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Abstract 

In order to keep up with changing market demands like highly individualized products, automotive OEMs are facing these new requirements 
with mass-customization and more efficient digital methods. With the ongoing virtualization of production planning and verification, new 
technologies are necessary to facilitate interaction with virtual environments for planning experts. 
While marker-based motion capture systems have been used for tracking of worker movements and interaction with those digital models until 
now, with the advent of markerless tracking technologies like the Kinect depth cameras, those solutions attract more interest because of their 
reduced cost, ease of use and the absence of cumbersome suits and markers. 
However, when using depth cameras, which have been primarily designed as short-range gaming devices, different issues arise when dealing 
with large-scale setups common in shop floor and production planning environments. Similar to traditional motion capture systems, it is 
necessary to deal with occlusions, camera registration and calibration and fusion of multi-depth-camera data to obtain a sufficiently large and 
robust tracking space. 
For this purpose, we propose such a novel multi-depth-camera approach, which is able to register itself only by observing the worker’s 
trajectory. It is then able to reliably track the worker movements across a large space and also optimize the skeletal tracking. Through its 
distributed and scalable approach, the multi-depth camera system can be set up flexible for versatile tracking scenarios in practical production 
planning use. Based on sensor hardware specific quality criteria, it is able to fuse incoming tracking data and to provide a coherent view of the 
tracking space even in difficult tracking situations. 
© 2015 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the Scientific Committee of 48th CIRP Conference on MANUFACTURING SYSTEMS - CIRP CMS 
2015. 
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1. Introduction 

With the trend towards bigger product variety [1] and 
mass-customization [2], the OEMs face the fact of rising 
demands on manufacturing technologies and production 
planning [3]. Nowadays, in automotive sector customers 
expect highly individualized cars for their personal needs with 
various options on equipment. Therefore the external product 
variety is continuously increasing, due to more body types, 
power trains and optional equipment range (compare [4]). 
Existing factories have to become more versatile and flexible, 
since mixed-model production has to take over new car bodies 
on the same production line at higher volume flexibility. 

Assuming typical car life cycles to stay constant at 
approximately 7 years for each model, this automatically leads 
to more frequent and shorter ramp-up phases, higher demands 
on planning and thus to higher costs in general. 

In order to overcome these negative effects, digital models 
and tools are a promising approach to achieve higher 
production- and volume-flexibility and more efficient 
production planning [5]. In the context of smart factories, 
digitalized tools and methods will replace traditional 
processes and methods, since information on products (e.g. 
CAD data), processes (e.g. former production process) and 
resources (e.g. factory and tool layouts) are digitally available. 
Several tools already exist to digitally support the planner’s 
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work, e.g. in car sequencing procedures, process planning and 
layout planning. Howard et al. found that per auto maker, one 
can find up to 200 individual IT-systems in a traditional 
assembly plant [6]. 

However, these tools are still using mostly desktop-based 
interaction concepts, which require a high amount of initial 
training for the operators, and are not directly usable by the 
workers, who in turn tend to hold key knowledge useful for 
process optimization, especially in collaborative workshop 
situations like the “continuous improvements process” (CIP) 
or “integrated production planning” workshops. 

Furthermore, these tools also do not directly reduce the 
need for physical prototypes, which still are major cost factors 
in planning and optimization. 

1.1. Vision for mixed-reality, collaborative workshops in 
Production Planning 

To overcome these challenges, two promising current 
interaction technologies are virtual reality (VR) and 
augmented reality (AR), which allow for a more direct and 
natural involvement with the virtual representation of the 
processes and their components. However, interaction models 
for such methods are new and unproven and thus error-prone, 
currently rather cancelling out the advantages that were 
originally hoped for. Aurich et al. discuss advantages of 
virtual reality for CIP workshop situations [7]. 
 

 

Fig. 1.: Rendering of virtual workshop situation with multiple-depth-camera 
based setup. 

However, in the future, workshop managers will be able to 
choose the optimal degree between reality and virtuality, 
depending on the validation demand, available digital data 
quality and existing hardware. Blending real hardware 
components with virtual ones, a real, virtual reality or mixed 
reality scene can be created. Fig. 1 depicts a rendering of such 
a mixed reality scenario. 

Every interaction by workshop participants ideally directly 
influences both the digital model and the reality 
simultaneously and synchronously, as presented by Ishii in 
2012 [8]. Through this, direct and natural interaction is 
enabled and allows every participant of a collaborative 
workshop to modify models without specialized training.  

