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ABSTRACT
Human errors are a major reason for traffic accidents. One of
the aims of the introduction of automated driving functions
in vehicles is to prevent such accidents as such systems are
supposed to be more reliable, react faster with higher preci-
sion. Therefore, we assume that an increase of automation
features will also increase safety. However, when drivers are
not willing to relinquish control to the vehicle, safety benefits
of automated vehicles do not take effect. Therefore, con-
vincing drivers to actively make use of the automation when
appropriate can increase traffic safety. In this paper we inves-
tigate the influence of system feedback in proactive, safety
critical takeover situations in automated driving. In contrast to
handover, which is initiated by the system, proactive takeover
is initiated by the driver, who’s intention for steering the car
is the reason for driving manually. We compare auditory
feedback with audio-visual feedback realized as a virtual co-
driver in a user study. We conducted a virtual reality simulator
study (n=38) to investigate how system feedback influences
the willingness of drivers to relinquish control to the vehicle.
There were three conditions of system feedback: in condi-
tion none no feedback was given, in condition audio spoken
feedback was given, and in condition co-driver additionally to
audio feedback, a virtual co-driver on the front passenger seat
was displayed. Our research provides evidence that system
feedback can lead to an increase of willingness to maintain
automation and to follow its safety related advices.
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INTRODUCTION
Research on automated driving vehicles has two approaches:
the first one aims at introducing a fully autonomous car that
does not result from a stepwise approach of reducing human
operator control, like the Google Self-Driving Car Project [6],
the other approach is an iterative improvement of Advanced
Driver Assistance Systems (ADAS) up to fully autonomous
cars [22]. Both approaches coexist at the moment. The latter
includes a transition period of semi-automated driving, where
the driver can take control back from the automation and
decides when and under which circumstances he wants to
drive manually and when to drive automatically.

In both approaches the vision of increased traffic safety
achieved with (semi-)automated vehicles is one of the ma-
jor arguments for these developments. The basis for these
arguments are results of investigations that indicate that hu-
man errors account for over 90% of all traffic accidents [21].
And these errors could be avoided with (semi-)automated ve-
hicles. Current automated driving systems are not completely
reliable but we assume that with an increasing maturity of this
technology, the use of automated driving systems will lead
to a decrease of severe accidents. Besides the technological
barriers that have to be solved before such vehicles can be
introduced the drivers’ willingness and acceptance of auto-
mated vehicles are as important. The drivers’ joy of driving
and the need for being in control of the vehicle are factors that
could restrain the use of automated driving functionalities. In
a survey with 5000 participants [15], it was shown that manual
driving was the most enjoyable mode of driving.

Additionally, a lack of trust and acceptance can cause denial
of automated driving. According to a study from 2014, only
44% of U.S. car drivers can imagine to buy a fully autonomous
car and only 22% of U.S. car drivers can imagine to buy a
partially automated driving car [29, 30]. The lack of accep-
tance in automated vehicles and ADAS is also shown in other
literature [11, 26].

This means that the possible safety benefit of automated driv-
ing vehicles can only be fully exploited if drivers are willing
to use the automated driving functions of their vehicles and
consequently to give or leave the control of the driving task to
their vehicle.

We conducted a study, in which we investigated an approach
to convince drivers to maintain automation in safety critical
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situations. We investigated 3 different automation feedback
conditions: (1) without feedback, (2) by communicating the
system state by a computer generated voice, and (3) by com-
municating the system state by a projection of a humanoid
avatar as co-driver. Our main contribution is to show that
appropriate system feedback can increase the willingness to
leave control over the driving task with the automation in
safety critical situations.

In the following, we first define proactive takeover situations,
then the role of trust in automation and how system trans-
parency can increase trust is pointed out. Subsequently, an
overview of persuasion, especially the power of credibility and
social actors regarding persuasion is being discussed. Next,
related work regarding avatars, passengers, emotions and af-
fection is presented. In a user study, we show that system feed-
back has a significant influence on persuading the behavior
of maintaining automated driving functionalities to increase
safety on the road.

