (left) and end user documentation (right). The visual
processor representation seen at the top in the right image is automatically generated by the Inviwo documentation system.

version system ensures that modules of correct version are loaded
at runtime. Modules are only loaded if they are linked to the
correct Inviwo core version used by the application. Thus, it is only
necessary to bump the module version if the module is released in
between Inviwo core releases. This version dependency means that
module developers rarely need to care about the module version.

In essence, the presented interactive development implemen-
tation allows developers to rapidly move between a low usage
abstraction level, i.e., editing the code, and a high usage abstraction
level, i.e., visually editing the visualization pipeline.

6.2 Visual Debugging
Inviwo provides port inspectors based on processor networks for
three types: meshes, images and volumes. Modules can add more
port inspectors if desired. Events are forwarded to port inspectors
meaning that interaction is possible. As an example, the volume
port inspector, showing a series of slices, allows for changing
the current slice using the scroll wheel of a mouse. Since the
pipelines created for port inspection by design are computing
platform interoperable, it is possible to use the port inspectors on
data residing in another computing platform’s memory.

Creating an entire processor network for less commonly used
port types can be to high of a threshold. Inviwo therefore also
allows port debug information to be created using C++ template
traits for the port type. The port template trait output debug text,
expected in HTML-format, will be displayed together with the
results of the data flow port inspection, if existing. This enables
visual debugging information to be created at both low and high
usage abstraction levels.

Figure 6 depicts the inspection of an image port as realized
in the Inviwo system. It shows the output images generated
or forwarded by the respective processor, including additional
information such as image format and dimension. A default
implementation for ports displays the name of the port, meaning
that the port inspection can be applied to all ports and port
connections without any efforts from a developer.

6.3 Two-Level Documentation
Inviwo implements the documentation concept combining low
level API-documentation and high level documentation in the

network editor using the Doxygen system. The Doxygen docpage
command is used in the header file of the processor, thus co-
locating the documentation for developers and visualization editor
users. Each docpage provides descriptions of how to use the
processor, its inports, outports and parameters. In practice, we
use Markdown language for this purpose, since it is supported
by Doxygen and thereby provides a rich way for describing the
module. The documentation itself is generated at compile time
using a separate compile target. The processor identifier, which is
a unique identifier available in all processors, is used to provide
a connection between the documentation and the processor. This
makes it possible to also automatically generate images of the
visual representation of each processor. These images provide a
contextual overview of the processors in the documentation. An
example of API and end user documentation based on the same
comments can be seen in Figure 7. In order to reduce copy-paste
errors, and to make it quick and easy to create as well as document
a processor, boiler plate processor code can be generated through a
python script.

6.4 Cross-Layer Testing

The Inviwo system tries to make it as easy as possible for developers
to create tests across the layers of abstraction, i.e, code and entire
processor networks. For example, the tests made for Inviwo can
run on the developer’s machine, they do not require a separate
testing machine. The system currently provides two means for
testing, unit tests, which focus on testing each element of the code,
and regression tests, which focus on testing integration between
processors, i.e., the top abstraction layer described in Section 4.4.

Module developers can add tests by creating a folder called
”tests” in their module directory and putting unit tests in sub-folder
”unittests” and regression tests in sub-folder ”regression”. All tests
organized according to this structure will automatically be added
by the framework. Further details about the two types of testing is
provided below.

6.4.1 Unit Testing
Inviwo relies heavily on Google Test [34] for its unit testing and,
instead of providing its own unit testing framework, tries to provide
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a smooth integration. The unit tests are performed on a per-module
basis. As mentioned above, all files having cpp file-ending residing
inside the unit testing folder of the module are automatically
considered. Each test source file can include one or multiple tests.
By default, unit testing of all modules is included in the build
process of the system. This means that the tests are run after a
successful build and output information about the tests is shown in
the integrated developer environment (IDE). Unit tests can also be
run individually if desired.

6.4.2 Regression Testing
While writing unit tests for each individual unit of code ensure
correctness of the unit, it does not necessarily test its integration
with other units. Regression tests in Inviwo execute a whole network
and compare its output with a result deemed correct. Creating a
regression test is therefore only a matter of saving the output in
the processor network, commonly the canvas images, along with
the workspace containing the network. Future changes producing a
different output will fail the regression test. Thus, this is a quick and
easy way of detecting if code changes have an undesirable effect
on the output of existing algorithms. While this approach does not
tell exactly which unit of code caused the failure, it does tell which
code changes that did. From experience, we have found that GPU
hardware might produce small numerical differences depending
on driver version or manufacturer. To resolve this, the developer
can configure the regression test error threshold per output. Note
that allowing errors should be used with caution and only after
thorough investigation.