To achieve the vision of such a virtual integrated workshop 
situation, two technical challenges have to be mastered – 
direct natural input, and VR-enabled output visualization. 
While the deployed visualization technology depends on the 

chosen degree of virtuality, a real-time tracking of human 
activity is a crucial enabling technology for direct and natural 
input. Gestures, viewpoint control and activity recognition are 
based on robust, real-time and large-scale tracking 
possibilities. The system presented in the following chapters 
offers all these features and will be described along exemplary 
use cases typical to the production planning domain. 

In the remainder of this paper we first state possible 
requirements from the application domain in the context of 
this use cases. Afterwards, an affordable, fully functional 
technical solution is presented, which is then discussed with 
regard to the use cases. In the end, we conclude with an 
overall assessment and outlook on further optimizations. 

2. Use Cases and Requirements on Motion Capture in 
Production Planning 

2.1. State of the Art in Motion Capture Technology 

The primary goal of motion capture technologies has 
always been to record human poses and motion, targeting a 
wide range of different application fields. Starting with use in 
the film industry, more and more analytical tasks have also 
been carried out using such systems, e.g. in medical or 
computer science. Until the recent advancements in 3D 
imaging, motion capture systems were typically built upon 
marker-based methods, where a large number of cameras are 
pointed towards the capture volume. The actors within the 
volume wear specialized suits, which carry spherical, 
retroreflective markers attached to characteristic body 
locations. Motion capture software then solves the measured 
location of those markers to a digital skeletal model [9], 
which can be used as an input for diverse applications. 

With the advent of cheap and markerless 3D-imaging 
based tracking devices like the Microsoft Kinect around 2008, 
body-tracking-based interaction soon also found its way into 
various applications ranging from the original domain of 
casual gaming to research and industrial use despite their 
lower performance when compared to traditional MoCap 
systems. Again, the output of these tracking devices is a 
digital skeletal model, but besides this it is also possible to 
capture additional 3-dimensional features of the scene like 
geometry or overlayed color imagery, which also helped to 
enable many new applications.  
Besides implicit, analytical tracking applications, skeletal 
tracking can also be employed to enable explicit interaction in 
augmented and virtual environments. This encompasses a 
wide range of interaction from gestural control of virtual parts 
projected onto a scene, up to fully immersive VR 
environments, where e.g. assembly operations can be carried 
out without any real prototypes from a first-person 
perspective. Numerous examples of works from the HCI field 
like [10] or [11] show off the capabilities, which also can be 
exploited for interaction in planning environments. 
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2.2. Motion Capture in Process Optimization Use Cases 

In practice, production planning is using tracking and 
motion capture systems in order to optimize processes, 
products and ergonomics of workplaces.  

Virtual interdisciplinary workshops prevalently use optical, 
large-scale tracking systems with marker suits to map human 
motion on an avatar or digital human model (DHM). 
Operators set up the virtual environments with the 3D 
geometry of the product and resources. By virtually 
simulating planned process, problems in planning can be 
identified.  

One typical use case for motion capture systems is process 
optimization which is a crucial task of production planning. 
Having worked out drafts of process descriptions, 
interdisciplinary workshops are held to optimize processes. 
Process specialists are observing workers with hands-on 
experience, who are carrying out work tasks either on 
physical products or in virtual environments.  By observing 
the worker’s movements in the virtual scene, manufacturing 
values can be reduced and work load for mixed-model lines 
can be balanced. Unwanted dependencies between workers, 
unnecessary walking paths and the need for specialized 
handling tools are assessed in parallel. All motion data can be 
recorded for documentation purposes. 

Furthermore, physical objects or mock-ups are additionally 
tracked for digital buildability checks. The tracked objects 
are used as interaction representations for the virtual vehicle 
parts. Virtual assembly parts are then checked for geometric 
consistency, thus ensuring that all of them can be assembled 
[5]. Having enough space in the static assembly position does 
not automatically imply that it can be built by the worker due 
to collisions in assembly paths of the part. Accessibility for 
tools and hands of workers are often not respected by product 
engineers in advance.  