PROACTIVE TAKEOVER SITUATIONS
In contrast to handover, which is initiated by the system in
most cases, takeover is initiated by the driver. It can be as-
sumed that a driver who is willing to takeover control of the
vehicle, is aware of the situation and not affected by the out of
the loop performance problem [3]. It states when a systems
is used over a longer period in an automated mode, users will
encounter problems when taking back control from the system.
We define proactive takeover situations as action intended by
the driver to takeover control of the vehicle when driving au-
tonomously or semi-automated. In our study, this takeover
intention does not result from approaching a system boundary.
This means the system is able to handle the current situation
perfectly but the driver wants to takeover control due to some
other reasons. Reasons for such a takeover might be boredom,
impatience, dislike of the automation’s driving style or distrust
in the automation [17]. In this study, we investigated situations,
in which the automation’s driving style could be perceived
as unreasonably cautious. As an example we implemented a
situation where the automation decides to follow a slow lead
vehicle due to safety reasons. Such a situation could result in
the driver getting frustrated, which in turn could increase the
driver’s willingness to takeover control and switch to manual
driving followed by an overtaking attempt thereby risking a
severe accident. The question is how such behavior could be
reduced or prevented.

RELATED WORK
This section discusses the connection between trust and feed-
back. Subsequently, the relation between persuasion and feed-
back is examined. Finally, prevailing research regarding per-
suasive technologies and affection, avatars and the influence
of passengers is presented.

Trust
For the domain of automated driving systems, trust in automa-
tion plays an important role. Lee and See state that the lack of
trust (distrust) can lead to a denial of usage of a system. When
trust exceeds system capabilities (overtrust) and system bound-
aries are reached, the driver may not be capable of performing

an appropriate action [17]. In our scenario, system boundaries
are never reached, therefore only distrust is considered as an
important aspect in the study.

Hoff and Bashir [8] have outlined the relationship between
trust in computer systems and interpersonal trust as follows:
trust in computer systems depends on performance, process
or purpose of the automation whereas trust in humans rely on
social factors, like ability and integrity [16]. Madhavan and
Wiegmann [18] state that the progression of interpersonal trust
differs from human-automation trust. Holmes, and Zanna [25]
state that interpersonal trust – which is the trust between people
– initially depends on the predictability of a person’s action.
This changes in dependability and integrity over time and in
the final stage, trust is based on benevolence or faith. Human-
automation trust progresses the reverse order where people
assume that machines behave perfectly, causing trust based
on faith. On behavior that seems erroneous, trust dissolves.
Faith is replaced by dependability and predictability as primary
basis of trust [17]. This means that clarifying potential errors
in automation by providing system transparency can increase
trust, which in turn increases usage of the automation.

Persuasion
Persuasion is defined as the act of causing people to do or be-
lieve something [1]. Fogg [5] defines persuasive technology as
technology that is designed to influence people in their actions
or believes. He states that an important attribute of persuasive
technologies is credibility. A system that is credible, can also
be persuasive whereas a system with low credibility has low
persuasive power. Lee and See [17] state that computer sys-
tems have high initial credibility, according to Fogg, credibility
can decline when system behavior is not comprehensible [5].
Therefore, similar to trust, system transparency and system
feedback can lead to more credibility, which in turn leads to
persuasion.

A lot of research has been conducted in persuasive technology
in the automotive context. However, a lot of research focuses
on eco-driving feedback technologies, such as [19, 14]. Exam-
ples of persuasive technologies to increase safety are numer-
ous. For example warning sounds on seat belts, speed trailers,
info panels with statistics of accidents. Research on different
persuasive technologies that increases safety, however seems
rare.

Another persuasive element in technology is the role of so-
cial actors [5]. Fogg proposes five types of primary cues that
cause people to see technology as a social actor: physical (ap-
pearance), psychological (e.g. personality), language, social
dynamics (e.g. answering to questions), social roles (e.g. a
teammate or a doctor). Computer systems that are intended
to take such role, should therefore entail at leas on of these
features. According to the Media Equation Theory [24], peo-
ple tend to treat computer systems as if they were real persons.
Therefore, the influence of virtual avatars could lead to a simi-
lar influence as real people. This leads to the assumption that
social actors providing system feedback can influence people’s
behavior.