Python scripts can be used to simulate interaction or other
runtime changes. All Python scripts in the folder of the regression
test will be executed after loading the network, meaning that all
functionality exposed through the Inviwo Python integration can
be utilized in a regression test. The Inviwo regression testing
environment itself is setup using Python scripts. The Python scripts
manage the execution of the tests and also generate a report in
HTML. An example of a regression test report is depicted in Fig. 8.
Besides details about the outcome of the tests, the report allows
developers to see the difference between the result image and the
reference image as well as analyzing performance measurements
over time.

Regression tests need to be executed on demand since they
are too time-consuming to run as a build-step. Correctness and
stability of the public repository code is ensured by utilizing a
continuous integration server, which runs all tests before merging
code changes.

6.5 Algorithm Interoperability

Inviwo has implemented the data interface described in Section 5
using template functions for retrieving representations. The returned
representations are therefore strongly typed, which aids in the devel-
opment process. Currently, CPU, OpenGL and OpenCL computing
platforms are supported. We foresee that future heterogeneous
computing platforms may integrate CPUs and GPUs into the same
hardware. The data location will in this case be be shared among the
different computing platforms. Inviwo system takes this scenario
into account by allowing the underlying data to the shared among
different computing platforms. Currently, Inviwo supports shared
OpenGL and OpenCL buffers and textures. No data transfer is in
this case necessary, since they reside at the same video memory
location. There are a range of implementation aspects that need to

Fig. 8. Depiction of a regression test report. The plot in the top provides an
overview of the regression test history. Test details show the new output,
the reference, magnified difference between them and a binary mask of
where error is above the error threshold. Additional details include the
runtime log and explanation of the error causing the failure.

be considered when using shared OpenCL representations. First, it
requires that data has first been allocated in OpenGL. Thus, if data
is located on RAM it must first be transfered to OpenGL before a
shared OpenCL representation can be created. The algorithmically
created converter packages described in Section 5 substantially
reduces the implementation effort in this case. Second, OpenCL
supports a limited subset of data formats compared to OpenGL.
Lower versions of OpenCL do for example not support depth
textures. Therefore, Inviwo currently throws errors when these
unsupported formats are used. Ideally, they should be converted
without errors even though performance might suffer, which can
be seen as a future improvement for the system. The implemented
computing platform converters makes Inviwo computing platform
interoperable and allows current and future computing platforms to
be used without changing existing implementations as required in
Section 3.

7 APPLICATION EXAMPLES

Inviwo has successfully been used in numerous scientific publica-
tions within different application areas, commercial products, and
university-level courses. The scientific contributions include work
on advanced volumetric illumination [35]–[37], medical and molec-
ular visualization [38]–[40], transfer function design for volume
rendering [21], [41], crowd-sourcing-based user studies [42]–[44],
topological analysis [45]–[47], as well as multi-variate data and
flow visualization [48]–[50]. In addition, Inviwo is to the best of
our knowledge currently used by four different universities and two
commercial companies.

We have selected four examples demonstrating usage of Inviwo
at different usage abstraction levels as well as its computing
platform interoperable capabilities. Admittedly, some of these
concepts are hard to demonstrate since they are integrated in
the development process. We start by demonstrating the core
concepts in a fictitious example starting from importing data over
adding additional functionality in shaders and processors to creating
regression tests. Afterward, we continue with real-world examples
including large scale pathology imaging, public brain visualization
exhibition, and education.

7.1 Usage Abstraction Level Work-Flow

This example demonstrates how the presented concepts are used
in the process of creating a visualization. It starts on a high usage
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abstraction level, goes into medium and low usage abstraction
levels before finishing with creating a visualization pipeline test.
The reader is strongly encouraged to have a look at the video
in the supplementary material which complements this textual
description.

In order to create a volume rendering pipeline, the user starts
by dragging and dropping a volume source processor set into the
network editor and referring to a CT scan of a salmon. Next,
three more processors are added to the pipeline; one for providing
the bounding box geometry for the volume, one for generating
entry and exit points for each pixel, and a volume raycaster. This
processor renders the volume by considering the output of the other
processors including the volume source. Finally, a canvas processor
is added to show the resulting image. The volume data is then
further explored by adjusting the transfer function. To quickly get
an understanding of the data flow in the pipeline, the user hovers
over the outports of each processor and thereby sees their content
by means of the port inspector concept.