Additionally, motion capture systems are used to ensure 
the design principle of visibility. View-point verifications are 
carried out virtually by using DHMs. Critical mounting points 
are assessed related to their visibility, because task execution 
quality can then be directly checked by the worker, e.g. if the 
screw is correctly tightened. Concurrent Engineering enables 
production specialists still to influence the product according 
to the production-oriented optimizations (see [12]). 

2.3. Motion Capture in Ergonomics Analysis Use Cases 

Besides process optimizations, ergonomic analysis of 
workplaces is an important subject for production planning. 
Motion capture systems are widely used in order to virtually 
support evaluation and optimization. Literature presents 
various methods on ergonomic analysis, like EAWS[13], 
NIOSH or OCRA which are all in automotive company use.  

In 2011 the ErgoToolkit presented and integrated an 
ergonomic analysis method into virtual manufacturing 
software [14], based on digital human models (DHM), but 
lacked the possibility of easy and interactive posture adaption. 
Postures had to be refined by manual work. DHMs now can 
be accurately and interactively controlled by motion capture 
systems. Workload and ergonomic assessments of manual 

assembly tasks therefore can be carried out in real-time as 
well as in a recorded, post-hoc manner. For this, spatial 
parameters like posture and temporal parameters like 
repetitive actions can be assessed, such as presented by 
Martin et al. in [15] or in [16].  

Gathering the skeletal tracking data of the worker during 
assembly tasks, distinct activities can be recognized based on 
the skeletal configuration and temporal aspects using different 
techniques like machine-learning e.g. using SVM classifiers 
[17] or rule-based inference [18]. Ongoing research on 
automatic assessment of motions using biomechanical human 
model like DYNAMICUS [19] is facilitating process planning 
based on MTM-Universal Analyzing System, since motion 
data can automatically be segmented, classified and assigned 
to work instructions. Task execution times, task orders and 
ergonomic assessments can be derived automatically and thus 
also assessed and analyzed. 

2.4. Requirements on the Use of Depth-Camera-based Motion 
Capturing in Production Planning 

When trying to enable a widespread use of multi-depth-
camera based motion tracking systems in the previously 
described use cases, a range of goals must be met, which are 
currently not or only partially satisfied with traditional motion 
capture systems. Ideally, virtual production planning 
workshops with motion capture systems are quick to set up, 
offer markerless tracking systems and make virtual 
assessments as easy as physical ones and do not need 
permanent support of virtual tool operators. 

2.4.1. Precision 
Most of the traditional motion capture systems are designed 

and optimized for sub-millimeter precision on a marker level, 
whereas for ergonomic and process optimizations this degree 
of accuracy is mostly not necessary. Embracing this aspect not 
only helps to cut costs, but also enables easier setup 
procedures like the one proposed with the multi-depth-camera 
implementation in this paper. 

2.4.2. Ease of use 
Another advantage with depth-camera motion tracking 

systems is the markerless approach. While this approach also 
results in lower (but still sufficient) tracking precision, it 
eliminates the need for putting on and wearing a marker suit, 
making it possible to capture workers in their regular clothes. 
This not only reduces setup time per actor, but also improves 
social acceptance, as several workers could get embarrassed 
when wearing tight tracking suits in front of the other 
workshop participants. Furthermore, motions may differ from 
the actual assembly motions when wearing working clothes. 

Furthermore, for traditional motion capture systems and the 
downstream processing pipeline, considerable expert 
knowledge and also time is necessary to setup and maintain 
the capture system as well as the tool platform for specific 
tasks. To allow also non-experts to setup and use such a 
system, a plug-and-play operation is desirable, without 
complicated setup or adjustment procedures. Besides reduced 
time and costs, this also increases the portability of the system. 
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2.4.3. Costs 
Initial costs for motion capturing systems are usually very 

high, and not always directly related to the achievable 
precision and quality (see Thewlis [20]). As traditional motion 
capture facilities also tend to be stationary because of their 
extensive setup procedures, it is necessary to maintain 
multiple motion capture areas, thus further increasing costs. 

With a multi-depth-camera system, costs can be cut to a 
fraction of a traditional motion capture system for a 
comparable capture volume. Furthermore, due to the short 
setup time the system is more portable and can easily be 
moved between different departments or plants, thus 
eliminating the costs for the purchase of multiple systems. 

 
Based on this main requirements, the system presented in 

this paper may help to spread motion-tracking based 
production planning methods further within the manufacturing 
industry, and allow for a more frequent use of this methods 
while reducing costs and demands on expert staff. 