Influence of Passengers and Avatars
The influences of passengers on driving behavior has been
investigated in several studies so far. Fleiter et al. show that
people tend to drive riskier when driving alone [4]. Addi-
tionally, in a study with teenage drivers, Simons-Morton et
al. [28] found a moderation of the effect of passenger presence
by type of passenger. They found that risky driving was de-
creased when driving with adult drivers compared to driving
alone, but they found an opposite effect when the passengers
were friends of the same age. Other research also shows that
the influence of passengers regarding driving performance is
high [2]. Above this, it is shown that collaboration between
driver and co-driver leads to an increase of safety [7].

Also in regard to robotic avatars, there has been some research
recently. Williams and Breazeal presented a system called
AIDA (Affective Intelligent Driving Agent) [33, 35, 34], a
social robot as interaction device on vehicle dashboards. In
NAMIDA [10], a similar social robot setup was presented. In
contrast to AIDA, NAMIDA has three grouped avatars that
are able to interact with each other. These works focus on
reducing cognitive load when interacting with the vehicle’s
infotainment system and hereby build on social properties to
influence the driver and to increase trust and credibility in the
automation. In [36], a companion robot as car interface is por-
trayed and implemented as a tablet application. In their study,
affective interaction showed to be more effective in regard
to informative interaction. Affective interaction means that
communication is achieved through an avatar based interface
whereas informative interaction means communicating facts
only.

Emotions and Affection
The role of human perception and expression of affective
states and emotions is crucial for social interaction. The same
psychological mechanisms play a role in human-computer-
interaction [23] and thus play a major rule in the endeavor of
influencing drivers’ behaviors. Nass et al. [20] show that social
cues like emotions influence driving performance. In their
study, emotional matchings between the car’s audio feedback
and the driver’s affective state increased safety. Furthermore,
it was shown that anthropomorphism can enhance trust in
an automated vehicle [32]. Koo et al. show that in semi-
autonomous driving, the kind of provided system feedback
influences driving performance. Informing drivers about what
and why something is going on resulted in the best driving
performance [13]. This insight was respected when designing
system feedback in our study.

EXPERIMENT DESIGN
Our study is based on the hypothesis that system feedback
provides transparency and increases trust and acceptance in
the automation, leading to our first research question: does
system feedback has an influence on trust and acceptance of
the automation. The need to understand why an automated
car performs specific actions, leads to our second research
question: does system feedback impact the user’s willingness
to maintain or abort the automation. System feedback is given
in form of auditory feedback in the audio condition. In the
co-driver condition, additionally to the auditory feedback,

a virtual co-driver is rendered into the scene. Our second
assumption is that a virtual co-driver increases the level of
trust and therefore leads to higher compliance and persuasion.
Accordingly, our third research question: does a virtual co-
driver have a greater effect on maintaining the automation than
auditory feedback.

The following hypothesis were derived from the aforemen-
tioned current state of the research literature: H1a: Trust and
acceptance is highest in the co-driver condition. H1b: Trust
and acceptance is higher in the audio condition than in the
none condition. H2a: In the audio condition the automation
is maintained longer than in the none condition. H2b: In the
co-driver condition the automation is maintained longer than
in the none condition. H2c: In the co-driver condition, the
automation is maintained longer than in the audio condition.

We assume that takeover control of the vehicle would most
likely occur when the participant approaches a slowly driving
car ahead and the automation does not overtake the car by
itself. The system’s reason for that was a limited visual range
which made overtaking the car a risky behavior. In the study,
participants had to drive in an automated car on a rural road.
After a short period, a slowly driving car ahead approached,
where participants could cancel the automation to overtake
the car. We further assumed that the type of feedback had an
influence on the probability of canceling the automation.

Method
We recruited 38 participants (25 female) through flyers and
mailing lists. Participants were 24 years old on average (SD =
3.54) and in possession of a valid driver’s license since 6 years
on average (SD = 3.00). Depending on their performance, 6-9
euros were paid as reward. The study lasted about one hour.
A between subject design with randomly assigned participants
was used in the study.