In the next step, the user wants to clip the volume program-
matically in the shader, which we refer to as medium usage
abstraction level. The raycasting shader is extended accordingly and
the changes are immediately propagated to the network after saving.
The necessary parameters, i.e. a boolean flag and the spatial position
of the clipping, are exposed via shader uniforms. On the low usage
abstraction level, the user can now add matching properties to the
C++ source of the volume raycaster processor. These properties
are then used to set the uniforms in the shader. A recompilation of
the code causes the network editor to reload the network, which
demonstrates the interactive development possibilities even at the
low usage abstraction levels. Moving back to high level editing in
the network editor, the newly added properties are accessible in
the property list and can be used to interactively adjust the clipped
region.

High and medium usage abstraction levels are exposed by the
Python scripting integration. Here, the user decides to export each
xy slice of the volume dataset individually which requires a script
looping over all slices in the volume and writing the respective
contents of the canvas to disk.

To ensure that the results remain consistent despite future
changes, a regression test is created by selecting create regression
test in the menu. This demonstrates the ability to quickly create
tests at high usage abstraction levels. The regression test is run
locally and the resulting regression report is inspected.

7.2 Applied Research Usage Example

In recent years, hospitals have started to digitize tissue samples on
glass slides using scanners to obtain digital high-resolution color
images of the samples [51]. Multiple digitized slide images of
the same sample can be co-registered and combined into a single
volume, thereby closely resembling the original block of tissue.
The challenges associated with this kind of data include dealing
with large amounts of image data, ways of interacting with this
data, and the ability to look at the inside of the volume, i.e., the
image stack.

The visualization of the image stack is based on brick-based
volume raycasting [52], thus enabling large scale data handling
of volumetric data within Inviwo. Inviwo provides a thread pool,
which is used for on demand asynchronous loading of bricked
image data. Image tiles are first loaded using the OpenSlide
image library [53] and then uploaded into a 3D texture atlas. A

Fig. 9. Digital pathology: Visualizing a stack of 100 colored microscopic
slides, each with a resolution of 63,000×35,000 pixels and totaling in
110 GiB of compressed TIFF image data.

volume, indicating the brick indices, is forwarded to the raycasting
along with the texture atlas. The existing raycasting processor
was extended in order to account for RGB image data instead of
scalar values. A 2D transfer function based on color similarity [41]
enables the user to adjust opacity as well as replacement colors,
which could, e.g., be used for highlighting features.

Fig. 9 shows an interactive rendering of 100 slide images as
well as domain specific navigation. The TIFF jpeg compressed
image data consumes about 100 GiB on disk and features details
like individual nuclei. In order to address the challenges related
to interacting with the stack of slide images, Inviwo provides a
user interface, a minimap, and navigation widgets. The result is a
tailored application that is used by a number of pathologists located
at several hospitals and was evaluted in a user study with practising
pathologists [39]. This scenario has demonstrated the ability to
develop at both low and high abstraction layers in Inviwo as well
as its capabilities in tailoring an application to domain scientists.

7.3 Public Dissemination Usage Example

Taking research into public display, such as science centers and
museums, poses different demands on a system compared to
prototyping ideas for research. Stability, in case the application will
be running all day, seven days a week, is a an even more important
requirement. In addition, the application must be responsive and
the user interface should be tailored to suit visitors without prior
experience regarding the underlying algorithms [21].

Fig. 10 depicts a brain visualization application where the entire
user interface has been tailored for public use. The application
visualizes where active areas in the brain are located while
performing different tasks, such as wiggling toes or listening to
music. It uses volume visualization techniques to fuse data from
magnetic resonance imaging (MRI) and functional MRI, inspired
by Nguyen et al. [54]. The graphical user interface communicates
with the processor network driving the brain visualization. It uses
the built-in processor network evaluation, touch interaction, and
data management, while extending Inviwo with new modules for
multi-modal volume visualization.

In this scenario, the work-flow for creating the application was
as follows. In a first step, the visualization pipeline was set up in
the network editor using readily available processors for loading
MRI and fMRI neuroimaging data, data processing, and interaction.
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Fig. 10. Public exhibition of human brain activity depicting where active
areas are located in the brain when performing different tasks.

A new volume visualization processor was created for fusing the
MRI and fMRI signals. Finally, Inviwo was used as an API in an
application with a custom user interface, where the GUI elements
were connected to the corresponding properties in the processor
network using their identifiers.