3. Implementing a Multi-Depth Camera Tracking System 

A multi-depth-camera system has different advantages 
both over a traditional MoCap system and also over using 
single depth cameras. Having already lined out possible 
drawbacks of motion capture systems in the previous chapter, 
using single depth cameras also entails several drawbacks. For 
example, they are prone to occlusion effects through the 
workers’ body, or parts and other structures within the capture 
area. Additionally, with a single depth camera, the tracking 
area is restricted to the field of view of this camera, which is 
usually quite limited. 

Using multiple depth cameras, it is possible to overcome 
these effects and to achieve a more robust tracking with 
extended range at a fraction of the price of common MoCap 
systems as described in the following sections. 

3.1. Depth Camera Technology 

Different types of depth cameras have emerged over the 
last years, most notably Structured Light (SL)-based and 
Time-Of-Flight (ToF)-based cameras. The Kinect v1, which 
made depth sensing affordable not only for gaming but to a 
whole range of communities across industries and research, 
was based on SL technology. The new revision of the Kinect 
(v2) is now based on ToF technology that delivers more 
robust sensing and increased effective resolution at still 
affordable prices. The ToF principle works by emitting 
modulated light pulses, whose delay is measured through the 
phase difference when the pulses return to a sensing chip 
within the camera [21]. Based on the known speed of light 
and the delay, a distance for each pixel can be calculated, 
resulting in a 3D image of the scene in front of the camera. 
This allows e.g. for easy segmentation of body silhouettes for 
further processing like skeletal tracking [22]. 

However, when using multiple ToF cameras, different 
challenges have to be faced in order to successfully 
implement a multi-depth-camera system: 
 

 System Architecture 
(data collection and sensor control) 

 Temporal Synchronization 
(of unsynchronized, arbitrarily delayed data) 

 Interference 
(between multiple cameras illuminating the scene) 

 Registration 
(of multiple cameras to a common coordinate system) 

 Fusion 
(of skeletons tracked by multiple cameras) 

 
In the following, we present a solution, which will address 

all of those topics, and thus enable and support the use of a 
multi-depth-camera system for production planning use cases 
amongst others. While the first two challenges (architecture 
and synchronization) can be solved with common, well-
established methods from computer science like lightweight, 
and distributed service-oriented architectures or network-
based time synchronization (NTP), the latter three require 
additional attention. 

3.2. Interference handling 

In earlier active depth sensing devices based on SL 
technology, interference between multiple cameras was a 
major drawback, although different approaches from research 
provided potential solutions, e.g. by Butler et al. [23]. 

However, through the use of the Kinect v2 with its ToF 
technology, interference between the cameras is already at an 
acceptable level to successfully run skeletal tracking 
applications, because ToF uses a modulated light emitter, 
which allows for better coexistence of multiple devices [24]. 

3.3. Registration 

Regarding registration, earlier methods (e.g. in [25]) until 
now used mostly solutions relying on external helpers and 
tools such as checkerboard patterns for calibrations, which 
also made an explicit, time-consuming and error-prone 
registration step necessary. Other methods proposed by 
literature are ICP based using the 3D point cloud [26] and also 
need additional time and computing power to run.  

Contrary to this, we propose an implicit process for 
registration based on the users’ skeletons moving in the 
capture volume. By running an ICP-like approach on the 
skeletal joints being tracked by the Kinect v2 cameras, it is 
possible to start registration as soon as an user enters the 
capture volume, and to have a first, coarse registration 
between any pair of cameras after the first frame in which the 
skeleton was captured by both cameras. With further frames 
being collected, the computed registration is also being 
iteratively refined. In practice, this means that there are no 
additional setup steps necessary besides placing the cameras 
and their computing nodes to deploy a functional tracking 
setup. 
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3.4. Fusion 

Having transformed single sensor skeletal data into one 
common coordinate space, this data from different sources 
can be combined in a coherent view.  As multiple cameras 
may provide redundant information of a certain user within 
the tracking space, also with different tracking quality 
parameters, it is necessary to decide which input should have 
more influence on the overall tracking output. Methods for 
this task range from simple best-skeleton-or joint-counting 
[27] approaches over weighted approaches [28] up to 
specialized fusion methods including several weighting 
factors (see [29], [30] or [25]). For our solution, we 
implemented a combination of different approaches, using 
quality rating algorithms on a joint basis as well as different 
correction methods to acquire stable and robust tracking data 
also in difficult tracking situations. 