At the beginning, a demographic questionnaire was filled out
and an introduction to the study procedure was provided in
written text. The study setting was conducted in a virtual
reality driving simulator by using an Oculus Rift DK2 and a
Logitech G27 steering wheel. The participants additionally
wore headphones to isolate them completely from reality and
to increase the immersive effect of the VR setting.

To familiarize participants with the VR device and the study
environment, three test scenarios were executed before the
actual experiment, to ensure that test subjects were familiar
with overtaking cars in the setup. This included steering the
vehicle, switching between manual operation and automated
driving of the car and overtaking a car ahead.

Figure 1 shows the view from the interior of the driving car in
the study (left). Fog limits the visual range up to 200m and a
car in front forces the automation to drive at 60km/h. On the
right, the person wearing an Oculus Rift DK2 driving in the
study setup.

In the scenario participants were seated in an automated car on
a two lane rural road. The track was a circuit with 3.400m in
diameter. Participants drove counterclockwise constantly driv-
ing a slight left turn, which was chosen because participants



time passed (s) visual range (m)
0s 200m

120s 500m
160s 800m
200s 1100m
240s End

Table 1. The Table shows the connection between time passed since the
beginning of the drive in seconds and visual range at this moment in
meter.

Figure 1. Left: a car approaching out of the fog (visual range: 200m)
ahead of the driving car. Right: virtual reality study setup using Oculus
Rift DK2.

should easily spot contraflow without deactivating the automa-
tion to swerve. The car drove autonomously with 100 km/h.
During the experiment, fog was used to limit the participant’s
visual range to an exact amount (200m in the beginning). The
fog changed after predefined periods during the study. We
used fog as control variable for visual range. Participants
were told that the human visual range matches the vehicle’s
sensor range. After 15 seconds, a car on the opposite lane
was approaching to show the participants that oncoming traffic
exists in the scenario. After 25 seconds, a car driving with
60km/h appeared out of the fog driving ahead. After 37 sec-
onds, the car ahead was reached and the automation slowed
down, following the car ahead.

After 45 seconds, the system gave feedback why it is not
overtaking the car ahead. 40 seconds later, the system gave
feedback again, the fog did not change at this point. After
that, the fog changed every 40 seconds to the following visual
ranges: 500m, 800m, 1100m. The relationship between vi-
sual range (vr) and time passed (tp) in the study is shown in
Table 1. A constantly extending visual range instead of a ran-
dom order was used, to gradually reduce the risk potential. In
combination with possible growing impatience, we expected a
constantly increasing demand of stopping the automation and
overtaking the car ahead. Our intention was to find the point
in time where participants aborted the automation. We further
assumed that feedback leads to a higher degree of persuasion,
which in turn leads to a longer maintenance of the automa-
tion, resulting in a later point of abortion. We decided to use
a gradually changing visual range to have clearly separated
situations where system feedback could be applied reasonably.
This way a relation between time until abortion and persuasive
effect was given.

In each change, the system gave feedback why it is not go-
ing to overtake the car ahead, e.g. "the fog is still too dense
therefore I cannot overtake the car ahead." Reasons were for-

mulated vaguely, no calculation or exact visual ranges were
communicated.

Three conditions were used for the evaluation. In the none
group no feedback was given. In the audio condition, the
system gave auditory feedback regarding the current condition.
The feedback contained information that and why the automa-
tion does not overtake the slow car ahead. In the co-driver
condition, the same audio feedback as in the audio condition
was presented and in addition, a virtual co-driver was sitting
on the front passenger seat. The co-driver is described in the
implementation section.

At the beginning of the experimental trial, in the audio and co-
driver condition, the feedback system introduced itself, telling
the participants that the system represents the functionalities of
the vehicle and that it will deliver relevant information to the
driver. In the co-driver condition, participants were notified
about the presence of the virtual co-driver because the limited
field of view of the VR device prevented spotting the co-driver
when looking straight ahead.