The application has been running every day during opening
hours since 2015 at the Tekniska museet (Technical Museum) in
Stockholm, Sweden, and the Visualiseringscenter C (Visualization
Center C) in Norrköping, Sweden. A big advantage of this
setup has been that the actual data processing, rendering, and
interaction could be fully created and adjusted on a higher level
of abstraction within the Inviwo network editor. This application
scenario demonstrates the use of Inviwo at a low level, as an API,
at a high level through the visual network editor, as well as its
stability, responsiveness, and user interface flexibility.

7.4 Educational Usage Example
Inviwo has been used as the underlying platform for a number of
master thesis’ and is currently being used in, to our knowledge,
four courses on visualization. In these courses, the students are
primarily using the system to get an in-depth understanding of
visualization algorithms by implementing them, but also to explore
how common visualization algorithms work in practice. VTK [8],
Paraview [18] and VisTrails [9] have previously been used for two
of these courses. From this experience, it was found that use of
pure VTK imposed a steep learning curve and that the tree-view
of data-flow in Paraview was hard for the students to understand
with respect to how data is flowing in the visualization pipeline.
VisTrails has succesfully been used for education [55] and provides
a similar setup as Inviwo with respect to the visualization pipeline.
However, VisTrails tends to expose many inports and outports per
node/processor, which was confusing to the students. In Inviwo,
the number of ports of processors are reduced by applying the
processor creation guidelines presented in the appendix, which
make it easier for new users of the system. The visual debugging
concepts further help the students to understand the data flows and
find errors in their implementations.

As a contrast to the courses targeting visualization, Inviwo
is also used in a course for physics students on Bachelor level.
The physics students design visualizations of electron structure
simulation data for common tasks involving analysis of charge
densities, molecular dynamics and crystal structures. They use both

the Python scripting in Inviwo as well as the high level network
editor to accomplish their goals.

To summarize, Inviwo has been used by hundreds of students
to both get in-depth understanding of visualization algorithms and
how to use them to understand data. The students use the system at
all levels of abstraction.

8 DISCUSSION AND CONCLUSIONS

In this paper we have described how to design a computing platform
interoperable visualization system with usage abstraction levels
through a layered architecture. The proposed computing platform
interoperable solution allows algorithms developed for different
computing platforms to be used together while still allowing
developers to access the underlying computing platforms.

We presented several concepts for interactive development,
debugging, documentation and testing across layers of abstraction.
More specifically, the concepts allow tasks commonly performed
by a developer at lower levels, i.e., debugging in IDEs, to be
performed on a visualization pipeline level. While some of these
concepts are found in other systems, we have formalized them and
brought them together in one system. It is the combination of the
presented concepts that enable tailored visualization applications to
be rapidly developed. For example, since the system is computing
platform interoperable, it is possible to design a port inspector
using OpenGL and apply it to data residing in OpenCL. This also
demonstrates the crucial success factor in view of the amount of
work that goes into creating and maintaining advanced visualization
systems.

The concepts were demonstrated in the Inviwo system along
with accounts for implementation choices and technical details,
such as use of shared computing platforms, that need to be
considered when realizing the concepts. Naturally, not all de-
tails can be provided in a systems paper but a comprehensive
account for technical aspects is available on the Inviwo website
(www.inviwo.org), where the source code is also distributed freely
under the BSD license.

Several application examples, implemented using the Inviwo
system, demonstrated the wide usage levels made available through
the described concepts. It was shown that Inviwo meets the
requirements and can be used throughout the whole visualization
application design process, from writing functional units, through
visualization pipeline editing, to tailored application creation.

While the presented computing platform interoperable solu-
tion allows for high performance and novel utilization of each
computing platform, it can also be seen as one of the limitations
since algorithms will be designed for a specific computing platform
and will have to be ported to devices not supporting them. For
example, algorithms using OpenCL cannot run on mobile phones.
The presented concepts have been designed and demonstrated for
single-computer usage. An interesting direction for future work
would be to take the demonstrated out-of-core concepts and extend
them to distributed computing.
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received his Ph.D. degree (Dr.rer.nat.) from the
University of Stuttgart in 2013. His research inter-
ests include large-scale volume rendering, visual-
izations in the context of pathology and systems
biology, large spatio-temporal data, topological
analysis, glyph-based rendering, and GPU-based
simulations.

Anders Ynnerman received a Ph.D. 1992 in
physics from Gothenburg University. During the
early 90s he was doing research at Oxford Univer-
sity, UK, and Vanderbilt University, USA. In 1996
he started the Swedish National Graduate School
in Scientific Computing, which he directed until
1999. From 1997 to 2002 he directed the Swedish
National Supercomputer Centre and from 2002
to 2006 he directed the Swedish National Infras-
tructure for Computing (SNIC). Since 1999 he
is holding a chair in scientific visualization at
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