3.5. Putting it all together 

By solving the challenges imposed by using multiple 
Kinect v2 sensors, it is now possible to implement an 
integrated suite of software components, which together form 
an easy-to-use environment for Kinect-based motion tracking 
and analysis. In our case, different distributed components 
have been created: 

 
 Sensor Server: Enables other components to query 

tracking data from single sensor via REST-based web 
interface 

 Fusion Server: Handles registration and fusion 
between multiple sensors 

 Visualizer / Recorder: 3D visualization of tracking 
data from the sensors or fusion service, also able to 
record all tracking data to a file. 
 

The components allow for an easy data exchange and 
integration with other components through open, 
REST/JSON-based web interfaces which can be accessed 
with almost any common programming environment. This 
allows for simplified implementation of third-party solutions 
based on tracking data. An additional, mDNS-based discovery 
mechanism also greatly simplifies networking setup, further 
reducing the knowledge for system setup. 

 

4. Discussion 

4.1. Suitability for production planning use cases 

With regard to the use cases presented in chapter 2, the 
implemented system is able to meet the derived requirements 
to a high degree.  

Comparison measurements and evaluation with a marker-
based motion capture system serving as ground truth showed 
that the spatial tracking precision with a setup consisting of 
six Kinect v2 depth cameras is able to reach around 6 cm of 
mean euclidian distance error between the tracked joints of 
the depth camera setup and the ground truth. For most of the 

common production planning use cases, this can be 
considered sufficient, especially as the error is also partially 
originating from differing skeletal models and inferred joint 
positions through the markerless tracking approach.  

Besides this, there are no limitations on the sensor 
positions and orientations, or amount of fused cameras, also 
fostered by the modular and distributed approach. Practical 
setups showed up good results, using 6 inward-looking 
sensors for human posture analysis and 10 or more sensors for 
large-scale tracking areas. 

The implemented system is also cost-efficient, with around 
500 € for a single tracking node and around 4.000 € for a six-
camera setup. Traditional marker-based motion capture setups 
for a comparable capture volume start at around 20.000 €. 

Furthermore, through the use of skeleton-based camera 
registration process and sensor network discovery services, 
the distributed system is practically setup-free, thus reducing 
the deployment barriers. After positioning the cameras freely 
around the area, extrinsic registrations are calculated on-the-
fly, just by moving within the capture volume. This allows for 
a fast setup and relocalization of the system without the need 
for additional experts or maintenance personnel. 

4.2. Extending tracking application areas in production 
planning 

When looking at possible new and previously already 
mocap-based applications, it is still necessary to implement 
suitable interfaces to use tracking data from the presented 
system as an input for recognition and interaction systems. 

This however also offers possibilites to use this data for 
further use cases, e.g. for an interactive, on-site walking path 
analysis or fully immersive VR environments which allow 
collaborative interaction on purely virtual models and 
environments without the need for any physical prototypes. 

With more widespread use, these virtual environment 
methods need to prove long-term, if they can offer at least the 
same amount of involvement in the production preparation 
workshops, support planners at least to identify the same 
amount of problems and also offer the possibility to solve 
them. 

5. Conclusion and Future Work 

We presented a solution for a multi-depth-camera based 
motion tracking system to support production and process 
planning, which is affordable and easy to setup. This system 
can help in fulfilling different requirements for digitally 
supported process engineering from activity recognition to 
gestural interaction with 3D models. 

In the next step, it is possible to enrich skeletal tracking 
data with data acquired from additional (also non-optical) 
sensors, which is especially helpful for improved activity 
recognition (like it is currently executed in the European 
project INTERACT [31]), but can also be used for easier 
interaction e.g. with virtual entities through physical 
“proxies”. 

Furthermore, it is possible to use the registered depth data 
to build a fused point cloud, which not only can be used for 
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motion tracking, but also for object segmentation and 
recognition, e.g. to track tools or parts across the working 
space. Besides this, the use of this system is not restricted to 
production planning use cases, but can be employed almost 
everywhere where a large-scale tracking of people is 
necessary.  

Particularly in the automotive industry, there are several 
additional use-cases, which will directly benefit from this 
contribution, e.g. markerless virtual training for workers, 
after-sales disassembly routines and marketing applications.  
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