The drive took 4 minutes in total, no matter how fast partic-
ipants were driving or if overtaking the car ahead occurred.
To give them an incentive to overtake the car ahead, we gave
participants 1 euros for each kilometer driven. When the car
drove the entire track autonomously, an amount of 6 euros
were paid out. If the participants, overtook the car at the earli-
est point in time possible, 9 euros were paid out. Participants
were told that a manual takeover that results in an accident
or speeding, only the minimal amount of reward would be
paid out. By this an incentive to drive as many kilometers as
possible and comfortable without breaking the law or caus-
ing an accident in the given amount of time was created. All
participants were informed about this possible bonus reward
before the beginning of the drive.

After the trial, participants answered a questionnaire contain-
ing scales for simulator sickness [12], trust [9], acceptance [31]
and immersion [27]. In the co-driver condition, appearance
of the avatar regarding uncanniness was also elicited. We also
asked participants how useful the given feedback was. Simu-
lator sickness was measured before and after the simulation.

To summarize, we conducted a between-subjects study with 38
participants in a VR driving simulator. The between-subjects
factor was the kind of feedback given (none, audio, and co-
driver). As dependent variable, we measured the time until
participants aborted the automation. The visual range was
realized with different levels of fog. We expected that most
participants would overtake the car at some point during the
study because the visual range increased due to a gradually
decreasing fog level as the study went on.

Implementation
We implemented the study setup with Unity 3D. The scene
was presented in virtual reality because being inside a vehicle
while sitting beside a virtual co-driver was essential in the
study. Due to the VR setting, only a driving wheel with pedals
was needed to create an appropriate amount of immersion.
A Logitech G27 Racing wheel with corresponding pedals
were used in the study. 3D sound was designed to trigger the



perception that the origin of the voice was in the seat so that
the co-driver could be identified as the source of sound. We
designed the co-driver to appear as a projection (Figure 2) in
order to clarify that the co-driver should not be recognized
as a human being but instead as an artificial humanoid that
represents the computer system and the automation. The setup

Figure 2. The avatar in the study is designed as a projection to avoid
confusion whether the avatar should represent a human being or a com-
puter system. The avatar gesticulates to increase humanoid appearance.

with the virtual co-driver first might seem unrealistic because
projecting a person onto the passenger currently cannot be
realized. However, the intention of this study was to evaluate
the concept of a virtual character being present in the car.
A technical implementation in reality could be achieved by
displaying the co-driver on the window, into a monitor on the
dashboard or as dedicated hardware element somewhere in
the car. We decided to use an avatar on the front passenger
seat because we assumed that a high similarity with an actual
human co-driver would have the biggest impact regarding
persuasion.

The voice in both conditions (audio, co-driver) was the same
and was generated by a text-to-speech engine. An Oculus
Rift DK2 was used as VR device. To make the character
appear more realistic, we captured the avatar’s motions with
an Optitrack motion capturing system. In the simulation, the
car had a linear acceleration of 1.6 m

s2 , accelerating from 60
km/h to 100km/h in about seven seconds.

System feedback
Auditory system feedback regarding the visual range occurred
5 times during the study. In the first situation, the visual range
amounted 200m and the following text was spoken after 45
seconds: "The fog is too dense, therefore the automation will
not overtake the car." After about 90 seconds, visual range was
still 200m and the following feedback was spoken: "The fog
is still too dense, therefore no overtaking maneuver will be
initiated." After the fog extended visual range up to 500m (2.5
minutes), the following message was provided by the system
voice: "The fog has in fact declined, overtaking however is still
not safe." After 800m visual range (160s): "Sight has clearly
improved, however, without risk overtaking is not possible."
After 1100m (3.3 minutes): "Sight is barely restricted, but
there is a certain risk potential, therefore I will not overtake
the car ahead." On the last stage, where visual range amounted
to 1100m, the automation still did not overtake the car while
giving the feedback that the situation bears a certain risk.

The feedback was chosen to be of informative and non-
imperative nature, no instruction for initiating any kind of
action was provided by the system voice.

Overtaking
The visual range to overtake a car ahead is calculated by
the sum of the distance driven to overtake the car plus the
distance driven by a potential approaching contraflow. The
distance to overtake a car ahead is calculated by the sum of
the following distances: the safety distance ahead, the length
of the car ahead, the distance driven by the car ahead during
the overtaking maneuver and the safety distance between the
overtaking car and the car that has been overtaken. Pretests in
the simulator show that the process of overtaking the car ahead
takes about 12 seconds from the decision to take over until the
overtaking maneuver is finished and the car is stable on the
correct lane. If the whole overtaking maneuver takes about
12 seconds, the car travels about 300m during the overtaking
maneuver. A contraflow car approaching with 100km/h travels
about 335m in 12 seconds. This makes a distance of 300m+
335m = 635m and therefore the minimum visual range to
overtake a car ahead.

Results
The abortion time of the automation was analyzed in the three
conditions none where no feedback was given, audio where
auditory feedback was given and co-driver where additionally
to the audio feedback, a virtual co-driver was displayed on
the front passenger seat, acting as proxy for the automation.
Participants in the none condition aborted the automation on
average after 68.8 seconds (SD = 30.1s), 154.8 seconds in the
audio condition (SD = 65.0s) and after 136.4 seconds (SD =
67.0s) in the co-driver condition (Figure 3). Table 2 shows
the percentage of participants who aborted the automation
according to the condition and the visual range.

visual range
Condition 200m 500m 800m 1100m no abort

none 92% 8% 0% 0% 0%
audio 29% 36% 7% 0% 28%

co-driver 50% 8% 17% 17% 8%
Table 2. The Table shows at which visual range participants aborted
the automation in relation to the conditions with no feedback (none),
auditory feedback (audio) and feedback with co-driver (co-driver).

Between the audio condition and the none condition lies on
average 86 seconds. As for the abortion times the precondi-
tion of normal distribution was violated (Anderson-Darling
Test; p < 0.05), a non-parametric alternative to ANOVA had
to be applied. A Kruskal-Wallis-Test revealed a significant
effect between the none condition and the co-driver condition
(p < 0.05) as well as between the none condition and the au-
dio condition (p < 0.01). No significant effect could be found
between the audio condition and the co-driver condition. Ev-
ery participant that aborted the automation, also performed an
overtaking action.

Average ratings of simulator sickness over all study groups
was 1.90 (SD = 0.80) on a 7 point Likert Scale (1 indicating
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Figure 3. Means of aborting the automation in seconds. The none con-
dition with no feedback has the earliest time of abortion. The audio
condition where audio feedback was given, has the latest time of abor-
tion. In the co-driver condition, where the same audio as in the audio
condition is presented, with an additional virtual co-driver on the front
passenger seat, the time of maintaining the automation was between the
none condition and the audio condition. Error bars indicating 95% CI.

no simulator sickness) before driving in the simulation and
was rated as 2.11 (SD = 0.97) after driving. No significant
differences regarding trust and acceptance were found between
the three conditions. Immersion was rated as 4.47 (SD =
0.79) on average on a seven point Likert Scale (1 indicating
no immersion). Trust in the none condition was rated as
5.23 (SD = 0.77) on a 7 point Likert Scale (1 indicating no
trust). Trust in the audio condition was rated as 5.31 (SD =
.81) on average. In the co-driver condition, trust was rated
as 5.25 (SD = 0.84) on average. Acceptance in the none
condition was rated as 5.58 (SD = 0.83) on a 7 point Likert
Scale (1 indicating no acceptance), 5.35 (SD = 1.24) in the
audio condition and in the co-driver condition on average 5.47
(SD = 1.25).

Qualitative feedback regarding the co-driver revealed that the
avatar was generally perceived as negative. For most par-
ticipants it appeared to be uncanny (11) and distracting (7)
because head movements were necessary to catch sight of the
avatar due to the Oculus Rift’s limited horizontal field of view
(of 100°in contrast to the natural field of view of about 180°).
However, some statements emphasize that avatars may have a
positive effect. One participant said that due to the presence
of an avatar, he felt more prepared for an interaction between
the system and the driver. Another participant reported that
he would be more willing to let the avatar finish speaking
than in a condition where only voice is applied to provide the
feedback.

Discussion
In the none condition, the time of aborting the automation and
manually overtaking the lead was the shortest. A significant
difference between the none condition and the audio condi-
tion as well as between the none condition and the co-driver
condition regarding abortion time was found. H2a and H2b
could therefore be confirmed: in the audio condition and the
co-driver condition, the automation is longer maintained than
in the none condition.

The assumption that an avatar as a social actor has a higher
persuasive character than just a voice could not be confirmed.
However, the reason for this could be the implementation of
the avatar itself. Participants stated that they perceived the
character as uncanny. Due to the Oculus Rift’s limited field
of view, looking at the character was only possible by turning
the head, which was perceived as distracting. In real life, the
human field of view is about 180 degree. Noticing a passenger
on the front passenger seat is easier compared to the VR scene.

Differences in trust and acceptance could also not be found be-
tween the three conditions. The assumption that the avatar and
system feedback influences trust (H1), could not be confirmed.
Consequently, the differences in aborting the automation in
the three conditions seem to be not directly related to trust and
acceptance.

The low level of simulator sickness indicates that participants
did not feel uncomfortable during the study. Generally, a high
degree of simulator sickness can lead to the compulsive reac-
tion of finishing the study as soon as possible. This behavior
could not be observed. A high level of immersion indicates
that participants could identify themselves as being in the
scene sitting in the car and performing as good as they could.

The average time difference of 86 seconds between overtaking
the car in the none condition and the audio condition indicates
that the delay of abortion between the conditions did not occur
because participants were only waiting for the audio to finish
before taking action. An audio sample took about 5 to 7
seconds to be played completely.

As pointed out in Section 4.4, a visual range of 635m was
required to overtake the car ahead safely. The visual ranges in
the study were 200m, 500m, 800m and 1100m. This means
that a range of 200m is highly risky, a range of 500m still bears
a certain risk and overtaking at a visual range of 800m can
be considered as safe driving behavior. The average abortion
time in the none condition was at 68.8 seconds where visual
range accounted for 200m. All but one participant overtook
the car at this visual range, one overtook the car at 500m. The
average abortion time in the conditions audio and co-driver,
the visual range amounted 500m. This shows that the average
of participants in both feedback conditions acted in a safer
driving behavior. 35% of participants in the audio condition
overtook the car not until 800m visual range, likewise 42% in
the co-driver condition, where overtaking could be considered
as safe. In contrast, all of the participants in the none condi-
tion overtook the car in a potentially dangerous situation. It
is thinkable that explicitly telling the participants the actual
visual range and that a visual range of about 630m would
be necessary to safely overtaking the car, could increase the
safe driving behavior. Self-statements of participants after the
study suggests that boringness during the drive and the incen-
tive of gaining 3 euros more by driving risky and fast, had a
strong influence on most participants to overtake the car ahead
early. Although, the influence to overtake the car was high and
penalization on potential crashing was low, the differences in
aborting the automation between the none condition and the
feedback conditions are clearly present.



CONCLUSION
In this paper we conducted a user study to investigate system
feedback regarding persuasion and safety. System feedback
contained the current behavior and an explanation, for exam-
ple: "The fog is still too dense therefore I cannot overtake the
car ahead." Feedback was altered in three different conditions:
none, where no feedback was given; audio, where auditory
feedback was generated through text-to-speech; and co-driver,
where the same audio feedback was presented with a virtual
co-driver speaking. In the study, participants could decide to
continue the automation or abort it and overtake a slow driving
lead car in a safety critical driving situation due to a limited
visual range. This range increased over time. Study results
indicate that with system feedback with and without co-driver
participants maintained the automation significantly longer
than in the none condition. This paper provides evidence that
system feedback can persuade drivers in maintaining automa-
tion and therefore can lead to an increase of traffic safety. We
assume that the use of avatars can lead to an increased level
of compliance when sympathy towards the avatar grows. In
future work, we expect an increase of persuasion by using a
more likable avatar on the dashboard. In this regard, we will
pretest avatar sympathy and likability prior to an experimental
investigation.
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